Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Setup
2.2. Yield and Biometric Analysis
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Chichakli, B.; von Braun, J.; Lang, C.; Barben, D.; Philp, J. Policy: Five cornerstones of a global bioeconomy. Nature 2016, 535, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Ben Fradj, N.; Rozakis, S.; Borzęcka, M.; Matyka, M. Miscanthus in the European bio-economy: A network analysis. Ind. Crops Prod. 2020, 148, 112281. [Google Scholar] [CrossRef]
- Volk, T.A.; Abrahamson, L.P.; Nowak, C.A.; Smart, L.B.; Tharakan, P.J.; White, E.H. The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation. Biomass Bioenergy 2016, 30, 715–727. [Google Scholar] [CrossRef]
- Walle, I.V.; Van Camp, N.; Van De Casteele, L.; Verheyen, K.; Lemeur, R. Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium) II. Energy production and CO2 emission reduction potential. Biomass Bioenergy 2007, 31, 276–283. [Google Scholar] [CrossRef]
- Borkowska, H.; Molas, R. Yield comparison of four lignocellulosic perennial energy crop species. Biomass Bioenergy 2013, 51, 145–153. [Google Scholar] [CrossRef]
- Stolarski, J.M.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M. Extensive Willow Biomass Production on Marginal Land. Pol. J. Environ. Stud. 2019, 6, 4359–4367. [Google Scholar] [CrossRef]
- Diamantidis, N.D.; Koukis, E.G. Agricultural crops and residues as feedstock for non-food products in Western Europe. Ind. Crops Prod. 2000, 11, 97–106. [Google Scholar] [CrossRef]
- Tharakan, P.J.; Volk, T.A.; Abrahamson, L.P.; White, E.H. Energy feedstock characteristics of willow and hybrid poplar clones at harvest age. Biomass Bioenergy 2003, 25, 571–580. [Google Scholar] [CrossRef]
- Licht, L.A.; Isebrands, J.G. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 2005, 28, 203–218. [Google Scholar] [CrossRef]
- Fillion, M.; Brisson, J.; Teodorescu, T.I.; Sauve, S.; Labrecque, M. Performance of Salix viminalis and Populus nigra x Populus maximowiczii in short rotation intensive culture under high irrigation. Biomass Bioenergy 2009, 33, 1271–1277. [Google Scholar] [CrossRef]
- Cunniff, J.; Purdy, S.J.; Barraclough, T.J.; Castle, M.; Maddison, A.L.; Jones, L.E.; Karp, A. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation. Biomass Bioenergy 2015, 80, 114–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzovkina, Y.A.; Volk, T.A. The characterization of willow (Salix L.) varieties for use in ecological engineering applications: Coordination of structure, function and autecology. Ecol. Eng. 2009, 35, 1178–1189. [Google Scholar] [CrossRef]
- Cao, Y.; Lehto, T.; Piirainen, S.; Kukkonen, J.V.K.; Pelkonen, P. Effects of planting orientation and density on the soil solution chemistry and growth of willow cuttings. Biomass Bioenergy 2012, 46, 165–173. [Google Scholar] [CrossRef]
- Djomo, S.N.; Kasmioui, O.E.; Ceulemans, R. Energy and greenhouse gas balance of bioenergy production from poplar and willow: A review. GCB Bioenergy 2011, 3, 181–197. [Google Scholar] [CrossRef]
- Zamora, S.D.; Apostol, G.K. Biomass production and potential ethanol yields of shrub willow hybrids and native willow accessions after a single 3-year harvest cycle on marginal lands in central Minnesota, USA. Agrofor. Syst. 2014, 88, 593–606. [Google Scholar] [CrossRef]
- Stolarski, J.M.; Krzyżaniak, M.; Załuski, D.; Tworkowski, J.; Szczukowski, S. Effects of site, genotype and subsequent harvest rotation of willow productivity. Agriculture 2020, 10, 412. [Google Scholar] [CrossRef]
- Stolarski, J.M.; Szczukowski, S.; Krzyżaniak, M.; Tworkowski, J. Energy Value of yield and biomass quality in a 7-year rotation of willow cultivated on marginal soil. Energies 2020, 13, 2144. [Google Scholar] [CrossRef]
- Hinton-Jones, M.; Valentine, J. Variety and altitude effects on yields and other characters of SRC willow in Wales. Biomass Energy Crops III Asp. Appl. Biol. 2009, 90, 67–73. [Google Scholar]
