Food-Based Composts Provide More Soil Fertility Benefits Than Cow Manure-Based Composts in Sandy Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Compost Processing
2.2. Laboratory Incubations
2.3. CO2 Emissions
2.4. Soil Nutrient Analyses
2.5. Data Analyses
3. Results
3.1. Carbon
3.2. Nitrogen
3.3. Phosphorus
4. Discussion
4.1. The Effects of Feedstock and Composting Process
4.2. Effects of Soil and Temperature
4.3. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lal, R. Soils and sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Eckelman, M.J.; Ashton, W.; Arakaki, Y.; Hanaki, K.; Nagashima, S.; Malone-Lee, L.C. Island waste management systems: Statistics, challenges, and opportunities for applied industrial ecology. J. Ind. Ecol. 2014, 18, 306–317. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lazcano, C.; Christensen, T.H.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Boldrin, A. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Larney, F.J.; Blackshaw, R.E. Weed seed viability in composted beef cattle feedlot manure. J. Environ. Qual. 2003, 32, 1105–1113. [Google Scholar] [CrossRef]
- Wiese, A.F.; Sweeten, J.M.; Bean, B.W.; Salisbury, C.D.; Chenault, E.W. High temperature composting of cattle feedlot manure kills weed seed. Appl. Eng. Agric. 1998, 14, 377–380. [Google Scholar] [CrossRef]
- Ozores-Hampton, M.; Stansly, P.A.; Salame, T.P. Soil chemical, physical, and biological properties of a sandy soil subjected to long-term organic amendments. J. Sustain. Agric. 2011, 35, 243–259. [Google Scholar] [CrossRef]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Sikora, L.J.; Szmidt, R.A.K. Nitrogen sources, mineralization rates, and nitrogen nutrition benefits to plants from composts. In Compost Utilization in Horticultural Cropping Systems; Stoffella, P.J., Kahn, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 287–305. [Google Scholar]
- Sikora, L.J.; Enkiri, N.K. Efficiency of compost-fertilizer blends compared with fertilizer alone. Soil Sci. 2000, 165, 444–451. [Google Scholar] [CrossRef]
- Gil, M.V.; Carballo, M.T.; Calvo, L.F. Fertilization of maize with compost from cattle manure supplemented with additional mineral nutrients. WASTE Manag. 2008, 28, 1432–1440. [Google Scholar] [CrossRef]
- Weindorf, D.C.; Muir, J.P.; Landeros-Sánchez, C. Organic Compost and Manufactured Fertilizers: Economics and Ecology. In Integrating Agriculture, Conservation and Ecotourism: Examples from the Field; Campbell, W.B., Lopez Ortiz, S., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2011; pp. 27–53. ISBN 978-94-007-1309-3. [Google Scholar]
- Faverial, J.; Boval, M.; Sierra, J.; Sauvant, D. End-product quality of composts produced under tropical and temperate climates using different raw materials: A meta-analysis. J. Environ. Manag. 2016, 183, 909–916. [Google Scholar] [CrossRef]
- Wilkinson, S.R. Plant Nutrient and Economic Value of Animal Manures. J. Anim. Sci. 1979, 48, 121–133. [Google Scholar] [CrossRef]
- Gale, E.S.; Sullivan, D.M.; Cogger, C.G.; Bary, A.I.; Hemphill, D.D.; Myhre, E.A. Estimating plant-available nitrogen release from manures, composts, and specialty products. J. Environ. Qual. 2006, 35, 2321–2332. [Google Scholar] [CrossRef] [Green Version]
- Komilis, D.P.; Ham, R.K. Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste. Waste Manag. 2006, 26, 62–70. [Google Scholar] [CrossRef]
- Castán, E.; Satti, P.; González-Polo, M.; Iglesias, M.C.; Mazzarino, M.J. Managing the value of composts as organic amendments and fertilizers in sandy soils. Agric. Ecosyst. Environ. 2016, 224, 29–38. [Google Scholar] [CrossRef]
- Hao, X.Y.; Chang, C.; Larney, F.J.; Travis, G.R. Greenhouse gas emissions during cattle feedlot manure composting. J. Environ. Qual. 2001, 30, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Flavel, T.C.; Murphy, D.V. Carbon and nitrogen mineralization rates after application of organic amendments to soil. J. Environ. Qual. 2006, 35, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Pampuro, N.; Bertora, C.; Sacco, D.; Dinuccio, E.; Grignani, C.; Balsari, P.; Cavallo, E.; Bernal, M.P. Fertilizer value and greenhouse gas emissions from solid fraction pig slurry compost pellets. J. Agric. Sci. 2017, 155, 1646–1658. [Google Scholar] [CrossRef]
- Haynes, R.J. Chapter 2. The decomposition process: Mineralization, immobilization, humus formation, and degradation. In Mineral Nitrogen in the Plant-Soil System; Academic Press: Cambridge, MA, USA, 1986; pp. 52–109. [Google Scholar]
- Chae, Y.M.; Tabatabai, M.A. Mineralization of Nitrogen In Soils Amended With Organic Wastes. J. Environ. Qual. 1986, 15, 193–198. [Google Scholar] [CrossRef]
- Tiessen, H.; Moir, J. Characterization of Available P by Sequential Extraction. In Soil Sampling and Methods of Analysis; Carter, M., Gregorich, E., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 293–306. [Google Scholar]
- Wilkie, A.C.; Castro, H.F.; Cubinski, K.R.; Owens, J.M.; Yan, S.C. Fixed-film anaerobic digestion of flushed dairy manure after primary treatment: Wastewater production and characterisation. Biosyst. Eng. 2004, 89, 457–471. [Google Scholar] [CrossRef]
- Brown, S.P. Compost Tips for the Home Gardener; Electron. ENH1065; University of Florida, Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2017; Available online: https://edis.ifas.ufl.edu/ep323 (accessed on 9 March 2019).
