Effect of Genotype × Environment Interaction for Seed Traits in Winter Oilseed Rape (Brassica napus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Field Trials and Weather Conditions
2.3. Phenotyping the Seed Traits and Genotyping F1 Hybrids, Their Parental Components and HO and LL Breeding Lines
2.4. Statistical Analysis
3. Results
3.1. Seed Oil Content
3.2. C18:1 Content
3.3. C18:2 Content
3.4. C18:3 Content
3.5. Total GLS Content
3.6. Protein Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Federal University of Ouro Preto (UFOP). UFOP Report on Global Market Supply 2018/2019. Available online: www.ufop.de (accessed on 4 December 2020).
- Huang, X.Q.; Huang, T.; Hou, G.Z.; Li, L.; Hou, Y.; Lu, Y.H. Identification of QTLs for seed quality traits in rapeseed (Brassica napus L.) using recombinant inbred lines (RILs). Euphytica 2016, 210, 1. [Google Scholar] [CrossRef]
- Liersch, A.; Bocianowski, J.; Woś, H.; Szała, L.; Sosnowska, K.; Cegielska-Taras, T. Assessment of genetic relationships in breeding lines and cultivars of Brassica napus and their implications for breeding winter oilseed rape. Crop Sci. 2016, 56, 1540–1549. [Google Scholar] [CrossRef]
- Szała, L.; Sosnowska, K.; Popławska, W.; Liersch, A.; Olejnik, A.; Kozłowska, K. Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape (Brassica napus L.). Breed. Sci. 2016, 66, 516–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemann, J.; Bocianowski, J.; Wojciechowski, A. Effects of genotype and environment on seed quality traits variability in interspecific cross-derived Brassica lines. Euphytica 2018, 214, 193. [Google Scholar] [CrossRef] [Green Version]
- Snowdon, R.J.; Iniguez Luy, F.L. Potential to improve oilseed rape and canola breeding in the genomic area. Plant Breed. 2012, 131, 351–360. [Google Scholar] [CrossRef]
- Friedt, W.; Snowdon, R.J. Oilseed rape. In Handbook of Plant Breeding. Oil Crops; Vollmann, J., Rajcan, I., Eds.; Springer Science & Business Media: New York, NY, USA, 2009; Volume 4, pp. 91–126. [Google Scholar]
- Wittkop, B.; Snowdon, R.J.; Friedt, W. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 2009, 170, 131–140. [Google Scholar] [CrossRef]
- Möllers, C. Potential and future prospects for rapeseed oil. In Rapeseed and Canola Oil. Production, Processing, Properties and Uses; Gunstone, F.D., Ed.; Blackwell Publishing: Oxford, UK, 2009; pp. 186–212. [Google Scholar]
- Szydłowska-Czerniak, A.; Bartkowiak-Broda, I.; Karlović, I.; Karlovits, G.; Szłyk, E. Antioxidant capacity, total phenolics, glucosinolates and colour parameters of rapeseed cultivars. Food Chem. 2011, 127, 556–563. [Google Scholar] [CrossRef]
- Matthäus, B.; Haase, N.; Unbehend, G. Impact of HOLL rapeseed oil during frying on product quality during storage. In Proceedings of the 13th International Rapeseed Congress, Prague, Czech Republic, 5–9 June 2011; pp. 528–531. [Google Scholar]
- Spasibionek, S. Genetic and breeding study of winter oilseed rape mutants (Brassica napus L.) with changed fatty acid composition. In Monographs and Scientific Dissertations, Plant Breeding and Acclimatization; National Research Institute (NRI): Radzików, Poland, 2013; Volume 47, pp. 7–106. (In Polish) [Google Scholar]
- Matthäus, B. Effect of dehulling on the composition of antinutritive compounds in various cultivars of rapeseed. Fett Lipid 1998, 100, 295–301. [Google Scholar] [CrossRef]
