The Impact of Household Wealth on Adoption and Compliance to GLOBAL GAP Production Standards: Evidence from Smallholder farmers in Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Procedure
2.2. Empirical Estimation
2.2.1. Principle Component Analysis (PCA)
2.2.2. Double Hurdle Model
- Decision to obtain GLOBAL GAPs certification
- The extent of adoption of GLOBAL GAP standards
3. Results and Discussion
3.1. Descriptive Statistics of Households
Computation Wealth Index by the PCA
3.2. Distribution of Wealth by Groups
3.2.1. Adoption of GLOBALGAP Certification
3.2.2. The Extent of GLOBAL GAP Adoption
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
Likelihood Ration Test of Homoscedasticity Restriction | Likelihood Ratio Test of Normality Restriction | |
---|---|---|
H0 = homoscedasticity Error structure H1 = Heteroscedastic Error specification | H0 = Untransformed dependent variable H1 = HIS Transformation to depend variable | |
No observations | 450 | 450 |
Test statistic | 19.73 | 1.556 |
Critical value | X2 = 0.1723 Reject H0 | X2 = 1.450 Reject H0 |
References
- Humphrey, J. Private Standards, Small Farmers and Donor Policy: EUREPGAP in Kenya; Institute of Development Studies at the University of Sussex Brighton: Brighton, UK, 2008. [Google Scholar]
- Herzfeld, T.; Drescher, L.S.; Grebitus, C. Cross-national adoption of private food quality standards. Food Policy 2011, 36, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Aloui, O.; Kenny, L. The Cost of Compliance with SPS Standards for Moroccan Exports: A Case Study; World Bank Agriculture and Rural Development Discussion Paper; World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Jaffee, S.; Henson, S.; Diaz Rios, L. Making the Grade: Smallholder Farmers, Emerging Standards, and Development Assistance Programs in Africa-A Research Program Synthesis; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Kelly, V.; Adesina, A.A.; Gordon, A. Expanding access to agricultural inputs in Africa: A review of recent market development experience. Food Policy 2003, 28, 379–404. [Google Scholar] [CrossRef]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of agricultural innovations in developing countries: A survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef] [Green Version]
- Doss, C.R. Analyzing technology adoption using microstudies: Limitations, challenges, and opportunities for improvement. Agric. Econ. 2006, 34, 207–219. [Google Scholar] [CrossRef]
- Moser, C.O. The asset vulnerability framework: Reassessing urban poverty reduction strategies. World Dev. 1998, 26, 1–19. [Google Scholar] [CrossRef]
- DeWalt, B.R. Inequalities in wealth, adoption of technology, and production in a Mexican ejido. Am. Ethnol. 1975, 2, 149–168. [Google Scholar] [CrossRef]
- Bruce, J.; Lloyd, C.B. Finding the Ties that Bind: Beyond Headship and Household; Van Der Avort, A., De Hoog, K., Kalle, P., Eds.; Single Parent Families: The Hague, The Netherlands, 1995; pp. 60–90. [Google Scholar]