- Franzluebbers, A.J. Should Soil Testing Services Measure Soil Biological Activity? Agric. Environ. Lett. 2016, 1, 1–5. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-Hypochlorite Reaction for Determination of Ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Doane, T.A.; Horwáth, W.R. Spectrophotometric Determination of Nitrate with a Single Reagent. Anal. Lett. 2003, 36, 2713–2722. [Google Scholar] [CrossRef]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Altern. Agric. 2003, 18, 3–17. [Google Scholar]
- IBM SPSS, version 25; IBM: Armonk, NY, USA, 2017.
- Franklin, D.; Bender-Özenç, D.; Özenç, N.; Cabrera, M. Nitrogen mineralization and phosphorus release from composts and soil conditioners found in the southeastern United States. Soil Sci. Soc. Am. J. 2015, 79, 1386–1395. [Google Scholar] [CrossRef]
- Gagnon, B.; Simard, R.R. Nitrogen and phosphorus release from on-farm and industrial composts. Can. J. Soil Sci. 1999, 79, 481–489. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, P.; Araujo, A.S.F.; Hakimi Ibrahim, M.; Sulaiman, O. Management of urban solid waste: Vermicomposting a sustainable option. Resour. Conserv. Recycl. 2011, 55, 719–729. [Google Scholar] [CrossRef]
- Graunke, R.E.; Wilkie, A.C. Examining the mechanisms of short-term solubilization of ground food waste for high-rate anaerobic digestion. Int. Biodeterior. Biodegrad. 2014, 86, 327–333. [Google Scholar] [CrossRef]
- Maltais-Landry, G.; Neufeld, K.; Poon, D.; Grant, N.; Nesic, Z.; Smukler, S. Protection from wintertime rainfall reduces nutrient losses and greenhouse gas emissions during the decomposition of poultry and horse manure-based amendments. J. Air Waste Manag. Assoc. 2018, 68, 377–388. [Google Scholar] [CrossRef]
- Maltais-Landry, G.; Bertoni, N.; Valley, W.; Grant, N.; Nesic, Z.; Smukler, S.M. Greater Impacts of Incubation Temperature and Moisture on Carbon and Nitrogen Cycling in Poultry Relative to Horse Manure-based Soil Amendments. J. Environ. Qual. 2018, 921, 914–921. [Google Scholar] [CrossRef] [Green Version]
- Congreves, K.A.; Van Eerd, L.L. Nitrogen cycling and management in intensive horticultural systems. Nutr. Cycl. Agroecosyst. 2015, 102, 299–318. [Google Scholar] [CrossRef]
Soil | TC (g C kg−1) | TN (g N kg−1) | C:N | N-NO3 (mg kg−1) ∫ | N-NH4 (mg kg−1) ∫ | Resin P (mg kg−1) ∫ | pH | CEC (meq/100g) | Mehlich III (mg kg−1) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | K | Mg | Ca | S | |||||||||
Lake | 11.7 | 1.0 | 12.1 | 5.3 | 2.2 | 100 | 6.6 | 10.2 | 426 | 231 | 141 | 1125 | 9.5 |
Millhopper | 8.3 | 0.5 | 15.7 | 1.1 | 0.7 | 118 | 7.3 | 17.5 | 835 | 48 | 85 | 3097 | 11 |