- Spasibionek, S.; Mikolajczyk, K.; Cwiek-Kupczynska, H.; Pietka, T.; Krotka, K.; Matuszczak, M. Marker assisted selection of new high oleic and low linolenic winter oilseed rape (Brassica napus L.) inbred lines revealing good agricultural value. PLoS ONE 2020, 15, e0233959. [Google Scholar] [CrossRef]
- Bocianowski, J.; Liersch, A.; Nowosad, K. Genotype by environment interaction for alkenyl glucosinolates content in winter oilseed rape (Brassica napus L.) using additive main effects and multiplicative interaction model. Curr. Plant Biol. 2020. [Google Scholar] [CrossRef]
- Shaffi, B.; Mahler, K.A.; Price, W.J.; Auld, D.L. Genotype x environment interaction effects on winter rapeseed yield and oil content. Crop Sci. 1992, 32, 922–927. [Google Scholar] [CrossRef]
- Moghaddam, M.J.; Pourdad, S.S. Genotype x environment interactions and simultaneous selection for high oil yield and stability in rainfed warm areas rapeseed (Brassica napus L.) from Iran. Euphytica 2011, 180, 321–335. [Google Scholar] [CrossRef]
- Zobel, R.W.; Wright, M.J.; Gauch, H.G. Statistical analysis of yield trial. Agron. J. 1988, 80, 388–393. [Google Scholar] [CrossRef]
- Gauch, H.G.; Zobel, R.W. Imputing missing yield trial data. Theor. Appl Genet. 1990, 79, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Spasibionek, S. New mutants of winter rapeseed (Brassica napus L.) with changed fatty acid composition. Plant Breed. 2006, 125, 259–267. [Google Scholar] [CrossRef]
- Spasibionek, S.; Matuszczak, M.; Piętka, T.; Krótka, K.; Krzymański, J. Możliwości dalszego obniżania zawartości glukozynolanów w nasionach rzepaku podwójnie ulepszonego (Brassica napus L.). The possibilities for further reduction of the glucosinolate content in seeds of double low rapeseed (Brassica napus L.). Rośliny Oleiste Oilseed Crop. 2016, XXXVII, 21–36. (In Polish) [Google Scholar]
- Cichy, H.; Budzianowski, G.; Cegielska-Taras, T.; Szała, L. Odmiana rzepaku ozimego wyhodowana przy użyciu podwojonych haploidów. Winter oilseed rape cultivar produced by the use of doubled haploids. Rośliny Oleiste Oilseed Crop. 2005, XXVI, 589–593. (In Polish) [Google Scholar]
- Szała, L.; Sosnowska, K.; Cegielska-Taras, T. Induced chromosome doubling in microspores and regenarated haploid plants of Brassica Napus. Acta Biol. Crac. Bot. 2020, 62, 23–31. [Google Scholar] [CrossRef]
- Piotrowska, A.; Krzymański, J.; Bartkowiak-Broda, I.; Krótka, K. Characteristic of yellow-seeded lines of winter oilseed rape. In Proceedings of the 11th International Rapeseed Congress, Copenhagen, Denmark, 6–10 June 2003; pp. 247–249. [Google Scholar]
- Szała, L.; Kaczmarek, Z.; Cegielska-Taras, T.; Adamska, E. Influence of yellow-seeded parent on DH populations of Brassica napus L. obtained from reciprocal crosses between black and yellow seeded DH line. In Proceedings of the 13th International Rapeseed Congress, Praque, Czech Republic, 4–7 June 2011; pp. 741–744. [Google Scholar]
- Bartkowiak-Broda, I.; Popławska, W.; Fürguth, A.; Mikołajczyk, K. Double low restorer lines of winter rapeseed for CMS ogura system. Rośliny Oleiste Oilseed Crop. 2003, XXIV, 343–352. [Google Scholar]
- Poplawska, W.; Bartkowiak-Broda, I.; Szala, L. Genetic and breeding evaluation of doubled haploid lines with restorer gene for CMS Ogura system of winter oilseed rape (Brassica napus L.). Brassica 2007, 9, 29–32. [Google Scholar]