- Scoones, I.; Thomson, J. Knowledge, power and agriculture-towards a theoretical understanding. In Beyond Farmer First: Rural Peoples’ Knowledge and Extension Practice; Scoones, I., Thompson, J., Eds.; Intermediate Technology Publications: London, UK, 1994. [Google Scholar]
- De Haan, A. Livelihoods and poverty: The role of migration-a critical review of the migration literature. J. Dev. Stud. 1999, 36, 1–47. [Google Scholar] [CrossRef]
- Mohamed, K.S.; Temu, A.E. Access to Credit and its Effect on the Adoption of Agricultural Technologies: The Case of Zanzibar; African Review of Money Finance and Banking; Centre for Socio-economic Dynamics and Cooperation of the University of Bergamo: Bergamo, Italy, 2008; Volume 1, pp. 45–89. [Google Scholar]
- Langyintuo, A.S.; Mungoma, C. The effect of household wealth on the adoption of improved maize varieties in Zambia. Food Policy 2008, 33, 550–559. [Google Scholar] [CrossRef]
- Genius, M.; Koundouri, P.; Nauges, C.; Tzouvelekas, V. Information transmission in irrigation technology adoption and diffusion: Social learning, extension services, and spatial effects. Am. J. Agric. Econ. 2013, 96, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Filmer, D.; Pritchett, L. The Effect of Household Wealth on Educational Attainment: Demographic and Health Survey Evidence; World Bank Publications: Washington, DC, USA, 1998. [Google Scholar]
- Ouma, J.O.; Murithi, F.M.; Mwangi, W.; Verkuijl, H.; Gethi, M.; De Groote, H. Adoption of Maize Seed and Fertilizer Technologies in Embu District, Kenya; CIMMYT: Mexico, NM, USA, 2002. [Google Scholar]
- Yamane, T. Statistics: An Introductory Analysi, 2nd ed.; Harper & Row: New York, NY, USA, 1967. [Google Scholar]
- McKenzie, D.J. Measuring inequality with asset indicators. J. Popul. Econ. 2005, 18, 229–260. [Google Scholar] [CrossRef]
- Filmer, D.; Pritchett, L.H. Estimating wealth effects without expenditure data—Or tears: An application to educational in states of India. Demography 2001, 38, 115–132. [Google Scholar] [PubMed] [Green Version]
- Gasparini, L.; Sosa Escudero, W.; Marchionni, M.; Olivieri, S. Income, Deprivation, and Perceptions in Latin America and the Caribbean: New Evidence from the Gallup World Poll; Inter-American Development Bank; Universidad de San Andres: Buenos Aires, Argentina; Universidad de San Andres: Victoria, Argentina, 2008. [Google Scholar]
- Minujin, A.; Bang, J.H. Indicadores de Inequidad Social. Acerca Del Uso Del ”Indice de Bienes” Para La Distribucion de Los Hogares; Desarrollo Económico: Ciudad Autónoma de Buenos Aires, Argentina, 2002; Volume 42, pp. 129–146. [Google Scholar]
- Jones, A.M. A double-hurdle model of cigarette consumption. J. Appl. Econom. 1989, 4, 23–39. [Google Scholar] [CrossRef]
- Gao, X.; Wailes, E.J.; Cramer, G.L. Double-hurdle model with bivariate normal errors: An application to US rice demand. J. Agric. Appl. Econ. 1995, 27, 363–376. [Google Scholar] [CrossRef] [Green Version]
