Sustainable Fertilizer Strategies for Vaccinium corymbosum x V. angustifolium under Abandoned Peatland Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
- Min: mineral fertilizer 6–14–23 (plus Mg 3%, S 11%, B 0.05%, Cu 0.1%, Fe 0.1%, Mn 0.7%, Mo 0.01%, Zn 0.01%). Fertilizer 6–14–23 has been commonly used in conventional berry production in Estonia. Mineral fertilizer was considered as the control.
- Org 1: Organic fertilizer 3–1–7 contains mainly composted chicken manure and vinasse extract (9%, potassium rich by-product of the sugar industry) and molasses.
- Org 2: Organic fertilizer 4–1–2 contains chicken manure compost and seaweed meal (plus Cu 0.01%, Fe 0.1%, Mn 0.04%, Zn 0.02%).
- Org 3: Organic fertilizer 5–3–16 is a chicken manure compost.
- Org 4: Organic fertilizer 9–1–4 is maltose based organic fertilizer (plus Mg 0.3%, S 3.0%, B 0.015%, Cu 0.1%, Fe 0.1%, Mn 0.7%, Mo 0.01%, Zn 0.01%).
2.2. Soil and Plant Description
2.3. Weather Conditions
2.4. Determination of Vegetative and Yield Parameters
2.5. Fruit Biochemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Vegetative and Yield Parameters
3.2. Effect of the Fertilizer and Experimental Year on the Biochemical and Vegetative Parameters of Blueberries as Characterized on PCA
3.3. Fruit Biochemical Parameters
4. Discussion
4.1. Vegetative Parameters
4.2. Biochemical Parameters
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kimmel, K.; Kull, A.; Salm, J.O.; Mander, Ü. The status, conservation and sustainable use of Estonian wetlands. Wetl. Ecol. Manag. 2010, 18, 375–395. [Google Scholar] [CrossRef]
- Barthelmes, A.; Couwengerg, J.; Risager, M.; Tegetmeyer, C.; Joosten, H. Peatlands and Climate in a Ramsar Context. A Nordic-Baltic Perspective; Norden: Copenhagen, Denmark, 2015; pp. 1–147. ISBN 9789289341950. [Google Scholar]
- Niiler, E. National Geographic. Available online: https://www.nationalgeographic.com.au/engineering/tiny-country-cuts-carbon-emissions-by-planting-bogs.aspx (accessed on 10 November 2019).
- Paal, J.; Leibak, E. Estonian mires: Inventory of habitats. In Publication of the Project “Estonian Mires Inventory Completion for Maintaining Biodiversity”; Regio: Tartu, Estonia, 2011; pp. 1–176. ISBN 978-9949-465-29-3. [Google Scholar]
- Lundin, L. Effects on hydrology and surface water chemistry of regeneration cuttings in peatland forests. Int. Peat J. 1999, 9, 118–126. [Google Scholar]
- Lappalainen, E. Global Peat Resources; International Peat Society: Jyskae, Finland, 1996; pp. 53–281. ISBN 952-90-7487-5. [Google Scholar]
- Flickinger, M.C.; Panikov, N.S. Kinetics, Microbial Growth. In Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, 7 Volume Set; Wiley-Blackwell: New York, NY, USA, 2010; pp. 1513–1543. ISBN 978-0-471-79930-6. [Google Scholar]
- Schowalter, T.D. Decomposition and Pedogenesis. In Insect Ecology; Elsevier: New York, NY, USA, 2016; pp. 477–510. [Google Scholar]
- Albert, T.; Karp, K.; Starast, M.; Moor, U.; Paal, T. Effect of fertilization on the lowbush blueberry productivity and fruit composition in peat soil. J. Plant Nutr. 2011, 34, 1489–1496. [Google Scholar] [CrossRef]
- Vahejõe, K.; Albert, T.; Noormets, M.; Karp, K.; Paal, T.; Starast, M.; Värnik, R. Berry Cultivation in Cutover Peatlands in Estonia: Agricultural and Economical Aspects. Balt. For. 2010, 16, 264–272. [Google Scholar]
- Starast, M.; Galynskaya, N.; Jõgar, K.; Tasa, T.; Karp, K.; Moor, U. Blueberry diseases survey in Estonia. Agron. Res. 2009, 7, 511–516. [Google Scholar]
- Tasa, T.; Starast, M.; Vool, E.; Moor, U.; Karp, K. Influence of soil type on half-highbush blueberry productivity. Agric. Food Sci. 2012, 21, 409–420. [Google Scholar] [CrossRef] [Green Version]
