Effect of Vintage and Viticultural Practices on the Phenolic Content of Hybrid Winegrapes in Very Cool Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Plant Material
2.2. Vineyard Management
2.3. Weather Conditions
2.4. Measuerments and Analysis
2.5. Statistical Analysis
3. Results
3.1. Climate Conditions
3.2. Phenolic Compounds
3.3. Antioxidant Activity and Anthocyanins
3.4. Correlations
4. Discussion
4.1. The Effect of Year and Cultivar on Phenolic Compounds
4.2. The Effect of Viticultural Practice
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernandes De Oliveira, A.; Mercenaro, L.; Nieddu, G. Assessing thermal efficiency for berry anthocyanin accumulation in four different sites and field-growing conditions. Acta Hortic. 2017, 1188, 181–188. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Lu, J. Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. Int. J. Mol. Sci. 2012, 13, 3492–3510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojdyło, A.; Samoticha, J.; Nowicka, P.; Chmielewska, J. Characterisation of (poly)phenolic constituents of two interspecific red hybrids of Rondo and Regent (Vitis vinifera) by LC–PDA–ESI-MS QTof. Food Chem. 2018, 239, 94–101. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdyło, A.; Golis, T. Phenolic composition, physicochemical properties and antioxidant activity of interspecific hybrids of grapes growing in Poland. Food Chem. 2017, 215, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Soubeyrand, E.; Basteau, C.; Hilbert, G.; Van Leeuwen, C.; Delrot, S.; Gomès, E. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry 2014, 103, 38–49. [Google Scholar] [CrossRef]
- Katalinić, V.; Možina, S.S.; Skroza, D.; Generalić, I.; Abramovič, H.; Miloš, M.; Ljubenkov, I.; Piskernik, S.; Pezo, I.; Terpinc, P.; et al. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Sroka, P.; Satora, P.; Jurasz, E. Polish wines: Characteristics of cool-climate wines. J. Food Compos. Anal. 2010, 23, 463–468. [Google Scholar] [CrossRef]
- Yang, J.; Martinson, T.E.; Liu, R.H. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Liang, Z.; Cheng, L.; Zhong, G.Y.; Liu, R.H. Antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes. PLoS ONE 2014, 9, e0105146. [Google Scholar] [CrossRef]
- Liang, Z.; Wu, B.; Fan, P.; Yang, C.; Duan, W.; Zheng, X.; Liu, C.; Li, S. Anthocyanin composition and content in grape berry skin in Vitis germplasm. Food Chem. 2008, 111, 837–844. [Google Scholar] [CrossRef]
- Ortega-Regules, A.; Romero-Cascales, I.; Lopes-Roca, J.M.; Ros-Garcia, J.M.; Gomez-Plaza, E. Anthocyanin fingerprint of grapes: Environmental and genetic variations. J. Sci. Food Agric. 2006, 86, 1460–1467. [Google Scholar] [CrossRef]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust. J. Grape Wine Res. 2004, 10, 55–73. [Google Scholar] [CrossRef]