- Lokshin, M.; Sajaia, Z. Maximum likelihood estimation of endogenous switching regression models. Stata J. 2004, 4, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Cragg, J.G. Some statistical models for limited dependent variables with application to the demand for durable goods. Econom. J. Econom. Soc. 1971, 39, 829–844. [Google Scholar] [CrossRef]
- Jones, A.M. A Note on Computation of the Double-Hurdle Model With Dependence With An Application to Tobacco Expenditure. Bull. Econ. Res. 1992, 44, 67–74. [Google Scholar] [CrossRef]
- Newman, C.; Henchion, M.; Matthews, A. A double-hurdle model of Irish household expenditure on prepared meals. Appl. Econ. 2003, 35, 1053–1061. [Google Scholar] [CrossRef] [Green Version]
- Yen, S.T.; Jones, A.M. Household consumption of cheese: An inverse hyperbolic sine double-hurdle model with dependent errors. Am. J. Agric. Econ. 1997, 79, 246–251. [Google Scholar] [CrossRef]
- Vyas, S.; Kumaranayake, L. Constructing socio-economic status indices: How to use principal components analysis. Health Policy Plan. 2006, 21, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Reardon, T.; Berdegué, J.; Barrett, C.B.; Stamoulis, K. Household income diversification into rural nonfarm activities. In Transforming the Rural Nonfarm Economy: Opportunities and Threats in the Developing World; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2007; pp. 115–140. [Google Scholar]
- Ndegwa, A.; Muthoka, N.; Gathambiri, C.; Muchui, M.; Kamau, M.; Waciuri, S. Snap bean production, post-harvest practices and constraints in Kirinyaga and Machakos Districts of Kenya. In Proceedings of the 12th KARI Biennial Scientific Conference, Nairobi, Kenya, 8–12 November 2010. [Google Scholar]
- Xiang, T.; Huang, J.; Kancs, D.; Rozelle, S.; Swinnen, J. Food standards and welfare: General equilibrium effects. J. Agric. Econ. 2012, 63, 223–244. [Google Scholar] [CrossRef]
- Okello, J. Exit, voice and loyalty in Kenya’s French bean industry: What lessons can we learn from smallholder farmers’ past response to international food safety standards? Afr. J. Food Agric. Nutr. Dev. 2011, 11, 44–74. [Google Scholar] [CrossRef] [Green Version]
- Luvai, L. Private Standard Impacts on Developing Country Producers: A Personal Experience of GlobalGap Certification in Kenya; Fresh Perspectives. CARE Kenya: Nairobi, Kenya, 2008. [Google Scholar]
- Twine, E.E.; Rao, E.J.; Baltenweck, I.; Omore, A.O. Are Technology Adoption and Collective Action Important in Accessing Credit? Evidence from Milk Producers in Tanzania. Eur. J. Dev. Res. 2019, 31, 388–412. [Google Scholar] [CrossRef]
- FINTRAC. USAID-KAVES French Bean Value Chain Analysis; FINTRAC: Washington, DC, USA, 2015. [Google Scholar]
- AFFA. Horticulture Validated Report; AFFA 2016-2017; AFFA: Nairobi, Kenya, 2017. [Google Scholar]
- Henson, S.; Masakure, O.; Cranfield, J. Do fresh produce exporters in sub-Saharan Africa benefit from GlobalGAP certification? World Dev. 2011, 39, 375–386. [Google Scholar] [CrossRef]
- Asante, B.O.; Afari-Sefa, V.; Sarpong, D.B. Determinants of small scale farmers’ decision to join farmer based organizations in Ghana. Afr. J. Agric. Res. 2011, 6, 2273–2279. [Google Scholar]