- Luby, J.J.; Wildung, D.K.; Stushnoff, C.; Munson, S.T.; Read, P.E.; Hoover, E.E. ‘Northblue’, ‘Northsky’, and ‘Northcounrty’ blueberries. HortScience 1986, 21, 1240–1242. [Google Scholar]
- Starast, M.; Karp, K.; Vool, E.; Moor, U.; Tonutare, T.; Paal, T. Chemical Composition and Quality of Cultivated and Natural Blueberry Fruit in Estonia. Veg. Crops Res. Bull. 2007, 66, 143–153. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Blueberries and Their Anthocyanins: Factors Affecting Biosynthesis and Properties. Compr. Rev. Food Sci. Food Saf. 2011, 10, 303–320. [Google Scholar] [CrossRef]
- Strik, B.C.; Vance, A.; Bryla, D.R.; Sullivan, D.M. Organic production systems in Northern highbush blueberry: Impact of planting method, cultivar, fertilizer, and mulch on yield and fruit quality from planting through maturity. HortScience 2017, 52, 1201–1213. [Google Scholar] [CrossRef] [Green Version]
- Paal, T.; Starast, M.; Noormets-Šanski, M.; Vool, E.; Tasa, T.; Karp, K. Influence of liming and fertilization on lowbush blueberry in harvested peat field condition. Sci. Hortic. 2011, 130, 157–163. [Google Scholar] [CrossRef]
- Matsubara, Y.; Hirano, I.; Sassa, D.; Koshikawa, K. Increased Tolerance to Fusarium Wilt in Mycorrhizal Strawberry Plants Raised by Capillary Watering Methods. Environ. Control Biol. 2004, 42, 185–191. [Google Scholar] [CrossRef]
- Montalba, R.; Arriagada, C.; Alvear, M.; Zúñiga, G.E. Effects of conventional and organic nitrogen fertilizers on soil microbial activity, mycorrhizal colonization, leaf antioxidant content, and Fusarium wilt in highbush blueberry (Vaccinium corymbosum L.). Sci. Hortic. 2010, 125, 775–778. [Google Scholar] [CrossRef]
- Hall, I.V.; Aalders, L.E.; Townsend, L.R. Nitrogen uptake in blueberry fields. Can. J. Plant Sci. 1964, 44, 33–36. [Google Scholar]
- Starast, M.; Karp, K.; Vool, E.; Noormets, M.; Köljalg, U.; Paal, T. Mycorrhizal colonization of half-high blueberry cultivars influenced by cultural practices. In VIII International Symposium on Vaccinium Culture; ISHS: Leuven, Belgium, 2006; Volume 715, pp. 449–554. [Google Scholar]
- Del Amor, F.M.; Serrano-Martínez, A.; Fortea, I.; Núñez-Delicado, E. Differential effect of organic cultivation on the levels of phenolics, peroxidase and capsidiol in sweet peppers. J. Sci. Food Agric. 2008, 88, 770–777. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; Semenov, A.M. In search of biological indicators for soil health and disease suppression. Appl. Soil Ecol. 2000, 15, 13–24. [Google Scholar] [CrossRef]
- Tasa, T.; Starast, M.; Jõgar, K.; Paal, T.; Kruus, M.; Williams, I.H. Lowbush blueberry plantation age influences natural biodiversity on an abandoned extracted peatland. Ecol. Eng. 2015, 84, 336–345. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015; pp. 1–203. ISBN 978-92-5-108369-7. [Google Scholar]
- Paal, J. Classification of Estonian Vegetation Site Types; Keskkonnaministeeriumi Info- ja Tehnokeskus: Tallinn, Estonia, 1997; pp. 278–298. ISBN 9985907280. [Google Scholar]
- Egnér, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. K. Lantbrukshögskolans Ann. 1960, 26, 199–215. [Google Scholar]
- Hart, J.; Strik, B.; White, L.; Yang, W. Nutrient Management for Blueberries in Oregon. Available online: https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/em8918.pdf (accessed on 13 October 2019).
- Estonian Weather Services. Available online: http://www.ilmateenistus.ee/kliima/kliimanormid/ohutemperatuur/?lang=en (accessed on 17 September 2019).