- El Bassam, N. Handbook of Bioenergy Crops; Earthscan Ltd.: London, UK, 2010; pp. 392–398. [Google Scholar]
- Aylott, M.J.; Casella, E.; Tubby, I.; Street, N.R.; Smith, P.; Taylor, G. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol. 2008, 178, 358–370. [Google Scholar] [CrossRef]
- Lindegaard, K.N.; Carter, M.M.; McCracken, A.; Shield, I.; MacAlpine, W.; Jones, M.H.; Larsson, S. Comparative trials of elite Swedish and UK biomass willow varieties 2001–2010. Asp. Appl. Biol. 2011, 112, e66. [Google Scholar]
- Pei, M.H.; Lindegaard, K.; Ruiz, C.; Bayon, C. Rust resistance of some varieties and recently bred genotypes of biomass willows. Biomass Bioenergy 2008, 32, 453–459. [Google Scholar] [CrossRef]
- Dimitriou, I.; Mola-Yudego, B. Poplar and willow plantations on agricultural land in Sweden: Area, yield, groundwater quality and soil organic carbon. Biomass Bioenergy 2017, 383, 99–107. [Google Scholar] [CrossRef]
- Larsen, S.U.; JØrgensen, U.; Laerke, P.E. Willow yield is Highly dependent on clone and site. Bioenerg. Res. 2014, 7, 1280–1292. [Google Scholar] [CrossRef]
- Serapiglia, M.J.; Cameron, K.D.; Stipanovic, A.J.; Abrahamson, L.P.; Volk, T.A.; Smart, L.B. Yield and woody biomass traits of novel shrub willow hybrids at two contrasting sites. Bioenergy Res. 2013, 6, 533–546. [Google Scholar] [CrossRef] [Green Version]
- Fabio, E.S.; Volk, T.A.; Miller, R.O.; Serapiglia, M.J.; Gauch, H.G.; Van Rees, K.C.J.; Hangs, R.D.; Amichev, B.Y.; Kuzovkina, Y.A.; Labrecque, M.; et al. Genotype x environment interaction analysis of North American shrub willow yield trials confirms superior performance of triploid hybrids. GCB Bioenergy 2017, 9, 445–459. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Klasa, A. Willow biomass production under conditions of low-input agriculture on marginal soils. For. Ecol. Managm. 2011, 262, 1558–1566. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyzaniak, M.; Szczukowski, S.; Tworkowski, J.; ´Śnieg, M. Willow productivity on a commercial plantation in triennial harvest cycle. Bulg. J. Agric. Sci. 2016, 22, 65–72. [Google Scholar]
- Nord-Larsen, T.; Sevel, L.; Raulund-Rasmussen, K. Commercially grown short rotation coppice willow in Denmark: Biomass production and factors affecting production. Bioenergy Res. 2015, 8, 325–339. [Google Scholar] [CrossRef]
- Castaño-Díaz, M.; Barrio-Anta, M.; Afif-Khouri, E.; Cámara-Obregón, A. Willow short rotation coppice trial in a former mining area in northern Spain: Effects of clone, fertilization and planting density on yield after five years. Forests 2018, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Hernea, C.; Trava, I.D.; Borlea, G.F. Biomass production of some Swedish willow hybrids on the West of Romania. A case study. J. Hortic. For. Biotechnol. 2015, 19, 103–106. [Google Scholar]
- Maděra, P.; Kovářová, P. Primary succession of white willow communities in the supraregional biocorridor in the Middle water reservoir of Nové Mlýny. Ekológia 2004, 23, 191–204. [Google Scholar]
- Maděra, P.; Packová, P.; Manjarrés, D.R.L.; Štykar, J.; Simanov, V. The model of potential biomass production in Odra R. basin. Ekológia 2009, 28, 170–190. [Google Scholar] [CrossRef]
- Amichev, B.Y.; Volk, T.A.; Hangs, R.D.; Bélanger, N.; Vujanovic, V.; Van Rees, K.C.J. Growth, survival, and yields of 30 short-rotation willow cultivars on the Canadian Prairies: 2nd rotation implications. New For. 2018, 49, 649–665. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Niksa, D.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S. Willow productivity from small-and large-scale experimental plantations in Poland from 2000 to 2017. Renew. Sust. Energy Rev. 2019, 101, 461–475. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Załuski, D. Willow production during 12 consecutive years—The effects of harvest rotation, planting density and cultivar on biomass yield. GCB Bioenergy 2019, 11, 635–656. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Śnieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S. Short rotation coppices, grasses and other herbaceous crops: Productivity and yield energy value versus 26 genotypes. Biomass Bioenergy 2018, 119, 109–120. [Google Scholar] [CrossRef]