- Asfaw, S.; Mithöfer, D.; Waibel, H. EU Food Safety Standards, Pesticide Use and Farm-level Productivity: The Case of High-value Crops in Kenya. J. Agric. Econ. 2009, 60, 645–667. [Google Scholar] [CrossRef]
- Mittal, S.; Mehar, M. Socio-economic factors affecting adoption of modern information and communication technology by farmers in India: Analysis using multivariate probit model. J. Agric. Educ. Ext. 2016, 22, 199–212. [Google Scholar] [CrossRef]
- Dedehouanou, S.F.; Swinnen, J.; Maertens, M. Does contracting make farmers happy? Evidence from Senegal. Rev. Income Wealth. 2013, 59, S138–S160. [Google Scholar] [CrossRef]
Component/Variables | Initial Eigen Values | Scoring Factor | Cumulative Pro | |
---|---|---|---|---|
Physical capital | Total | Variance | ||
Agricultural assets | 2.625 | 1.374 | 0.218 | 0.218 |
Livestock assets | 1.25135 | 0.081 | 0.104 | 0.323 |
Productive durables | 1.16979 | 0.074 | 0.097 | 0.420 |
Dwelling assets | 1.09541 | 0.092 | 0.091 | 0.511 |
GLOBAL GAP related assets | 1.0028 | 0.078 | 0.083 | 0.595 |
Consumer durables | 0.4013 1 | 0.081 | 0.033 | 1.000 |
Natural Capital | ||||
Total farm | 0.779 | 0.098 | 0.065 | 0.805 |
Financial capital | ||||
Access to credit | 0.821 | 0.041 | 0.068 | 0.740 |
Human Capital | ||||
Labor capacity | 0.673 | 0.100 | 0.056 | 0.918 |
Social capital | ||||
group membership | 0.681 | 0.007 | 0.056 | 0.862 |
GLOBAL GAP subsidy support | 0.572 | 0.171 | 0.047 | 0.966 |
Combined Variables | Well Endowed (n = 211) | Poor Endowed (n = 218) | ||
---|---|---|---|---|
Mean | Factor Score | Mean | Factor Score | |
Agricultural assets | 13.17% | 0.637 | 28.1% | 0.588 |
Livestock assets | 26.3% | 0.554 | 13.7% | 0.521 |
Productive durables | 35.6% | 0.611 | 14.5% | 0.531 |
Dwelling assets | 17.4% | 0.571 | 10.2% | 0.091 |
GLOBAL GAP related assets | 32.1% | 0.078 | 26.3% | 0.471 |
Consumer durables | 65.2% | 0.595 | 23.5% | 0.594 |
Total farm | 10.6% | 0.597 | 1.8% | 0.504 |
Access to credit | 4.6% | 0.462 | 2% | 0.512 |
Labor capacity | 11.1% | 0.509 | 9.1% | 0.501 |
Membership to GLOBAL GAP farmers groups | 7% | 0.566 | 6.6% | 0.408 |
GLOBAL GAP Subsidy support | 5% | 0.565 | 4% | 0.499 |
Poor Endowed (n = 229) | Well Endowed (n = 221) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GLOBAL GAP Certification | None GAP Certification | t-Test | GLOBAL GAP Certification | None GAP Certification | t-Test | |||||||
Mean | Std. Dev. | Mean | Std. Dev. | t | p | Mean | Std. Dev. | Mean | Std. Dev. | t | p | |
Age of household head | 43.64 | 14.53 | 42.59 | 12.60 | −0.558 | 0.288 | 47.80 | 11.98 | 40.43 | 10.89 | −3.593 *** | 0.000 |
Education years of household head | 9.810 | 2.567 | 9.410 | 2.893 | −1.021 | 0.154 | 9.723 | 2.320 | 10.04 | 2.489 | 0.794 | 0.786 |
Cultivated land size (ha) | 1.042 | 1.026 | 1.450 | 1.191 | 2.553 | 0.994 | 1.107 | 0.993 | 1.375 | 1.121 | 1.510 | 0.933 |
Off farm income,1 if yes 0 otherwise | 0.784 | 0.413 | 0.604 | 0.490 | −2.758 *** | 0.003 | 0.705 | 0.456 | 0.609 | 0.493 | −1.190 | 0.117 |