- Wrolstad, R.E.; Acree, T.E.; Decker, E.A.; Penner, M.H.; Reid, D.S.; Schwartz, S.J.; Shoemaker, C.F.; Smith, D.; Sporns, P. Handbook of Food Analytical Chemistry: Pigments, Colorants, Flavors, Texture, and Bioactive Food Components; Wiley: New York, NY, USA, 2005; ISBN 0471718173. [Google Scholar]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products; Tata McGraw-Hill: New Delhi, India, 1986. [Google Scholar]
- Hankins, S.D.; Hockey, H.P. The effect of a liquid seaweed extract from Ascophyllum nodosum (Fucales, Phaeophyta) on the two-spotted red spider mite Tetranychus urticae. Hydrobiologia 1990, 204/205, 555–559. [Google Scholar] [CrossRef]
- Blunden, G. Agricultural uses of seaweeds and seaweed extracts. In Seaweed Resources in Europe: Uses and Potential; Guiry, M.D., Blunden, G., Eds.; Wiley: Chicester, UK, 1991; pp. 65–81. [Google Scholar]
- Norrie, J.; Keathley, J.P. Benefits of Ascophyllum nodosum marine-plant extract applications to “Thompson seedless” grape production. In X International Symposium on Plant Bioregulators in Fruit Production; ISHS: Saltillo, Mexico, 2005; Volume 727. [Google Scholar]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Durand, N.; Briand, X.; Meyer, C. The effect of marine bioactive substances (N PRO) and exogenous cytokinins on nitrate reductase activity in Arabidopsis thaliana. Physiol. Plant. 2003, 119, 489–493. [Google Scholar] [CrossRef]
- Stirk, W.A.; Novák, O.; Strnad, M.; Van Staden, J. Cytokinins in macroalgae. Plant Growth Regul. 2003, 41, 13–24. [Google Scholar] [CrossRef]
- Ördög, V.; Stirk, W.A.; Van Staden, J.; Novák, O.; Strnad, M. Endogenous cytokinins in three genera of microalgae from the chlorophyta. J. Phycol. 2004, 40, 88–95. [Google Scholar] [CrossRef]
- Kuwada, K.; Wamocho, L.S.; Utamura, M.; Matsushita, I.; Ishii, T. Effect of red and green algal extracts on hyphal growth of arbuscular mycorrhizal fungi, and on mycorrhizal development and growth of papaya and passionfruit. Agron. J. 2006, 98, 1340–1344. [Google Scholar] [CrossRef]
- Ishii, T.; Aikawa, J.; Kirino, S.; Kitabayashi, H.; Matsumoto, I.; Kadoya, K. Effects of alginate oligosaccharide and polyamines on hyphal growth of vesicular-arbuscular mycorrhizal fungi and their infectivity of citrus roots. In Proceedings of the 9th International Society of Citriculture Congress, Orlando, FL, USA, 3–7 December 2000; pp. 1030–1032. [Google Scholar]
- You, Q.; Wang, B.; Chen, F.; Huang, Z.; Wang, X.; Luo, P.G. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 2011, 125, 201–208. [Google Scholar] [CrossRef]
- Gonçalves, C.; Guiné, R.P.F.; Gonçalves, F.; Costa, D.V.T. Physical-chemical properties of blueberry as influenced by production and conservation processes. In Proceedings of the ICEUBI2015—International Conference of Engineering: Engineering for Society, Covilha, Portugal, 2–4 December 2015. [Google Scholar]
