Creeping Bentgrass Fairway Wear Resistance by Granular Topdressing of Ca/Mg-rich Liming Agents
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Soil pH and Silicon Availability
3.2. Turfgrass Vigor, Si Assimilation, Leaf H2O Status, and Nutrition
3.3. Turfgrass Traffic/Wear Tolerance
4. Discussion
4.1. Soil pH and Silicon Availability
4.2. Turfgrass Vigor, Si Assimilation, Leaf H2O Status, and Nutrition
4.3. Turfgrass Traffic/Wear Tolerance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poldervaart, A. Chemistry of the Earth’s crust. Geol. Soc. Am. Spec. Pap. 1955, 62, 119–144. [Google Scholar]
- Coskun, D.; Deshmukh, R.; Sonah, H.; Menzies, J.G.; Reynolds, O.; Ma, J.F.; Kronzucker, H.J.; Belanger, R.R. The controversies of silicon’s role in plant biology. New Phytol. 2019, 221, 67–85. [Google Scholar] [CrossRef]
- Sangster, A.G.; Hodson, M.J.; Tubb, H.J. Silicon deposition in higher plants. In Silicon in Agriculture; Elsevier Science: New York, NY, USA, 2001; pp. 85–113. [Google Scholar]
- Gong, H.J.; Randall, D.P.; Flowers, T.J. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ. 2006, 29, 1970–1979. [Google Scholar] [CrossRef]
- Soukup, M.; Martinka, M.; Cigán, M.; Ravaszová, F.; Lux, A. New method for visualization of silica phytoliths in Sorghum bicolor roots by fluorescence microscopy revealed silicate concentration-dependent phytolith formation. Planta 2014, 240, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.M.; Nikoli’c, M.; Bélanger, R.R.; Gong, H.; Song, A. Silicon in Agriculture: From Theory to Practice; Dordrecht-Springer: Dordrecht, The Netherlands, 2015; pp. 138–215. [Google Scholar]
- Lux, A.; Luxová, M.; Abe, J.; Morita, S.; Inanaga, S. Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. Plant Soil 2003, 255, 85–91. [Google Scholar] [CrossRef]
- Guntzer, F.; Keller, C.; Poulton, P.R.; Mcgrath, S.P.; Meunier, J.-D. Long-term removal of wheat decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil 2012, 352, 173–184. [Google Scholar] [CrossRef]
- Korndorfer, G.H.; Snyder, G.H.; Ulloa, M.; Powell, G.; Datnoff, L.E. Calibration of soil and plant silicon analysis for rice production. J. Plant Nutr. 2001, 24, 1071–1084. [Google Scholar] [CrossRef]
- Barbosa-Filho, M.P.; Snyder, G.H.; Elliot, C.L.; Datnoff, L.E. Evaluation of soil test procedures for determining rice-available silicon. Commun. Soil Sci. Plant Anal. 2001, 32, 1779–1792. [Google Scholar] [CrossRef]
- Nanayakkara, U.N.; Uddin, W.; Datnoff, L.E. Application of silicon sources increases silicon accumulation in perennial ryegrass turf on two soil types. Plant Soil 2008, 303, 83–94. [Google Scholar] [CrossRef]
- Datnoff, L.E.; Rutherford, B.A. Accumulation of silicon by bermudagrass to enhance disease suppression of leaf spot and melting out. USGA TERO 2003, 2, 1–8. [Google Scholar]
- Pruyne, D.P.; Schlossberg, M.J.; Uddin, W. Perennial ryegrass wear resistance and soil amendment by Ca- and Mg-silicates. Agronomy 2019, 9, 578. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Fry, J.; Lowe, K.; Tisserat, N. Evaluation of calcium silicate for brown patch and dollar spot suppression on turfgrasses. Crop Sci. 2006, 46, 1635–1643. [Google Scholar] [CrossRef] [Green Version]
- Bae, E.J.; Kim, C.Y.; Yoon, J.H.; Lee, K.S.; Park, Y.B. Effect of silicate fertilizer application on zoysiagrass (Zoysia japonica Steud.) field. Weed Turfgrass Sci. 2018, 7, 247–257. [Google Scholar] [CrossRef]