Access to credit, 1 if yes 0 otherwise | 0.316 | 0.468 | 0.172 | 0.379 | −2.467 *** | 0.007 | 0.260 | 0.440 | 0.268 | 0.448 | 0.103 | 0.541 |
GLOBAL GAP Subsidy support, 1 if yes 0 otherwise | 0.582 | 0.496 | 0.316 | 0.466 | −3.948 *** | 0.000 | 0.573 | 0.495 | 0.365 | 0.487 | −2.418 *** | 0.008 |
GLOBAL GAP training, 1 if yes 0 otherwise | 0.506 | 0.503 | 0.345 | 0.477 | −2.333 ** | 0.010 | 0.505 | 0.501 | 0.341 | 0.480 | −1.899 ** | 0.029 |
Contract farming, 1 if yes 0 otherwise | 0.734 | 0.444 | 0.302 | 0.460 | −7.413 *** | 0.000 | 0.705 | 0.460 | 0.292 | 0.460 | −5.466 *** | 0.000 |
Membership to GLOBAL GAP groups, 1 if yes 0 otherwise | 0.848 | 0.361 | 0.637 | 0.482 | −3.372 *** | 0.000 | 0.840 | 0.367 | 0.725 | 0.452 | −1.702 ** | 0.045 |
Distance to market (KM) | 4.537 | 3.615 | 4.561 | 3.345 | 0.047 | 0.519 | 4.147 | 3.318 | 4.425 | 2.949 | 0.486 | 0.686 |
Snap bean output Kgs | 1498 | 3390 | 921.1 | 1878 | −1.614 ** | 0.054 | 1481 | 2708 | 602.41 | 630.7 | −2.061 ** | 0.020 |
Value Snap bean Sold Ksh | 57887 | 8272 | 25697 | 2977 | −4.318 *** | 0.000 | 76578 | 1426 | 20302 | 1711 | −2.730 *** | 0.003 |
Wealth Index | −0.893 | 0.536 | −1.016 | 0.314 | −2.136 ** | 0.016 | 2.4405 | 1.128 | 2.164 | 1.001 | −1.433 * | 0.076 |
Well Endowed (n = 221) | Poorly-Endowed (n = 229) | |||
---|---|---|---|---|
Coeff | Std-Err | Coeff | Std-Err | |
Age of the household head | 0.015 | 0.005 | 0.015 ** | 0.004 |
Education years of the household head | 0.042 * | 0.025 | 0.009 | 0.076 |
Cultivated land size (Ha) | 0.415 | 0.102 | −0.236 * | 0.711 |
Off farm income, 1 if yes 0 otherwise | 0.932 ** | 0.264 | 0.253 | 0.239 |
Access to credit, 1 if yes 0 otherwise | 0.176 | 0.140 | −0.701 | 0.212 |
GLOBAL GAP Subsidy support, 1 if yes 0 otherwise | 0.189 | 0.159 | −0.346 | 0.244 |
GLOBAL GAP trainings, 1 if yes 0 otherwise | 0.170 *** | 0.152 | 3.327 *** | 0.700 |
Contract farming, 1 if yes 0 otherwise | 0.106 *** | 0.140 | 1.175 *** | 0.331 |
Membership to GLOBAL GAP farmers groups, 1 if yes 0 otherwise | 1.863 ** | 0.260 | −0.028 | 0.337 |
Distance to market (KM) | −0.009 | 0.023 | −0.078 | 0.041 |
Wealth Index | 0.1526 * | 0.509 | 0.116 | 0.119 |
Snap bean returns | 1.210 *** | 0.0.2 | 6.250 * | 3.190 |
Years of GAP certification | 0.072 *** | 0.018 | 0.107 *** | 0.024 |
Snap bean output | 0.006 *** | 0.002 | −0.020 | 0.002 |
GAP certified buyer, 1 if yes 0 otherwise | 1.739 *** | 0.283 | 0.332 *** | 0.427 |
cons | −3.394 | 1.015 | −3.14 | 1.049 |
Well Endowed (n = 221) | Poorly Endowed (n = 229) | |||
---|---|---|---|---|
Coeff | Std-Err | Coeff | Std-Err | |
Age of the household head | −0.012 | 0.012 | −0.011 | 0.028 |
Education years of the household head | 0.098 | 0.051 | 0.036 | 0.042 |
Cultivated land size (Ha) | 0.335 ** | 0130 | 0.025 | 0.11 |
Off farm income, 1 if yes 0 otherwise | 0.670 *** | 0.249 | 0.211 * | 0.23 |
Access to credit, 1 if yes 0 otherwise | −0.089 | 0.27 | 0.205 | 0.25 |
GLOBAL GAP Subsidy support, 1 if yes 0 otherwise | 0.480 ** | 0.241 | 0.402 | 0.242 |
