Chemical Composition and Concentration of Bioactive Compounds in Garlic Cultivated from Air Bulbils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Proximate Analysis
2.3. Vitamin C, Total Polyphenol Content, and Antioxidant Activity Concentration
2.4. Determination of Carotenoids, Chlorophyll a and b
2.5. Determination of Glutathione
2.6. High-Performance Liquid Chromatography with Diode-Array Detection (DAD) and Tandem Mass Spectrometry MS/MS Analysis of the Phenolic and Organosulfur Compoud Profile
2.7. Statistical Analysis
3. Results and Discussion
3.1. Proximate Analysis
3.2. Selected Bioactive Compounds Concentration
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Santhosha, S.; Jamuna, P.; Prabhavathi, S. Bioactive components of garlic and their physiological role in health maintenance: A review. Food Biosci. 2013, 3, 59–74. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Yoon, M.K.; Kwak, J.-H. Contents of phytochemical constituents and antioxidant activity of 19 garlic (Allium sativum L.) parental lines and cultivars. Hortic. Environ. Biotechnol. 2014, 55, 138–147. [Google Scholar] [CrossRef]
- Hornickova, J.; Kubec, R.; Cejpek, K.; Velíšek, J.; Ovesná, J.; Stavělíková, H. Profiles of S-alk(en)ylcysteine sulfoxides in various garlic genotypes. Czech J. Food Sci. 2010, 28, 298–308. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Petropoulos, S.; Ferreira, I.C. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arzanlou, M.; Bohlooli, S. Introducing of green garlic plant as a new source of allicin. Food Chem. 2010, 120, 179–183. [Google Scholar] [CrossRef]
- Nasim, S.A.; Dhir, B.; Kapoor, R.; Fatima, S.; Mahmooduzzafar; Mujib, A. Alliin obtained from leaf extract of garlic grown under in situ conditions possess higher therapeutic potency as analyzed in alloxan-induced diabetic rats. Pharm. Boil. 2011, 49, 416–421. [Google Scholar] [CrossRef]
- Dyduch, J.; Najda, A. Estimation of the biological value of winter garlic leaves from early cultivation on bunch crop part I. Plants grown from clove planting. Electron. J. Pol. Agric. Univ. 2000, 3. Available online: http://www.ejpau.media.pl/volume3/issue2/horticulture/art-05.html (accessed on 1 November 2019).
- Dyduch, J.; Najda, A. Estimation of the biological value of winter garlic leaves from early cultivation on bunch crop. Part II. Plants grown from planting air bulbs. Electron. J. Pol. Agric. Univ. 2001, 4. Available online: http://www.ejpau.media.pl/volume4/issue2/horticulture/art-04.html (accessed on 1 November 2019).
- Chen, S.; Shen, X.; Cheng, S.; Li, P.; Du, J.; Chang, Y.; Meng, H. Evaluation of Garlic Cultivars for Polyphenolic Content and Antioxidant Properties. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-H.; Lee, J.-K.; Yoon, J.-W.; Ji, J.-J.; Nam, S.-S.; Hwang, H.-S.; Cho, E.-G.; Engelmann, F. Cryopreservation of garlic bulbil primordia by the droplet-vitrification procedure. CryoLetterrs 2006, 27, 143–153. [Google Scholar]
- Vieira, R.L.; da Silva, A.L.; Zaffari, G.R.; Steinmacher, D.A.; Freitas Fraga, H.P.; Guerra, M.P. Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiol. Plant. 2015, 37, 1733–1746. [Google Scholar] [CrossRef]
- Kallel, F.; Driss, D.; Chaari, F.; Belghith, L.; Bouaziz, F.; Ghorbel, R.; Chaabouni, S.E. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Ind. Crop. Prod. 2014, 62, 34–41. [Google Scholar] [CrossRef]
- Piatkowska, E.; Kopeć, A.; Leszczyńska, T. Basic chemical composition, content of micro- and macroelements and antio xidant activity of different varieties of garlic’s leaves polish origin. Food Sci. Technol. Qual. 2015, 1, 181–192. [Google Scholar]
- Dziadek, K.; Kopeć, A.; Piątkowska, E.; Leszczyńska, T.; Pisulewska, E.; Witkowicz, R.; Bystrowska, B.; Francik, R. Identification of polyphenolic compounds and determination of antioxidant activity in extracts and infusions of buckwheat leaves. Eur. Food Res. Technol. 2018, 244, 333–343. [Google Scholar] [CrossRef]
- AOAC. International: Official Methods of Analysis, 17th ed.; AOAC International: Gaithesburg, MD, USA, 2006. [Google Scholar]
- Metzger, L.E.; Nielsen, S.S. Nutrition labeling in food analysis. In Food Analysis, 5th ed.; Nielsen, S.S., Ed.; Springer: Cham, Switzerland, 2017; pp. 35–43. [Google Scholar]
- Food Products–Determination of Vitamin C PN-A-04019:1998; Polish Committee for Standardization: Warsaw, Poland, 1998.