- Trenholm, L.E.; Duncan, R.R.; Carrow, R.N.; Snyder, G.H. Influence of silica on growth, quality, and wear tolerance of seashore paspalum. J. Plant Nutr. 2001, 24, 245–259. [Google Scholar] [CrossRef]
- Redmond, C.T.; Potter, D.A. Silicon fertilization does not enhance creeping bentgrass resistance to cutworms and white grubs. Appl. Turfgrass Sci. 2006. [Google Scholar] [CrossRef]
- Uriarte, R.F.; Shew, H.D.; Bowman, D.C. Effect of soluble silica on brown patch and dollar spot of creeping bentgrass. J. Plant Nutr. 2004, 27, 325–339. [Google Scholar] [CrossRef]
- Barber, S.A. Liming materials and practices. In Soil Acidity and Liming, 2nd ed.; Agron. Monogr. 12; ASA, CSSA, and SSSA: Madison, WI, USA, 1984; pp. 171–209. [Google Scholar]
- Schlossberg, M.J.; Waltz, F.C.; Landschoot, P.J.; Park, B. Recent mechanical cultivation of lawns enhances lime application efficacy. Agron. J. 2008, 100, 855–861. [Google Scholar] [CrossRef]
- Soukup, M.; Martinka, M.; Bosnic, D.; Caplovicová, M.; Elbaum, R.; Lux, A. Formation of silica aggregates in sorghum root endodermis is pre-determined by cell wall architecture and development. Ann. Bot. 2017, 120, 739–753. [Google Scholar] [CrossRef] [Green Version]
- Canaway, P.M. Wear tolerance of turfgrass species. J. Sports Turf Res. Inst. 1981, 57, 65–83. [Google Scholar]
- Beard, J.B. Turfgrass Science and Culture; Prentice Hall: Englewood Cliffs, NJ, USA, 1973; pp. 368–465. [Google Scholar]
- He, C.; Wang, L.; Liu, J.; Liu, X.; Li, X.; Ma, J.; Lin, Y.; Xu, F. Evidence for ‘silicon’ within the cell walls of suspension-cultured rice cells. New Phytol. 2013, 200, 700–709. [Google Scholar] [CrossRef]
- Suzuki, S.; Ma, J.F.; Yamamoto, N.; Hattori, T.; Sakamoto, M.; Umezawa, T. Silicon deficiency promotes lignin accumulation in rice. Plant Biotechnol. 2012, 29, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Nakamura, A.; Iwai, H.; Ishii, T.; Ma, J.F.; Yokoyama, R.; Nishitani, K.; Satoh, S.; Furukawa, J. Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. J. Plant Res. 2012, 125, 771–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kido, N.; Yokoyama, R.; Yamamoto, T.; Furukawa, J.; Iwai, H.; Satoh, S.; Nishitani, K. The matrix polysaccharide (1;3,1;4)-b-d-glucan is involved in silicon dependent strengthening of rice cell wall. Plant Cell Physiol. 2015, 56, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, H.; Gregor, M. A review on Si uptake and transport system. Plants 2019, 8, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockerham, S.T.; Brinkman, D.J. A simulator for cleated-shoe sports traffic on turfgrass research plots. Calif. Turfgrass Cult. 1989, 39, 9–12. [Google Scholar]
- Zhu, Q.; Schlossberg, M.J.; Bryant, R.B.; Schmidt, J.P. Creeping bentgrass putting green response to foliar nitrogen fertilization. Agron. J. 2012, 104, 1589–1594. [Google Scholar] [CrossRef]
- Schlossberg, M.J.; Karnok, K.J.; Landry, G. Estimation of viable root length density of heat-tolerant creeping bentgrass cultivars, ‘Crenshaw’ and ‘L93’, by an accumulative degree day model. J. Am. Soc. Hort. Sci. 2002, 127, 224–229. [Google Scholar] [CrossRef]
- Zhu, Q.; Schlossberg, M.J.; Bryant, R.B. Foliar fertilization-induced injury and recovery of a creeping bentgrass putting green. J. Plant Nutr. 2016, 39, 1589–1596. [Google Scholar] [CrossRef]
- Moody, D.R.; Schlossberg, M.J.; Archibald, D.D.; McNitt, A.S.; Fidanza, M.A. Soil water repellency development in amended sand rootzones. Crop Sci. 2009, 49, 1885–1892. [Google Scholar] [CrossRef]