- Bartkowiak-Broda, I. Hodowla odmian mieszańcowych rzepaku—Breeding of oilseed rape hybrid varieties. Rośliny Oleiste Oilseed Crop. 1994, XV, 11–20. (In Polish) [Google Scholar]
- Michalski, K.; Kołodziej, K.; Krzymański, J. Quantitative analysis of glucosinolates in seeds of oilseed rape –effect of sample preparation on analytical results. In Proceedings of the 9th International Rapeseed Congress, Cambridge, UK, 4–7 July 1995; pp. 911–913. [Google Scholar]
- Velasco, L.; Möllers, C.; Becker, H.C. Estimation of seed weight, oil content and fatty acid composition in intact single seeds of rapeseed (Brassica napus L.) by near infrared reflectance spectroscopy. Euphytica 1999, 106, 79–85. [Google Scholar] [CrossRef]
- Mikolajczyk, K.; Dabert, M.; Karlowski, W.M.; Spasibionek, S.; Nowakowska, J.; Cegielska-Taras, T. Allele-specific SNP markers for the new low linolenic mutant genotype of winter oilseed rape. Plant Breed. 2010, 129, 502–507. [Google Scholar] [CrossRef]
- Falentin, C.; Brégeon, M.; Lucas, M.O.; Renard, M. Genetic Markers for High Oleic Content in Plants. International Patent Publication No. WO 2007/138444, 6 December 2007. [Google Scholar]
- Matuszczak, M.; Spasibionek, S.; Gacek, K.; Bartkowiak-Broda, I. Cleaved amplified polymorphic seguences (CAPS) marker for identification of two mutant alleles of the rapeseed BnaA.FAD2 gene. Mol. Biol. Rep. 2020. [Google Scholar] [CrossRef]
- Mikolajczyk, K.; Bartkowiak-Broda, I.; Poplawska, W.; Spasibionek, S.; Dobrzycka, A.; Dabert, M. A multiplex fluorescent PCR assay in molecular breeding of oilseed rape. In Plant Breeding; Ibrokhim, Y., Ed.; InTech: Rijeka, Croatia, 2011; pp. 185–200. [Google Scholar]
- Nowosad, K.; Liersch, A.; Popławska, W.; Bocianowski, J. Genotype by environment interaction for seed yield in rapeseed (Brassica napus L.) using additive main effects and multiplicative interaction model. Euphytica 2016, 208, 187–194. [Google Scholar] [CrossRef]
- Purchase, J.L.; Hatting, H.; van Deventer, C.S. Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. S. Afr. J. Plant Soil 2000, 17, 101–107. [Google Scholar] [CrossRef]
- Nowosad, K.; Liersch, A.; Poplawska, W.; Bocianowski, J. Genotype by environment interaction for oil content in winter oilseed rape (Brassica napus L.) using additive main effects and multiplicative interaction model. Indian J. Genet. Plant Breed. 2017, 77, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Farshadfar, E.; Sutka, J. Locating QTLs controlling adaptation in wheat using AMMI model. Cereal Res. Commun. 2003, 31, 249–256. [Google Scholar] [CrossRef]
- Bocianowski, J.; Niemann, J.; Nowosad, K. Genotype-by-environment interaction for seed quality traits in interspecific cross-derived Brassica lines using additive main effects and multiplicative interaction model. Euphytica 2019, 215, 7. [Google Scholar] [CrossRef] [Green Version]
- Friedt., W.; Lühs, W.W. Breeding of rapeseed (Brassica napus) for modified seed quality—Synergy of conventional and modern approaches. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999. [Google Scholar]
- Engqvist, M.G.; Becker, H.C. Correlation studies for agronomic traits in segregating families of spring oilseed rape (Brassica napus). Hereditas 1993, 118, 211–216. [Google Scholar] [CrossRef]
- Würschum, T.; Liu, W.; Maurer, H.P.; Abel, S.; Reif, J.C. Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet. 2012, 124, 153–161. [Google Scholar] [CrossRef]