- Swain, T.; Hillis, W.E. The phenolic constituents ofPrunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Boil. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Miliauskas, G.; Venskutonis, P.; Van Beek, T. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Guri, A. Variation in Glutathione and Ascorbic acid Content Among Selected Cultivars of Phaseolus vulgaris PRIOR TO AND AFTER EXPOSURE TO OZONE. Can. J. Plant Sci. 1983, 63, 733–737. [Google Scholar] [CrossRef]
- Wallock-Richards, D.; Doherty, C.J.; Doherty, L.; Clarke, D.J.; Place, M.; Govan, J.R.W.; Campopiano, M.J. Garlic Revisited: Antimicrobial Activity of Allicin-Containing Garlic Extracts against Burkholderia cepacia Complex. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Van Hung, P.; Morita, N. Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chem. 2008, 109, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Arráez-Román, D.; Carretero, A.S.; Marconi, E.; Fernández-Gutiérrez, A.; Caboni, M.F. Identification of buckwheat phenolic compounds by reverse phase high performance liquid chromatography–electrospray ionization-time of flight-mass spectrometry (RP-HPLC–ESI-TOF-MS). J. Cereal Sci. 2010, 52, 170–176. [Google Scholar] [CrossRef]
- Azzini, E.; Durazzo, A.; Foddai, M.S.; Temperini, O.; Venneria, E.; Valentini, S.; Maiani, G. Phytochemicals Content in Italian Garlic Bulb (Allium sativum L.) Varieties. J. Food Res. 2014, 3, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Gorinstein, S.; Leontowicz, H.; Leontowicz, M.; Namieśnik, J.; Najman, K.; Drzewiecki, J.; Cvikrová, M.; Martincová, O.; Katrich, E.; Trakhtenberg, S. Comparison of the Main Bioactive Compounds and Antioxidant Activities in Garlic and White and Red Onions after Treatment Protocols. J. Agric. Food Chem. 2008, 56, 4418–4426. [Google Scholar] [CrossRef] [PubMed]
- Jędrszczyk, E.; Kopeć, A.; Szymanowski, M.; Skowera, B. Proximate chemical composition and concentrations of selected bioactive compounds in the leaves, stems and bulbs of wild garlic (Allium ursinum L.). Fresenius Environ. Bull. 2019, 28, 4778–4785. [Google Scholar]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in Phenolic Compounds in Garlic (Allium sativum L.) Owing to the Cultivar and Location of Growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef]
- Alarcón-Flores, M.I.; Romero-González, R.; Vidal, J.L.M.; Frenich, A.G. Determination of Phenolic Compounds in Artichoke, Garlic and Spinach by Ultra-High-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. Food Anal. Methods 2014, 7, 2095–2106. [Google Scholar] [CrossRef]