- Wang, S.Y.; Chen, C.T.; Sciarappa, W.; Wang, C.Y.; Camp, M.J. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J. Agric. Food Chem. 2008, 56, 5788–5794. [Google Scholar] [CrossRef]
- Kim, J.G.; Kim, H.L.; Kim, S.J.; Park, K.S. Fruit quality, anthocyanin and total phenolic contents, and antioxidant activities of 45 blueberry cultivars grown in Suwon, Korea. J. Zhejiang Univ. Sci. B 2013, 14, 793–799. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Mosa, W.; EL-Megeed, N.; Paszt, L. The Effect of the Foliar Application of Potassium, Calcium, Boron and Humic Acid on Vegetative Growth, Fruit Set, Leaf Mineral, Yield and Fruit Quality of “Anna” Apple Trees. Am. J. Exp. Agric. 2015, 8, 224–234. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Wang, Y.; Zhang, N.; Guo, Y.; Ren, X.; Zhao, Z. Potassium fertilization arrests malate accumulation and alters soluble sugar metabolism in apple fruit. Biol. Open 2018, 7, bio024745. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H. Dose Optimization of Potassium (K) for Yield and Quality Increment of Strawberry (Fragaria ×ananassa Duch) Chandler. Am. J. Exp. Agric. 2014, 4, 1526–1535. [Google Scholar] [CrossRef]
- Flores, P.; Hernández, V.; Hellín, P.; Fenoll, J.; Cava, J.; Mestre, T.; Martínez, V. Metabolite profile of the tomato dwarf cultivar Micro-Tom and comparative response to saline and nutritional stresses with regard to a commercial cultivar. J. Sci. Food Agric. 2016, 96, 1562–1570. [Google Scholar] [CrossRef] [PubMed]
- Beruter, J.; Feusi, M.E.S. The effect of girdling on carbohydrate partitioning in the growing apple fruit. J. Plant Physiol. 1997, 151, 277–285. [Google Scholar] [CrossRef]
Year | Treatment | pH | P | K | Ca | Mg | Org. |
---|---|---|---|---|---|---|---|
2013 | Min | 3.2 | 258 | 1530 | 1924 | 958 | 82 |
Org 1 | 3.5 | 83 | 1280 | 2732 | 843 | 83 | |
Org 2 | 3.5 | 103 | 222 | 2630 | 812 | 82 | |
Org 3 | 3.6 | 56 | 151 | 2978 | 777 | 82 | |
Org 4 | 3.6 | 112 | 234 | 2720 | 799 | 80 | |
2014 | Min | n.a. | 447 | 1680 | 2546 | 761 | 83 |
Org 1 | n.a. | 87 | 1723 | 4677 | 743 | 82 | |
Org 2 | n.a. | 83 | 254 | 4378 | 690 | 83 | |
Org 3 | n.a. | 74 | 172 | 4291 | 661 | 83 | |
Org 4 | n.a. | 37 | 216 | 4649 | 677 | 82 |
Year | Treatment | N | P | K | Ca | Mg |
---|---|---|---|---|---|---|
2013 | Min | 1.27 | 0.13 | 0.50 | 0.46 | 0.19 |
Org 1 | 1.24 | 0.09 | 0.42 | 0.48 | 0.19 | |
Org 2 | 1.42 | 0.10 | 0.37 | 0.59 | 0.26 | |
Org 3 | 1.34 | 0.08 | 0.32 | 0.60 | 0.22 | |
Org 4 | 1.33 | 0.08 | 0.36 | 0.53 | 0.19 | |
2014 | Min | 1.18 | 0.13 | 0.47 | 0.43 | 0.17 |
Org 1 | 1.18 | 0.09 | 0.37 | 0.51 | 0.17 | |
Org 2 | 1.19 | 0.10 | 0.31 | 0.62 | 0.19 | |
Org 3 | 1.18 | 0.09 | 0.28 | 0.68 | 0.19 | |
Org 4 | 1.20 | 0.08 | 0.34 | 0.55 | 0.20 | |