- Basile, T.; Alba, V.; Gentilesco, G.; Savino, M.; Tarricone, L. Anthocyanins pattern variation in relation to thinning and girdling in commercial Sugrathirteen® table grape. Sci. Hortic. (Amst.) 2018, 227, 202–206. [Google Scholar] [CrossRef]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of anthocyanins in red-wine grape under high temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef]
- Poudel, P.R.; Mochioka, R.; Beppu, K.; Kataoka, I. Influence of Temperature on Berry Composition of Interspecific Hybrid Wine Grape ‘Kadainou R-1’ (Vitis ficifolia var. ganebu × V. vinifera ‘Muscat of Alexandria’). J. Jpn. Soc. Hortic. Sci. 2009, 78, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Pedastsaar, P.; Vaher, M.; Helmja, K.; Kulp, M.; Kaljurand, M.; Karp, K.; Raal, A.; Karathanos, V.; Püssa, T. Chemical composition of red wines made from hybrid grape and common grape (Vitis vinifera L.) cultivars. Proc. Est. Acad. Sci. 2014, 63, 444–453. [Google Scholar] [CrossRef]
- Revilla, E.; Losada, M.; Gutiérrez, E. Phenolic Composition and Color of Single Cultivar Young Red Wines Made with Mencia and Alicante-Bouschet Grapes in AOC Valdeorras (Galicia, NW Spain). Beverages 2016, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Maante, M. Effect of defoliation on grape maturity parameters. Sodinink. Darzinink. 2016, 35, 21–35. [Google Scholar]
- Rätsep, R.; Karp, K.; Vool, E.; Tõnutare, T. Effect of pruning time and method on hybrid grapevine (Vitis sp.) “Hasanski Sladki” berry maturity in a cool climate conditions. Acta Sci. Pol. Hortorum Cultus 2014, 13, 99–112. [Google Scholar]
- Gustafsson, J.G.; Mårtensson, A. Potential for extending Scandinavian wine cultivation. Acta Agric. Scand. Sect. B Soil Plant Sci. 2005, 55, 82–97. [Google Scholar] [CrossRef]
- Karvonen, J. The annual growth cycle of grapevines in southern Finland. Vitis J. Grapevine Res. 2014, 53, 175–180. [Google Scholar]
- Karvonen, J. Phenolic Compounds of Grape Varieties Grown in the Northern Temperate Climate. Int. J. Agric. Innov. Res. 2015, 4, 311–316. [Google Scholar]
- Maante-Kuljus, M.; Rätsep, R.; Mainla, L.; Moor, U.; Starast, M.; Põldma, P.; Karp, K. Technological maturity of hybrid vine (Vitis) fruits under Estonian climate conditions. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 706–714. [Google Scholar] [CrossRef]
- Vitis International Variety Catalogue VIVC: Passport Data “Hasansky Sladky”. Available online: http:/www.vivc.de/index.php?r=passport%2Fview&id=25249 (accessed on 27 February 2020).
- Vitis International Variety Catalogue VIVC: Passport Data “Zilga”. Available online: http://www.vivc.de/index.php?r=passport%2Fview&id=22255 (accessed on 27 February 2020).
- Vitis International Variety Catalogue VIVC: Passport Data “Rondo”. Available online: http://www.vivc.de/index.php?r=passport%2Fview&id=14308 (accessed on 27 February 2020).