- Mercy, O.A.; Simeon, O.O.; Saheed, A.; Ayokunle, O.; Temitope, A.E. Analysis of phenolic compounds, phytosterols, lignans and stilbenoids in garlic and ginger oil by gas chromatography. J. Food Chem. Nutr. 2014, 2, 53–60. [Google Scholar]
- Zeng, Y.; Li, Y.; Yang, J.; Pu, X.; Du, J.; Yang, X.; Yang, T.; Yang, S. Therapeutic Role of Functional Components in Alliums for Preventive Chronic Disease in Human Being. Evid.-Based Complement. Altern. Med. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bloem, E.; Haneklaus, S.; Schnug, E. Influence of Fertilizer Practices on S-Containing Metabolites in Garlic (Allium sativum L.) under Field Conditions. J. Agric. Food Chem. 2010, 58, 10690–10696. [Google Scholar] [CrossRef] [PubMed]
- Beato, V.M.; Sánchez, A.H.; De Castro, A.; Montaño, A. Effect of Processing and Storage Time on the Contents of Organosulfur Compounds in Pickled Blanched Garlic. J. Agric. Food Chem. 2012, 60, 3485–3491. [Google Scholar] [CrossRef] [PubMed]
Variety/Time of Harvest | Dry Matter (g/100 g FM #) | Proteins * (g/100 DM) | Crude Fat * (g/100 gDM) | Total Carbohydrates * (g/100g DM) | Ash * g/100g DM |
---|---|---|---|---|---|
M Harnaś ** | 16.32 ± 0.54 a | 15.07 ± 0.28 d | 3.30 ± 0.15 c | 75.52 ± 0.03 a | 6.11 ± 0.10 d |
M Ornak ** | 18.36 ± 0.45 b | 14.17 ± 0.41 c | 2.74 ± 0.36 bc | 76.00 ± 0.24 a | 7.09 ± 0.19 e |
JN Harnaś ** | 28.71 ± 1.23 c | 7.65 ± 0.51 ab | 3.06 ± 0.47c | 85.05 ± 0.82 c | 4.24 ± 0.16 c |
JN Ornak ** | 32.28 ± 0.25 d | 7.07 ± 0.04 a | 6.66 ± 0.70 d | 82.22 ± 1.65 b | 4.05 ± 0.02 c |
JL Harnaś ** | 35.10 ± 0.75 e | 8.28 ± 0.12 b | 1.04 ± 0.07 ab | 87.56 ± 0.17 d | 3.07 ± 0.02 a |
JL Ornak ** | 41.41 ± 0.12 f | 7.78 ± 0.44 ab | 0.82 ± 0.02 a | 87.95 ± 0.62 d | 3.45 ± 0.45 b |
Variety/Time of Harvest | Vitamin C (mg/100g FM) | Total Polyphenols (mg/100g FM) | ABTS (μmol Trolox/g FM) | FRAP (μmol Trolox/g FM) | DPPH (μmol Trolox/g FM) | Carotenoids (mg/100g FM) | Chlorophyll A (mg/1gFM) | Chlorophyll B (mg/1g FM) | Gluthathione (mg/1gFM) |
---|---|---|---|---|---|---|---|---|---|
M Harnaś * | 27.26 ± 2.94 e | 257 ± 7 c | 10.41 ± 0.07e | 12.21 ± 0.13 d | 2.75 ± 0.01 b | 0.21 ± 0.01 b | 0.61 ± 0.13 c | 0.22 ± 0.01 d | 20.18 ± 2.94 b |
M Ornak * | 31.51 ± 0.45 c | 262 ± 1 c | 10.17 ± 0.03e | 14.37 ± 0.06 f | 2.50 ± 0.01 ab | 0.25 ± 0.0 c | 0.76 ± 0.07 d | 0.23 ± 0.02 d | 16.19 ± 0.63 a |
JN Harnaś * | 23.51 ± 0.34 b | 179 ± 11 b | 7.85 ± 0.22c | 11.29 ± 0.10 c | 2.00 ± 0.04 a | 0.21 ± 0.01 b | 0.61 ± 0.04 c | 0.15 ± 0.01 c | 21.99 ± 1.59 b |
JN Ornak * | 28.64 ± 0.68 d | 185 ± 3 b | 8.87 ± 0.02d | 13.74 ± 0.11 e | 2.81 ± 0.01 b | 0.16 ± 0.00 a | 0.50 ± 0.02 c | 0.16 ± 0.02 c | 15.00 ± 1.73 a |