- Pudełko, R.; Kozak, M.; Jędrejek, A.; Gałczyńska, M.; Pomianek, B. Regionalisation of unutilised agricultural area in Poland. Pol. J. Soil Sci. 2018, 51, 119. [Google Scholar] [CrossRef] [Green Version]
- Scholz, V.; Ellerbrock, R. The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass Bioenergy 2002, 23, 81–92. [Google Scholar] [CrossRef]
- Peacock, L.; Hunter, T.; Turner, H.; Brain, P. Does host genotype diversity affect the distribution of insect and disease damage in willow cropping systems? J. Appl. Ecol. 2001, 38, 1070–1081. [Google Scholar] [CrossRef] [Green Version]
- Karp, A.; Hanley, S.J.; Trybush, S.O.; Macalpine, W.; Pei, M.; Shield, I. Genetic improvement of willow for bioenergy and biofuels free access. J. Integr. Plant. Biol. 2011, 53, 151–165. [Google Scholar] [CrossRef] [Green Version]
Variety | Species | Country of Breeding |
---|---|---|
Gigantea | Salix viminalis | Denmark |
Inger | S. viminalis × S. triandra | Sweden |
Linnea | S. viminalis | Sweden |
Olof | S. viminalis× S. schwerinii | Sweden |
Sven | S. viminalis× S. schwerinii | Sweden |
Tora | S. viminalis× S. schwerinii | Sweden |
Tordis | S. viminalis× S. schwerinii | Sweden |
Torhild | S. viminalis× S. schwerinii | Sweden |
Ekotur | S. viminalis | Poland |
Tur | S. viminalis | Poland |
Żubr | S. viminalis | Poland |
Variety | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tora (1) | −10 | −13 | −17 | −19 | −20 | −33 | −34 | −38 | −43 | −53 | −28 | |
Tur (2) | 11 | −3 | −8 | −10 | −11 | −25 | −26 | −31 | −37 | −47 | −20 | |
Sven (3) | 15 | 3 | −5 | −7 | −8 | −23 | −23 | −29 | −35 | −46 | −18 | |
Olof (4) | 21 | 8 | 5 | −2 | −4 | −19 | −20 | −25 | −32 | −43 | −14 | |
Torhild (5) | 24 | 11 | 8 | 3 | −2 | −17 | −18 | −24 | −30 | −42 | −11 | |
Tordis (6) | 26 | 13 | 9 | 4 | 2 | −16 | −16 | −22 | −29 | −41 | −10 | |
Gigantea (7) | 49 | 34 | 29 | 23 | 20 | 19 | −1 | −8 | −15 | −30 | 7 | |
Inger (8) | 50 | 35 | 31 | 25 | 22 | 20 | 1 | −7 | −15 | −29 | 8 | |
Linnea (9) | 62 | 45 | 41 | 34 | 31 | 29 | 9 | 8 | −8 | −24 | 16 | |
Ekotur (10) | 76 | 58 | 53 | 46 | 42 | 40 | 18 | 17 | 9 | −17 | 26 | |
Żubr (11) | 112 | 90 | 84 | 75 | 71 | 68 | 42 | 41 | 31 | 20 | 51 | |
Average (12) | 40 | 26 | 21 | 16 | 13 | 11 | −6 | −7 | −14 | −21 | −34 |
Variety | Number of Shoots for Plant | Plant Height (m) | Shoot Diameter (mm) |
---|---|---|---|
Gigantea | 8.4 a * | 3.3 d | 15.6 f |
Inger | 7.7 ab | 3.2 d | 17.1 def |
Linnea | 6.8 b | 3.4 d | 18.5 cde |
Olof | 7.1 b | 3.3 d | 17.8 cdef |
Sven | 5.1 c | 3.5 cd | 18.4 cde |
Tora | 5.0 c | 3.5 cd | 19.9 bc |
Tordis | 4.9 c | 3.9 bc | 19.3 bcd |
Torhild | 6.7 b | 3.1 d | 16.3 ef |
Ekotur | 4.9 c | 4.1 b | 21.7 b |
Tur | 6.5 b | 3.1 d | 15.7 f |
Żubr | 2.9 d | 4.8 a | 29.6 a |
Average | 6.0 | 3.6 | 19.1 |
Cluster | Variety | DM Yield (Mg ha−1 year−1) | Number of Shoots for Plant | Plant Height (m) | Shoot Diameter (mm) |
---|---|---|---|---|---|
1 | Ekotur, Żubr | 12.6 | 4.0 | 4.5 | 25.7 |
2 | Gigantea, Inger, Linnea | 10.0 | 7.7 | 3.3 | 18.5 |
3 | Olof, Sven, Tora, Tordis, Torhild, Tur | 7.6 | 5.8 | 3.4 | 17.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matyka, M.; Radzikowski, P. Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil. Agriculture 2020, 10, 616. https://doi.org/10.3390/agriculture10120616
Matyka M, Radzikowski P. Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil. Agriculture. 2020; 10(12):616. https://doi.org/10.3390/agriculture10120616
Chicago/Turabian StyleMatyka, Mariusz, and Paweł Radzikowski. 2020. "Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil" Agriculture 10, no. 12: 616. https://doi.org/10.3390/agriculture10120616
APA StyleMatyka, M., & Radzikowski, P. (2020). Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil. Agriculture, 10(12), 616. https://doi.org/10.3390/agriculture10120616