- Guntzer, F.; Keller, C.; Meunier, J.D. Determining silicon concentration in plant material using Tiron extraction. New Phytol. 2010, 188, 902–906. [Google Scholar] [CrossRef]
- Karcher, D.E.; Richardson, M.D. Quantifying turfgrass color using digital image analysis. Crop Sci. 2003, 43, 943–951. [Google Scholar] [CrossRef]
- Carrow, R.N.; Waddington, D.V.; Rieke, P.E. Turfgrass Soil Fertility and Chemical Problems: Assessment & Management; Wiley & Sons: Hoboken, NJ, USA, 2001; pp. 16–348. [Google Scholar]
- McLarnon, E.; McQueen-Mason, S.; Lenk, I.; Hartley, S.E. Evidence for active uptake and deposition of Si-based defenses in tall fescue. Front. Plant Sci. 2017, 8, 1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Liming Agent | Ca | Cu | Fe | Mg | Mn | Si | CaCO3 Equiv. |
---|---|---|---|---|---|---|---|
g kg−1 | |||||||
Harsco Minerals Ca/MgSiO3 | 240 | 5 | 18 | 60 | 5 | 250 | 790 |
OldCastle pelletized Ca/MgCO3 | 265 | - | - | 60 | - | - | 940 |
Source | df | 0 to 5 cm | 5 to 10 cm | 10 to 15 cm |
---|---|---|---|---|
Soil pH P (F-ratio < F-crit) | ||||
Liming agent treatment (LAT) | 3 | 0.004 | 0.139 | 0.072 |
Month after initiation (MAI) | 2 | 0.066 | 0.046 | 0.003 |
LAT × MAI | 6 | 0.207 | 0.044 | 0.612 |
Extractable Si P (F-ratio < F-crit) | ||||
LAT | 3 | <0.001 | 0.195 | 0.427 |
MAI | 2 | <0.001 | <0.001 | <0.001 |
LAT × MAI | 6 | 0.040 | 0.359 | 0.930 |
Source | df | Clipping Yield | Leaf Si | Si Offtake | df | Leaf H2O |
---|---|---|---|---|---|---|
P (F-ratio < F-crit) | ||||||
Liming agent treatment (LAT) | 3 | 0.364 | <0.001 | 0.001 | 3 | 0.934 |
Month after initiation (MAI) | 4 | <0.001 | <0.001 | <0.001 | 1 | <0.001 |
LAT × MAI | 12 | 0.636 | 0.006 | 0.411 | 3 | 0.369 |
LAT, 2440 kg (ha year)−1 | kg ha−1 | g kg−1 | g ha−1 | g kg−1 | ||
Control | 9.88 | 5.64 | 57.78 | 751.8 | ||
Ca/Mg–SiO3 | 10.76 | 7.65 | 83.74 | 751.4 | ||
Ca/Mg–SiO3 SPL | 9.58 | 7.84 | 75.74 | 748.7 | ||
Ca/Mg–CO3 | 9.97 | 6.00 | 59.63 | 750.0 | ||
Least significant difference, alpha = 0.05 | - | 0.52 | 12.33 | - |
Source | df | Canopy Color | Canopy Density |
---|---|---|---|
P (F-ratio < F-crit) | |||
Wear | 1 | <0.001 | <0.001 |
Liming agent treatment (LAT) | 3 | 0.310 | 0.560 |
Wear × LAT | 3 | 0.265 | 0.469 |
Day after initiation (DAI) | 24 | <0.001 | <0.001 |
Wear × DAI | 24 | <0.001 | <0.001 |
LAT × DAI | 72 | 0.007 | 0.105 |
Wear × LAT × DAI | 72 | 0.005 | 0.019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pruyne, D.T.; Schlossberg, M.J.; Uddin, W. Creeping Bentgrass Fairway Wear Resistance by Granular Topdressing of Ca/Mg-rich Liming Agents. Agriculture 2020, 10, 43. https://doi.org/10.3390/agriculture10020043
Pruyne DT, Schlossberg MJ, Uddin W. Creeping Bentgrass Fairway Wear Resistance by Granular Topdressing of Ca/Mg-rich Liming Agents. Agriculture. 2020; 10(2):43. https://doi.org/10.3390/agriculture10020043
Chicago/Turabian StylePruyne, Derek T., Maxim J. Schlossberg, and Wakar Uddin. 2020. "Creeping Bentgrass Fairway Wear Resistance by Granular Topdressing of Ca/Mg-rich Liming Agents" Agriculture 10, no. 2: 43. https://doi.org/10.3390/agriculture10020043
APA StylePruyne, D. T., Schlossberg, M. J., & Uddin, W. (2020). Creeping Bentgrass Fairway Wear Resistance by Granular Topdressing of Ca/Mg-rich Liming Agents. Agriculture, 10(2), 43. https://doi.org/10.3390/agriculture10020043