- Zou, J.; Zhao, Y.; Liu, P.; Shi, L.; Wang, X.; Wang, M. Seed quality traits can be predicted with high accuracy in Brassica napus using genomic data. PLoS ONE 2016, 11, e0166624. [Google Scholar] [CrossRef]
- Zhao, J.; Becker, H.C.; Zhang, D.; Zhang, Y.; Ecke, W. Oil content in an European x Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interaction. Crop Sci. 2005, 45, 51–59. [Google Scholar]
- Delourme, R.; Falentin, C.; Huteau, V.; Clouet, V.; Horvais, R.; Gandon, B. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet. 2006, 113, 1331–1345. [Google Scholar] [CrossRef] [PubMed]
- Liersch, A.; Bocianowski, J.; Bartkowiak-Broda, I. Fatty acid and glucosinolates level in seeds of different types of winter oilseed cultivars (Brassica napus L.). Commun. Biometry Crop Sci. 2013, 8, 39–47. [Google Scholar]
- Connor, D.J.; Hall, A.J. Sunflower physiology. In Sunflower Technology and Production; Schneiter, A.A., Ed.; Amarican Society of Agronomy: Madison, WI, USA, 1997; Volume 35, pp. 113–182. [Google Scholar]
- Pritchard, F.M.; Eagles, H.A.; Norton, R.M.; Salisbury, P.A.; Nicolas, M. Environmental effects on seed composition of Victorian canola. Seed 2000, 40, 679–685. [Google Scholar] [CrossRef]
- Guo, J.; Wang, N.; Wen, J.; Yi, B.; Ma, C.; Tu, J.; Zou, J.; Fu, T.; Schen, J. Genetic effects and genotype x environment interactions govern seed oil content in Brassica napus L. BMC Genet. 2017, 18, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, P.; Mailer, R.J.; Galwye, N.; Turner, D.W. Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Aust. J. Agric. Res. 2003, 54, 397–407. [Google Scholar] [CrossRef]
- Sang, J.P.; Minchinton, I.R.; Johnstone, P.K.; Truscott, R.J.W. Glucosinolates profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can. J. Plant Sci. 1984, 64, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Magrath, R.; Herron, C.; Giamoustaris, A.; Mithen, R. The inheritance of aliphatic glucosinolates in Brassica napus. Plant Breed. 1993, 111, 55–72. [Google Scholar] [CrossRef]
- Padilla, G.; Cartea, M.E.; Velasco, P.; De Haro, A.; Ordás, A. Variation of glucosinoaltes in vegetable crops of Brassica rapa. Phytochemistry 2007, 68, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Evans, E.J.; Bilsborrow, P.E.; Syers, J.K. Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus L.). J. Sci. Food Agric. 1994, 64, 295–304. [Google Scholar] [CrossRef]
- Rosa, E.A.S.; Heaney, R.K.; Fenwick, G.R.; Portas, C.A.M. Glucosinolates in crop plants. Hortic. Rev. 1997, 19, 99–215. [Google Scholar]
- Cartea, M.E.; Rodríguez, V.M.; De Haro, A.; Velasco, P.; Ordás, A. Variation of glucosinoaltes and nutritional value in nabicol (Brassica napus pabularia group). Euphytica 2008, 159, 111–122. [Google Scholar] [CrossRef]
- Chen, B.; Xu, K.; Li, H.; Gao, G. Evaluation of quality traits and their genetic variation in global collection of Brassica napus L. Plant Genet. Resour. 2018, 16, 146–155. [Google Scholar] [CrossRef]
- Golkari, S.; Haghparast, R.; Roohi, E.; Mobasser, S.; Ahmadi, M.M.; Soleimani, K. Multi-environment evaluation of winter bread wheat genotypes under rainfed conditions of Iran-using AMMI model. Crop Breed. J. 2016, 6, 17–31. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A. Genotype by environment interaction and crop yield. Plant Breed. Rev. 1998, 16, 135–178. [Google Scholar] [CrossRef]
- Vargas, W.; Crossa, J.; van Eeuwijk, F.A.; Ramirez, E.; Sayre, K. Using partial least squares regression, factorial regression and AMMI models for interpreting genotype-by-environment interaction. Crop Sci. 1999, 39, 955–967. [Google Scholar] [CrossRef]