Recommended levels | 1.76–2.0 | 0.10–0.40 | 0.41–0.70 | 0.41–0.80 | 0.13–0.25 |
1981–2010 | |||||||
---|---|---|---|---|---|---|---|
Year | Month | Temp. (°C) | Precip. (mm) | Sun. (h) | Temp. (°C) | Precip. (mm) | Sun. (h) |
2011 | May | 11.6 | 47 | 280 | 11.5 | 55 | 257 |
June | 17.7 | 38 | 318 | 15.0 | 84 | 251 | |
July | 20.5 | 59 | 262 | 17.6 | 72 | 269 | |
August | 16.6 | 61 | 216 | 16.2 | 86 | 220 | |
September | 12.9 | 61 | 154 | 11.0 | 61 | 136 | |
2012 | May | 12.0 | 76 | 271 | 11.5 | 55 | 257 |
June | 13.8 | 89 | 252 | 15.0 | 84 | 251 | |
July | 18.3 | 69 | 281 | 17.6 | 72 | 269 | |
August | 15.2 | 103 | 171 | 16.2 | 86 | 220 | |
September | 12.4 | 57 | 127 | 11.0 | 61 | 136 | |
2013 | May | 14.9 | 73 | 286 | 11.5 | 55 | 257 |
June | 18.2 | 35 | 269 | 15.0 | 84 | 251 | |
July | 17.9 | 59 | 272 | 17.6 | 72 | 269 | |
August | 17.2 | 79 | 253 | 16.2 | 86 | 220 | |
September | 11.3 | 23 | 186 | 11.0 | 61 | 136 | |
2015 | May | 10.6 | 61 | 224 | 11.5 | 55 | 257 |
June | 14.6 | 66 | 251 | 15.0 | 84 | 25 | |
July | 16.1 | 68 | 215 | 17.6 | 72 | 269 | |
August | 17.0 | 47 | 305 | 16.2 | 86 | 220 | |
September | 12.8 | 67 | 133 | 11.0 | 61 | 136 |
Year | Treatment | Bush Diameter | Bush Height | Berry Mass | Yield |
---|---|---|---|---|---|
2011 | Min | 100 ± 9 a | 83 ± 4a | 2.3 ± 0.2 a | 568 ± 8 d |
Org 1 | 94 ± 4 a | 78 ± 5 a | 2.1 ± 0.3 a | 412 ± 32 e | |
Org 2 | 96 ± 5 a | 82 ± 7 a | 2.1 ± 0.1 a | 1222 ± 33 a | |
Org 3 | 96 ± 6 a | 82 ± 4 a | 2.3 ± 0.1 a | 878 ± 13 b | |
Org 4 | 75 ± 8 b | 59 ± 3 b | 2.0 ± 0.1 a | 827 ± 28 c | |
2012 | Min | 109 ± 3 a,b | 81 ± 1 a | 2.5 ± 0.1 a,b | 2043 ± 41 a |
Org 1 | 116 ± 3 a | 82 ± 1.8 a | 2.7 ± 0.1 a | 1986 ± 78 a | |
Org 2 | 112 ± 11 a | 79 ± 2 a,b | 2.7 ± 0.2 a | 2014 ± 59 a | |
Org 3 | 107 ± 5 a,b | 77 ± 4 b,c | 2.4 ± 0.2 b | 1508 ± 62 b | |
Org 4 | 99 ± 2 b | 73 ± 1 c | 2.7 ± 0.2 a | 1126 ± 82 c | |
2013 | Min | 103 ± 10 a | 87 ± 7 a | 1.6 ± 0.4 a | 328 ± 28 c |
Org 1 | 100 ± 8 a | 85 ± 8 a | 1.4 ± 0.1 a | 335 ± 38 c | |
Org 2 | 101 ± 4 a | 89 ± 6 a | 1.3 ± 0.0 a | 649 ± 13 a | |
Org 3 | 96 ± 6 a | 86 ± 6 a | 1.4 ± 0.1 a | 285 ± 38 c | |
Org 4 | 93 ± 3 a | 78 ± 6 a | 1.4 ± 0.1 a | 579 ± 42 b | |
2015 | Min | 118 ± 10 a | 100 ± 4 a | 1.9 ± 0.1 a | 1046 ± 360 a |
Org 1 | 117 ± 4 a | 105 ± 5 a | 1.9 ± 0.1 a,b | 796 ± 29 a | |
Org 2 | 111 ± 9 a | 100 ± 7 a | 1.7 ± 0.1 b | 859 ± 309 a | |
Org 3 | 108 ± 3 a | 98 ± 4 a | 2.0 ± 0.1 a | 723 ± 110 a | |
Org 4 | 109 ± 3 a | 100 ± 2 a | 1.7 ± 0.2 b | 741 ± 143 a |
Year | Treatment | TPC | ACC | SSC | TAC | SSC/TAC | ASC |
---|---|---|---|---|---|---|---|
2011 | Min | 207 ± 10 a,b | 113 ± 7 a | 11.2 ± 0.1 b | 0.8 ± 0.1 a | 14.4 ± 1.5 a | 9.5 ± 0.4 b |
Org 1 | 195 ± 10 b,c | 97 ± 6 b | 10.8 ± 0.1 c | 0.8 ± 0.1 a | 13.6 ± 1.6 a | 6.6 ± 0.4 c | |
Org 2 | 206 ± 10 a,b,c | 113 ± 12 a | 10.8 ± 0.1 c | 0.8 ± 0.1 a | 13.6 ± 1.4 a | 4.5 ± 0.1 d | |