GLOBAL GAP trainings, 1 if yes 0 otherwise | 0.238 | 0.242 | −0.286 | 0.206 |
Contract farming, 1 if yes 0 otherwise | 0.666 ** | 0.244 | 0.384 ** | 0.234 |
Membership to GLOBAL GAP farmers groups, 1 if yes 0 otherwise | 0.776 * | 0.381 | 1.440 | 1.359 |
Distance to market (KM) | 0.061 | 0.411 | 0.028 | 0.080 |
Wealth Index | 0.335 ** | 0.141 | 0.067 | 0.096 |
Snap bean returns | 0.002 * | 0.123 | −0.002 | 0.003 |
Years of GLOBAL GAP certification | 0.037 *** | 0.012 | 0.005 | 0.009 |
Snap bean Output | 0.002 | 0.009 | -0.002 | 0.003 |
GAP certified buyer, 1 if yes 0 otherwise | 0.776 *** | 0.426 | 0.686 ** | 0.223 |
Cons | 1.985 | 0.603 | 3.06 | 0.648 |
Log-likelihood | −403.2 | −99.55 | ||
Pseudo R2 | 0.055 | 0.336 | ||
Prob > chi2 | 0.000 | |||
lnsigma | −0.384 *** | 0.081 | −0.508 *** | 0.154 |
/sigma | 0.680 | 0.055 | 0.601 | 0.601 |
Variables | Well Endowed (n = 221) | Poorly Endowed (n = 229) | ||
---|---|---|---|---|
Marginal Effects dy/dx | ||||
Age of the household head | 0.006 | 0.008 | −0.009 | 0.008 |
Education of the household head | −0.031 | 0.041 | 0.068 | 0.042 |
Cultivated land size (Ha) | −0.103 * | 0.107 | 0.025 | 0.109 |
Off farm income, 1 if yes 0 otherwise | 0.669 *** | 0.248 | 0.211 | 0.229 |
Access to credit, 1 if yes 0 otherwise | −0.088 | 0.269 | 0.205 | 0.249 |
GLOBAL GAP subsidy support, 1 if yes 0 otherwise | 0.480 ** | 0.240 | 0.402 * | 0.241 |
GLOBAL GAP trainings, 1 if yes 0 otherwise | 0.238 | 0.241 | −0.285 | 0.206 |
Contract farming 1 if yes 0 otherwise | 0.665 ** | 0.244 | 0.383 | 0.233 |
Membership to GLOBAL GAP farmers groups, 1 if yes 0 otherwise | 0.002 ** | 0.267 | −0.223 | 0.243 |
Distance to market (KM) | −0.003 | 0.031 | −0.053 | 0.036 |
Wealth Index | 0.334 ** | 0.141 | 0.066 | 0.095 |
Snap bean returns | 3.270 | 2.600 | 2.680 * | 1.390 |
Years of GAP certification | 0.037 *** | 0.011 | 0.005 | 0.008 |
Snap bean output | 0.001 | 0.007 | −0.356 * | 7.205 |
Gap Buyer, 1 if yes 0 otherwise | 0.738 ** | 0.258 | 0.685 ** | 0.223 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gichuki, C.N.; Han, J.; Njagi, T. The Impact of Household Wealth on Adoption and Compliance to GLOBAL GAP Production Standards: Evidence from Smallholder farmers in Kenya. Agriculture 2020, 10, 50. https://doi.org/10.3390/agriculture10020050
Gichuki CN, Han J, Njagi T. The Impact of Household Wealth on Adoption and Compliance to GLOBAL GAP Production Standards: Evidence from Smallholder farmers in Kenya. Agriculture. 2020; 10(2):50. https://doi.org/10.3390/agriculture10020050
Chicago/Turabian StyleGichuki, Castro N., Jiqin Han, and Tim Njagi. 2020. "The Impact of Household Wealth on Adoption and Compliance to GLOBAL GAP Production Standards: Evidence from Smallholder farmers in Kenya" Agriculture 10, no. 2: 50. https://doi.org/10.3390/agriculture10020050
APA StyleGichuki, C. N., Han, J., & Njagi, T. (2020). The Impact of Household Wealth on Adoption and Compliance to GLOBAL GAP Production Standards: Evidence from Smallholder farmers in Kenya. Agriculture, 10(2), 50. https://doi.org/10.3390/agriculture10020050