Amendment | pH | Moisture (%) | TC (mg g−1) | TN (mg g−1) | C:N | N-NH4 (mg kg−1) ∫ | N-NO3 (mg kg−1) ∫ | Resin P (mg kg−1) ∫ | % P | % K | % Mg | % Ca | % S |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Black Kow | 7.5 | 26 | 140 | 8.9 | 15.6 | 130 | 370 | 404 | 0.20 | 0.45 | 0.19 | 2.95 | 0.35 |
Composted dairy manure solids | 7.3 | 43 | 428 | 18.2 | 23.8 | 350 | 10 | 338 | 0.25 | 0.20 | 0.17 | 1.62 | 0.28 |
Vermicompost | 6.6 | 38 | 266 | 14.7 | 17.7 | 170 | 250 | 224 | 0.20 | 0.22 | 0.18 | 1.52 | 0.24 |
Food waste compost | 8.4 | 42 | 271 | 22.5 | 11.8 | 20 | 680 | 1239 | 0.44 | 2.27 | 0.41 | 7.01 | 0.36 |
Ecoscraps | 7.1 | 32 | 319 | 18.4 | 17.7 | 280 | 160 | 178 | 0.31 | 0.51 | 0.16 | 2.69 | 0.20 |
Soil | Temperature | Amendment | Added C Released as C-CO2 (%) | Added N Recovered as PAN (%) |
---|---|---|---|---|
Lake | 24 | Black Kow | 7.3 (±0.4) c | −5.3 (±1.1) d |
Composted dairy manure solids | 16.4 (±0.02) a | −3.4 (±0.1) cd | ||
Vermicompost | 14.0 (±0.3) b | −1.2 (±0.5) bc | ||
Ecoscraps | 3.0 (±0.4) d | 1.0 (±0.1) b | ||
Food waste compost | 7.3 (±0.3) c | 10.8 (±0.6) a | ||
ANOVA | F4,10 = 207 | F4,16 = 152 | ||
30 | Black Kow | 8.9 (± 0.7) b | −5.5 (±0.7) c | |
Composted dairy manure solids | 17.2 (±0.2) a | −4.7 (±0.1) c | ||
Vermicompost | 18.7 (±0.2) a | −0.3 (±0.05) b | ||
Ecoscraps | 3.6 (±0.1) c | 0.6 (±0.2) ab | ||
Food waste compost | 9.6 (±0.2) b | 13.5 (±0.5) a | ||
ANOVA | F4,6 = 151 | ‡ F4,16 = 47 | ||
Millhopper | 24 | Black Kow | 4.7 (±0.4) d | −0.3 (±0.1) c |
Composted dairy manure solids | 15.4 (±0.02) a | −1.0 (±0.01) d | ||
Vermicompost | 13.0 (±0.6) b | −1.4 (±0.02) e | ||
Ecoscraps | 4.0 (±0.1) d | 1.5 (±0.1) b | ||
Food waste compost | 8.1 (±0.1) c | 10.7 (±0.5) a | ||
ANOVA | F4,9 = 255 | ‡ F4,15 = 68 § | ||
30 | Black Kow | 6.6 (±0.4) c | 0.6 (±0.1) b | |
Composted dairy manure solids | 19.6 (±0.2) a | −1.0 (±0.03) c | ||
Vermicompost | 19.9 (±0.3) a | 0.9 (±0.4) b | ||
Ecoscraps | 5.4 (±0.1) c | 2.1 (±0.1) a | ||
Food waste compost | 10.7 (±0.1) b | 15.6 (±0.4) a | ||
ANOVA | F4,10 = 654 | ‡ F4,10 = 29 |
Soil | Temperature | Amendments | Total C | Total N | C:N | Resin P | POXC |
---|---|---|---|---|---|---|---|
(g kg−1) | (g kg−1) | (mg P kg−1) | (mg C kg−1) | ||||
Lake | 24 | Black Kow | 19 (±2) c | 1.4 (±0.1) b | 13.9 b | 97 (±3) b | 491 (±3) ab |
Composted Dairy Manure Solids | 29 (±2) ab | 1.9 (±0.1) a | 15.2 ab | 90 (±2) bc | 730 (±30) a | ||
Vermicompost | 22 (±2) bc | 1.6 (±0.1) ab | 13.7 b | 89 (±2) bc | 586 (±42) ab | ||
Ecoscraps | 32 (±4) a | 1.9 (±0.2) a | 16.6 a | 88 (±7) bc | 580 (±11) ab | ||
Food Waste Compost | 24 (±2) abc | 2.0 (±0.1) a | 12 c | 173 (±5) a | 521 (±30) ab | ||
Soil Control | 10 (±1) d | 0.8 (±0.0) c | 12.1 c | 76 (±2) c | 351 (±3) b | ||
ANOVA | F5,20 = 264 | F5,20 = 20 | F5,20 = 26 | F5,20 = 97.0 | † | ||