Org 3 | 191 ± 5 c | 100 ± 11 a,b | 11.2 ± 0.1 b | 0.7 ± 0.1 a | 16.2 ± 2.3 a | 6.3 ± 0.2 c | |
Org 4 | 220 ± 10 a | 78 ± 4 c | 11.7 ± 0.1 a | 0.8 ± 0.1 a | 14.7 ± 1.3 a | 10.4 ± 0.8 a | |
2012 | Min | 182 ± 10 a | 75 ± 8 c | 9.9 ± 0.1 a | 0.9 ± 0.1 b | 11.1 ± 0.7 a | 18.3 ± 0.7 a |
Org 1 | 147 ± 10 b | 65 ± 7 c | 9.6 ± 0.1 b | 1.1 ± 0.1 a | 8.7 ± 0.6 b | 13.5 ± 0.2 c | |
Org 2 | 148 ± 11 b | 79 ± 4 c | 9.1 ± 0.1 c | 1.1 ± 0.1 a | 8.1 ± 0.6 b | 14.5 ± 0.2 b | |
Org 3 | 191 ± 13 a | 103 ± 13 b | 9.6 ± 0.1 b | 1.1 ± 0.1 a | 8.7 ± 0.7 b | 12.5 ± 0.5 d | |
Org 4 | 157 ± 10 b | 130 ± 16 a | 9.1 ± 0.1 c | 1.1 ± 0.1 a | 8.0 ± 0.7 b | 13.0 ± 0.0 c,d | |
2013 | Min | 204 ± 19 a | 60 ± 6 b | 11.9 ± 0.1 a | 0.8 ± 0.1 a | 14.3 ± 2.0 a | 16.4 ± 0.3 a |
Org 1 | 149 ± 17 b | 48 ± 8 c | 11.6 ± 0.1 b | 0.9 ± 0.1 a | 13.4 ± 1.4 a | 11.1 ± 1.1 b | |
Org 2 | 193 ± 20 a | 73 ± 7 a | 11.6 ± 0.1 b | 0.9 ± 0.1 a | 13.0 ± 1.5 a | 8.3 ± 0.4 c | |
Org 3 | 198 ± 10 a | 58 ± 6 b,c | 11.8 ± 0.1 a | 0.9 ± 0.1 a | 13.4 ± 1.3 a | 12.6 ± 1.7 b | |
Org 4 | 194 ± 11 a | 75 ± 5 a | 11.9 ± 0.2 a | 0.9 ± 0.1 a | 12.9 ± 1.2 a | 13.2 ± 1.7 b | |
2015 | Min | 170 ± 5 a | 136 ± 8 a | 11.8 ± 0.1 a,b | 0.9 ± 0.1 a | 13.3 ± 0.9 a | 15.5 ± 1.0 a |
Org 1 | 146 ± 5 b,c | 108 ± 16 b | 11.6 ± 0.1 b | 0.9 ± 0.1 a | 13.4 ± 0.9 a | 14.4 ± 1.0 a,b | |
Org 2 | 134 ± 10 c | 131 ± 5 a | 11.7 ± 0.1 a,b | 0.9 ± 0.1 a | 13.3 ± 0.6 a | 14.1 ± 0.8 a,b | |
Org 3 | 158 ± 10 a,b | 116 ± 12 a,b | 11.9 ± 0.2 a | 0.9 ± 0.1 a | 13.7 ± 1.1 a | 14.8 ± 0.8 a | |
Org 4 | 158 ± 10 a,b | 135 ± 10 a | 11.8 ± 0.1 a | 0.9 ± 0.1 a | 13.0 ± 1.2 a | 13.3 ± 0.3 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koort, A.; Starast, M.; Põldma, P.; Moor, U.; Mainla, L.; Maante-Kuljus, M.; Karp, K. Sustainable Fertilizer Strategies for Vaccinium corymbosum x V. angustifolium under Abandoned Peatland Conditions. Agriculture 2020, 10, 121. https://doi.org/10.3390/agriculture10040121
Koort A, Starast M, Põldma P, Moor U, Mainla L, Maante-Kuljus M, Karp K. Sustainable Fertilizer Strategies for Vaccinium corymbosum x V. angustifolium under Abandoned Peatland Conditions. Agriculture. 2020; 10(4):121. https://doi.org/10.3390/agriculture10040121
Chicago/Turabian StyleKoort, Angela, Marge Starast, Priit Põldma, Ulvi Moor, Leila Mainla, Mariana Maante-Kuljus, and Kadri Karp. 2020. "Sustainable Fertilizer Strategies for Vaccinium corymbosum x V. angustifolium under Abandoned Peatland Conditions" Agriculture 10, no. 4: 121. https://doi.org/10.3390/agriculture10040121
APA StyleKoort, A., Starast, M., Põldma, P., Moor, U., Mainla, L., Maante-Kuljus, M., & Karp, K. (2020). Sustainable Fertilizer Strategies for Vaccinium corymbosum x V. angustifolium under Abandoned Peatland Conditions. Agriculture, 10(4), 121. https://doi.org/10.3390/agriculture10040121