- Hristov, N.; Mladenov, N.; Djuric, V.; Kondic-Spika, A.; Marjanovic-Jeromela, A.; Simic, D. Genotype by environment interactions in wheat quality breeding programs in southeast Europe. Euphytica 2010, 174, 315–324. [Google Scholar] [CrossRef]
Code | Description | Quality/Category | Reference |
---|---|---|---|
G01 | Monolit | OP canola cultivar, PL | www.coboru.pl; [22]) |
G02 | Brendy | OP canola cultivar, PL | www.coboru.pl |
G03 | Starter | OP canola cultivar, PL | www.coboru.pl |
G04 | Mendel | F1 hybrid variety, NPZ, DE | www.coboru.pl |
G05 | DH_D×C | DH canola breeding line | [23] |
G06 | Z 114 | DH yellow seeded canola breeding line | [24,25] |
G07 | Rfo_37 | DH Rfo canola breeding line | [26,27] |
G08 | Rfo_38 | DH Rfo canola breeding line | [26,27] |
G09 | Rfo_39 | DH Rfo canola breeding line | [26,27] |
G10 | CMS_64 | Ogura CMS canola breeding line | [28] |
G11 | CMS_313 | Ogura CMS canola breeding line | [28] |
G12 | CMS_1612 | Ogura CMS canola breeding line | [28] |
G13 | HO_SS | HO mutant canola breeding line | [20] |
G14 | 00_SS | canola breeding line | [21] |
G15 | HOLL_SS | HOLL mutant canola recombinant line | [14] |
G16 | Polka | HO OP canola cultivar developed from HO mutant recombinant breeding line, PL | www.coboru.pl; [21] |
G17 | HO_TP | DH canola breeding line developed from a domestic recombinant with HO acid content | [21] |
G18 | HO_TP_00 | DH canola breeding line developed from a domestic recombinant with HO acid content | [21] |
G19 | F1_952 | Ogu-INRA F1 canola hybrid under development | This study |
G20 | S43 | Semi-RS canola breeding line | [4] |
G21 | S1 | DH semi RS Rfo canola breeding line | [4] |
G22 | Sherlock | OP canola cultivar, KWS, DE | www.coboru.pl |
G23 | Zornyj | OP canola cultivar, UA | |
G24 | F1_S2 | Ogu-INRA F1 canola hybrid under development | This study |
G25 | F1_239 | Ogu-INRA F1 canola hybrid under development | This study |
Code | Description | Oil Content | C18:1 Content | C18:2 Content | C18:3 Content | Total GLSs Content | Protein Content | TGSI |
---|---|---|---|---|---|---|---|---|
G01 | Monolit | 46.72 | 65.02 | 18.22 | 8.92 | 12.27 | 20.98 | 158 |
G02 | Brendy | 46.09 | 65.03 | 18.45 | 9.34 | 16.80 | 21.35 | 155 |
G03 | Starter | 46.98 | 63.46 | 18.34 | 10.58 | 12.35 | 21.65 | 185 |
G04 | Mendel | 44.93 | 61.29 | 19.95 | 11.06 | 14.98 | 22.76 | 231 |
G05 | DH_D×C | 44.55 | 73.80 | 8.48 | 10.50 | 11.80 | 22.69 | 198 |
G06 | Z 114 | 45.53 | 59.95 | 22.86 | 9.93 | 9.71 | 22.98 | 182 |
G07 | Rfo_37 | 45.46 | 64.31 | 18.87 | 9.57 | 10.40 | 21.81 | 203 |
G08 | Rfo_38 | 45.36 | 73.50 | 10.50 | 8.45 | 10.55 | 22.59 | 145 |
G09 | Rfo_39 | 45.29 | 75.11 | 9.39 | 8.54 | 10.48 | 22.44 | 146 |
G10 | CMS_64 | 45.68 | 62.70 | 18.83 | 11.10 | 10.20 | 22.88 | 151 |
G11 | CMS_313 | 46.23 | 72.38 | 11.94 | 8.52 | 7.34 | 22.33 | 144 |
G12 | CMS_1612 | 47.84 | 72.79 | 12.02 | 8.15 | 6.99 | 21.05 | 115 |
G13 | HO_SS | 44.51 | 76.62 | 9.47 | 7.18 | 15.14 | 22.64 | 127 |
G14 | 00_SS | 45.85 | 74.57 | 9.98 | 8.00 | 8.18 | 22.01 | 124 |
G15 | HOLL_SS | 44.67 | 74.40 | 13.93 | 4.92 | 17.46 | 22.84 | 157 |
G16 | Polka | 45.05 | 75.60 | 9.66 | 8.12 | 15.83 | 22.57 | 150 |
G17 | HO_TP | 45.39 | 73.13 | 12.09 | 7.77 | 9.17 | 22.27 | 148 |
G18 | HO_TP_00 | 44.28 | 75.37 | 8.39 | 8.85 | 6.49 | 23.48 | 138 |