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth stages of the grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Die Weinwiss. Vitic. Enol. Sci. 1994, 49, 66–70. [Google Scholar] [CrossRef]
- Huglin, P. A new method of evaluating the heliothermal possibilities in the environment of grape culture. C. R. Acad. Agric. Fr. 1978, 64, 1117–1126. [Google Scholar]
- Wrolstad, E.; Ronald Acree, E.T.; Decker, A.E.; Penner, H.M.; Reid, S.D.; Smith, J.; Steven Schwartz, F.; Charles Shoemaker, D.; Sporns, P. Handbook of Food Analytical Chemistry. Pigments, Colorants, Flavors, Texture, and Bioactive Food Components; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Huang, D.; Boxin, O.U.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Lambert, M.; Meudec, E.; Verbaere, A.; Mazerolles, G.; Wirth, J.; Masson, G.; Cheynier, V.; Sommerer, N. A high-throughput UHPLC-QqQ-MS method for polyphenol profiling in rosé wines. Molecules 2015, 20, 7890–7914. [Google Scholar] [CrossRef]
- Maante-Kuljus, M.; Vool, E.; Mainla, L.; Starast, M.; Karp, K. Berry quality of hybrid grapevine (Vitis) cultivars grown in the field and in a polytunnel. Agric. Food Sci. 2019, 28, 137–144. [Google Scholar] [CrossRef] [Green Version]
Viticultural Practice | P | K | Mg | Ca | pHKCl |
---|---|---|---|---|---|
Field | 147 | 257 | 260 | 1670 | 5.4 |
Tunnel | 159 | 578 | 574 | 2381 | 5.4 |
Year | Mean Temperature (°C) | |||||||
---|---|---|---|---|---|---|---|---|
April | May | June | July | August | September | October | ||
Field | 2010 | 5.7 | 12.2 | 14.3 | 21.7 | 17.8 | 10.7 | 3.8 |
2011 | 5.7 | 11.0 | 17.2 | 19.9 | 15.8 | 12.3 | 6.8 | |
2012 | 4.6 | 11.4 | 13.3 | 17.7 | 14.7 | 11.9 | 5.3 | |
2013 | 4.0 | 15.5 | 17.8 | 17.5 | 16.6 | 10.8 | 6.6 | |
2014 | 6.8 | 12.3 | 13.7 | 19.5 | 16.8 | 12.5 | 5.6 | |
2015 | 5.8 | 10.6 | 14.6 | 16.1 | 17.0 | 12.8 | 4.9 | |
2016 | 5.9 | 14.1 | 16.3 | 18.2 | 16.3 | 12.5 | 4.2 | |
2017 | 1.6 | 10.2 | 13.8 | 15.7 | 16.5 | 12.1 | 5.2 | |
2018 | 7.2 | 15.2 | 15.5 | 20.2 | 18.5 | 14.0 | 7.2 | |
Mean | 5.3 | 12.5 | 15.2 | 18.5 | 16.7 | 12.2 | 5.5 | |
Tunnel | 2016 | 6.9 | 18.0 | 20.5 | 22.0 | 18.6 | 13.4 | 5.2 |
2017 | 4.6 | 16.1 | 17.1 | 20.6 | 18.8 | 12.7 | 6.0 | |
2018 | 10.2 | 20.1 | 20.4 | 23.6 | 20.8 | 15.6 | 8.6 | |
Mean | 7.2 | 18.1 | 19.3 | 22.1 | 19.4 | 13.9 | 6.6 | |
Precipitation (mm) | ||||||||
Field | 2010 | 25 | 97 | 98 | 38 | 148 | 99 | 59 |
2011 | 1 | 58 | 35 | 48 | 55 | 80 | 48 | |
2012 | 45 | 78 | 98 | 80 | 80 | 61 | 72 | |
2013 | 36 | 65 | 29 | 67 | 73 | 38 | 45 | |
2014 | 16 | 90 | 134 | 78 | 126 | 20 | 43 | |
2015 | 80 | 61 | 66 | 68 | 47 | 67 | 8 | |
2016 | 70 | 2 | 207 | 86 | 104 | 15 | 37 | |
2017 | 29 | 28 | 65 | 57 | 112 | 119 | 86 | |
2018 | 43 | 10 | 66 | 23 | 81 | 99 | 78 | |
Mean | 38 | 54 | 89 | 61 | 92 | 64 | 53 | |
Relative air humidity (%) | ||||||||