JL Harnaś * | 5.14 ± 0.45 a | 110 ± 6 a | 6.65 ± 0.10a | 6.42 ± 0.15 a | 1.98 ± 0.05 a | 0.15 ± 0.01 a | 0.34 ± 0.01 b | 0.10 ± 0.00 b | 13.87 ± 1.33 a |
JL Ornak * | 4.44 ± 0.30 a | 116 ± 3 a | 7.52 ± 0.2b | 7.01 ± 0.06 b | 2.31 ± 0.01 ab | 0.14 ± 0.01 a | 0.19 ± 0.02 a | 0.04 ± 0.01 a | 13.36 ± 0.67 a |
Compound | Molecular Mass (g/mol) | m/z | Retention Time (min) | DP ** | FP *** | CE # | CXP ## | Cultivar | |
---|---|---|---|---|---|---|---|---|---|
(M) | (M–H+)− | MRM *− | |||||||
Sinapinic acid | 224.21 | 222.70 | 207.80 | 12.88 | −31 | −160 | −12 | −15 | JL Ornak * JN Ornak * |
p-Coumaric acid | 164.16 | 162.80 | 119.10 | 19.81 | −31 | −320 | −9 | −22 | M Harnaś * M Ornak * |
Isorhamnetin | 316.26 | 314.70 | 300.00 | 24.8 | −91 | −340 | − | -10 | JL Ornak * |
Organosulfur Compounds | Retention Time (min) | Precursor Ion (m/z) | Specific Ions for Identification | DP * | FP ** | CE # | CXP ## | Cultivar |
---|---|---|---|---|---|---|---|---|
S-methyl-L-cysteine | 2.64 | 136.10 | 118.8 | −31 | −100 | 13 | −15 | M Harnaś * |
S-allyl-L-cysteine | 3.13 | 162.10 | 145.10; 73.10 | −20 | −200 | 12 | −10 | M Harnaś * |
S-(trans-1-propenyl)-L-cysteine | 3.47 | 162.40 | 145.04 | −20 | −200 | 8 | −15 | JN Harnaś * JL Harnaś * JL Ornak * |
(3R, 5S)-5-methyl-1,4-thiazine-3-carboxylic acid (cycloalliin) | 2.66 | 178.23 | 88.08; 91.04 | −86 | −50 | −15 | −6 | M Harnaś * JN Harnaś * JN Ornak * |
S-allyl-L-cysteine sulfoxide | 3.00 | 178.30 | 88. 4 | −20 | −200 | −15 | −15 | JN Harnaś * JL Harnaś * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopeć, A.; Skoczylas, J.; Jędrszczyk, E.; Francik, R.; Bystrowska, B.; Zawistowski, J. Chemical Composition and Concentration of Bioactive Compounds in Garlic Cultivated from Air Bulbils. Agriculture 2020, 10, 40. https://doi.org/10.3390/agriculture10020040
Kopeć A, Skoczylas J, Jędrszczyk E, Francik R, Bystrowska B, Zawistowski J. Chemical Composition and Concentration of Bioactive Compounds in Garlic Cultivated from Air Bulbils. Agriculture. 2020; 10(2):40. https://doi.org/10.3390/agriculture10020040
Chicago/Turabian StyleKopeć, Aneta, Joanna Skoczylas, Elżbieta Jędrszczyk, Renata Francik, Beata Bystrowska, and Jerzy Zawistowski. 2020. "Chemical Composition and Concentration of Bioactive Compounds in Garlic Cultivated from Air Bulbils" Agriculture 10, no. 2: 40. https://doi.org/10.3390/agriculture10020040
APA StyleKopeć, A., Skoczylas, J., Jędrszczyk, E., Francik, R., Bystrowska, B., & Zawistowski, J. (2020). Chemical Composition and Concentration of Bioactive Compounds in Garlic Cultivated from Air Bulbils. Agriculture, 10(2), 40. https://doi.org/10.3390/agriculture10020040