G19 | F1_952 | 46.14 | 76.55 | 8.66 | 7.97 | 10.25 | 22.35 | 100 |
G20 | S43 | 44.34 | 61.40 | 21.31 | 9.41 | 8.75 | 23.34 | 220 |
G21 | S1 | 45.70 | 63.46 | 19.34 | 9.93 | 10.35 | 22.02 | 173 |
G22 | Sherlock | 46.09 | 62.99 | 19.97 | 9.89 | 15.16 | 21.33 | 169 |
G23 | Zornyj | 45.58 | 62.29 | 19.51 | 10.58 | 20.16 | 22.82 | 173 |
G24 | F1_S2 | 46.55 | 72.37 | 12.30 | 8.16 | 6.09 | 22.09 | 131 |
G25 | F1_239 | 46.98 | 75.49 | 14.48 | 8.06 | 7.96 | 21.75 | 77 |
Mean | 45.67 | 69.49 | 14.34 | 8.95 | 11.41 | 22.26 | ||
LSD0.05 | 1.24 | 1.15 | 1.06 | 0.48 | 1.31 | 0.79 | ||
LSD0.01 | 1.63 | 1.52 | 1.39 | 0.63 | 1.73 | 1.04 |
Source of Variation | d.f. | Oil Content | C18:1 Content | C18:2 Content | C18:3 Content | Total GLSs Content | Protein Content | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m.s. | ve (%) | m.s. | ve (%) | m.s. | ve (%) | m.s. | ve (%) | m.s. | ve (%) | m.s. | ve (%) | ||
Treatments | 149 | 16.8 *** | 82.58 | 150 *** | 96.30 | 101 *** | 96.02 | 9.36 *** | 91.93 | 69.39 *** | 92.79 | 7.01 *** | 81.25 |
Genotypes, G | 24 | 19.58 *** | 15.50 | 868 *** | 89.97 | 574 *** | 87.54 | 46.3 *** | 73.29 | 337 *** | 72.52 | 10.8 *** | 20.15 |
Environments, E | 5 | 341.9 *** | 56.41 | 77.5 *** | 1.67 | 87.0 *** | 2.76 | 31.4 *** | 10.35 | 168 *** | 7.56 | 130 *** | 50.60 |
GE Interactions | 118 | 2.74 *** | 10.67 | 9.1 *** | 4.65 | 7.62 *** | 5.71 | 1.07 *** | 8.30 | 12.0 *** | 12.72 | 1.14 *** | 10.50 |
IPCA 1 | 28 | 4.78 *** | 41.43 | 17.5 *** | 45.45 | 12.46 *** | 38.82 | 1.68 *** | 37.49 | 24.5 *** | 48.41 | 1.8 *** | 37.23 |
IPCA 2 | 26 | 3.47 *** | 27.91 | 10.8 *** | 25.97 | 9.85 *** | 28.48 | 1.33 *** | 27.32 | 15.3 *** | 28.16 | 1.35 *** | 26.05 |
IPCA 3 | 24 | 2.54 *** | 18.84 | 9.0 *** | 20.13 | 10.02 *** | 26.81 | 1.23 *** | 23.43 | 7.66 *** | 12.99 | 0.92 ** | 16.43 |
Residuals | 40 | 0.96 | 2.3 | 1.34 | 0.37 | 3.69 *** | 0.68 | ||||||
Error | 378 | 1.14 | 2.1 | 1.56 | 0.3 | 1.86 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liersch, A.; Bocianowski, J.; Nowosad, K.; Mikołajczyk, K.; Spasibionek, S.; Wielebski, F.; Matuszczak, M.; Szała, L.; Cegielska-Taras, T.; Sosnowska, K.; et al. Effect of Genotype × Environment Interaction for Seed Traits in Winter Oilseed Rape (Brassica napus L.). Agriculture 2020, 10, 607. https://doi.org/10.3390/agriculture10120607
Liersch A, Bocianowski J, Nowosad K, Mikołajczyk K, Spasibionek S, Wielebski F, Matuszczak M, Szała L, Cegielska-Taras T, Sosnowska K, et al. Effect of Genotype × Environment Interaction for Seed Traits in Winter Oilseed Rape (Brassica napus L.). Agriculture. 2020; 10(12):607. https://doi.org/10.3390/agriculture10120607
Chicago/Turabian StyleLiersch, Alina, Jan Bocianowski, Kamila Nowosad, Katarzyna Mikołajczyk, Stanisław Spasibionek, Franciszek Wielebski, Marcin Matuszczak, Laurencja Szała, Teresa Cegielska-Taras, Katarzyna Sosnowska, and et al. 2020. "Effect of Genotype × Environment Interaction for Seed Traits in Winter Oilseed Rape (Brassica napus L.)" Agriculture 10, no. 12: 607. https://doi.org/10.3390/agriculture10120607
APA StyleLiersch, A., Bocianowski, J., Nowosad, K., Mikołajczyk, K., Spasibionek, S., Wielebski, F., Matuszczak, M., Szała, L., Cegielska-Taras, T., Sosnowska, K., & Bartkowiak-Broda, I. (2020). Effect of Genotype × Environment Interaction for Seed Traits in Winter Oilseed Rape (Brassica napus L.). Agriculture, 10(12), 607. https://doi.org/10.3390/agriculture10120607