30 | Black Kow | 23 (±4) ab | 1.5 (±0.2) bc | 14.8 abc | 89 (±6) b | 501 (±8) c | |
Composted Dairy Manure Solids | 30 (±2) a | 2.0 (±0.1) ab | 14.6 ab | 98 (±1) b | 774 (±25) a | ||
Vermicompost | 25 (±1) ab | 1.9 (±0.1) b | 13.6 abc | 89 (±2) b | 531 (±27) bc | ||
Ecoscraps | 32 (±3) a | 2.0 (±0.2) b | 16.5 a | 75 (±2) c | 598 (±8) b | ||
Food Waste Compost | 31 (±3) a | 2.7 (±0.2) a | 11.7 c | 158 (±6) a | 471 (±14) c | ||
Soil Control | 9 (±0.2) b | 0.7 (±0.02) c | 11.8 bc | 68 (±1) c | 328 (±9) d | ||
ANOVA | † | ‡ F5,20 = 18 | † | # F5,20 = 99 | F5,20 = 65.2 | ||
Millhopper | 24 | Black Kow | 14 (±1) c | 0.9 (±0.04) c | 16.3 ab | 97 (±4) ab | 393 (±6) c |
Composted Dairy Manure Solids | 34 (±2) a | 2.0 (±0.1) a | 16.8 ab | 101 (±4) ab | 692 (±26) a | ||
Vermicompost | 24 (±0.1) b | 1.5 (±0.05) b | 16.4 ab | 104 (±2) ab | 538 (±20) b | ||
Ecoscraps | 26 (±3) ab | 1.4 (±0.1) b | 18.5 a | 104 (±2) ab | 653 (±33) a | ||
Food Waste Compost | 21 (±1) b | 1.8 (±0.1) ab | 12 b | 186 (±9) a | 498 (±19) b | ||
Soil Control | 8 (±0.3) d | 0.6 (±0) d | 14.5 ab | 84 (±13) b | 338 (±1) c | ||
ANOVA | # F5,12 = 60 | # F5,12 = 93 | † | † | F5,12 = 66 | ||
30 | Black Kow | 12 (±1) c | 0.8 (±0.03) d | 15.6 b | 99 (±3) ab | 415 (±2) de | |
Composted Dairy Manure Solids | 29 (±1) a | 1.8 (±0.1) ab | 16.3 b | 106 (±1) ab | 721 (±60) a | ||
Vermicompost | 20 (±0.4) b | 1.3 (±0.03) c | 15.4 b | 102 (±3) ab | 550 (±9) bc | ||
Ecoscraps | 27 (±0.3) a | 1.5 (±0.04) bc | 17.6 a | 95 (±1) ab | 691 (±41) ab | ||
Food Waste Compost | 23 (±2) ab | 1.9 (±0.2) a | 12.1 d | 178 (±12) a | 464 (±25) cd | ||
Soil Control | 8 (±1) d | 0.6 (±0.04) d | 14.2 c | 91 (±1) b | 334 (±3) e | ||
ANOVA | # F5,12 = 100 | F5,12 = 52 | F5,12 = 70 | † | # F5,12 = 38 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelley, A.; Wilkie, A.C.; Maltais-Landry, G. Food-Based Composts Provide More Soil Fertility Benefits Than Cow Manure-Based Composts in Sandy Soils. Agriculture 2020, 10, 69. https://doi.org/10.3390/agriculture10030069
Kelley A, Wilkie AC, Maltais-Landry G. Food-Based Composts Provide More Soil Fertility Benefits Than Cow Manure-Based Composts in Sandy Soils. Agriculture. 2020; 10(3):69. https://doi.org/10.3390/agriculture10030069
Chicago/Turabian StyleKelley, Alicia, Ann C. Wilkie, and Gabriel Maltais-Landry. 2020. "Food-Based Composts Provide More Soil Fertility Benefits Than Cow Manure-Based Composts in Sandy Soils" Agriculture 10, no. 3: 69. https://doi.org/10.3390/agriculture10030069
APA StyleKelley, A., Wilkie, A. C., & Maltais-Landry, G. (2020). Food-Based Composts Provide More Soil Fertility Benefits Than Cow Manure-Based Composts in Sandy Soils. Agriculture, 10(3), 69. https://doi.org/10.3390/agriculture10030069