2010 | 68 | 72 | 72 | 68 | 79 | 84 | 83 | |
2011 | 65 | 66 | 65 | 72 | 75 | 81 | 81 | |
2012 | 65 | 61 | 69 | 73 | 81 | 84 | 91 | |
2013 | 69 | 69 | 71 | 72 | 73 | 80 | 84 | |
2014 | 53 | 69 | 76 | 70 | 76 | 77 | 78 | |
2015 | 75 | 71 | 70 | 77 | 75 | 86 | 84 | |
2016 | 73 | 61 | 71 | 80 | 83 | 84 | 84 | |
2017 | 75 | 62 | 71 | 76 | 77 | 85 | 87 | |
2018 | 67 | 54 | 63 | 73 | 74 | 81 | 88 | |
Mean | 68 | 65 | 70 | 73 | 77 | 82 | 84 |
SAT (°C) | HI | Frost-Free Period (Days) | Precipitation (mm) | |||
---|---|---|---|---|---|---|
Year | BBCH 71–79 | BBCH 81–89 | Total | |||
2010 | 1148 | 834 | 2331 | 1375 | 148 | 566 |
2011 | 1167 | 889 | 2498 | 1366 | 162 | 325 |
2012 | 957 | 789 | 2181 | 1037 | 172 | 514 |
2013 | 1103 | 826 | 2490 | 1308 | 150 | 352 |
2014 | 979 | 854 | 2274 | 1234 | 140 | 507 |
2015 | 937 | 877 | 2156 | 1078 | 149 | 398 |
2016 | 1025 | 824 | 2311 | 1279 | 165 | 520 |
2017 | 877 | 831 | 1981 | 888 | 156 | 497 |
2018 | 1086 | 938 | 2660 | 1532 | 180 | 399 |
Mean | 1031 | 851 | 2320 | 1233 | 158 | 453 |
Year | ‘Hasansky Sladky’ | ‘Rondo’ | ‘Zilga’ | |||
---|---|---|---|---|---|---|
TPC | ACCspec | TPC | ACCspec | TPC | ACCspec | |
mg 100 g−1 FSW | ||||||
2010 | 279 d | 133 a | 399 cd | 112 d | × | × |
2011 | 394 a | 74 c | 482 b | 134 bc | 293 b | 54 e |
2012 | 192 h | 113 d | 374 d | 75 e | 214 e | 50 e |
2013 | 326 b | 138 a | × | × | 222 de | 64 d |
2014 | 253 e | 30 f | × | × | 344 a | 32 f |
2015 | 227 f | 51 e | 391 d | 159 bc | 273 bc | 85 c |
2016 | 211 g | 75 d | 477 b | 183 b | 372 a | 139 b |
2017 | 293 c | 81 d | 447 bc | 166 b | 267 bc | 86 c |
2018 | 289 c | 118 bc | 671 a | 405 a | 256 cd | 150 a |
TPC | ACCspec | |||||
Cultivar | *** | *** | ||||
Year | *** | *** | ||||
Interaction | *** | *** |
Year | Cultivar | TAA % | Dp | Cy | Pt | Pn | Mv |
---|---|---|---|---|---|---|---|
mg 100 g−1 FSW | |||||||
2016 | ‘Hasansky Sladky’ | 40 c | 18 c | 10 c | 20 c | 14 b | 59 c |
‘Rondo’ | 88 a | 311 a | 190 a | 157 a | 302 a | 298 a | |
‘Zilga’ | 62 b | 145 b | 90 b | 57 b | 19 b | 75 b | |
2017 | ‘Hasansky Sladky’ | 53 b | 39 c | 23 c | 25 c | 21 b | 41 c |
‘Rondo’ | 78 a | 87 b | 64 a | 33 b | 102 a | 71 a | |
‘Zilga’ | 53 b | 111 a | 28 b | 44 a | 21 b | 52 b | |
2018 | ‘Hasansky Sladky’ | 51 b | 111 c | 7 c | 90 b | 21 b | 309 b |
‘Rondo’ | 84 a | 1189 a | 251 a | 416 a | 333 a | 712 a | |
‘Zilga’ | 53 b | 449 b | 107 b | 70 b | 5 b | 72 c | |
Year | ns | *** | *** | *** | *** | *** | |
Cultivar | *** | *** | *** | *** | *** | *** | |
Interaction | ** | *** | *** | *** | *** | *** |
Year | Viticultural Practice | TAA % | ACCHPLC | Dp | Cy | Pt | Pn | Mv |
---|---|---|---|---|---|---|---|---|
mg 100 g−1 FSW | ||||||||
2016 | Field | 88 a | 1581 a | 311 a | 190 a | 157 a | 302 a | 298 a |
Tunnel | 89 a | 1108 b | 230 b | 30 b | 113 b | 51 b | 235 b | |
2017 | Field | 78 a | 447 b | 87 b | 64 b | 33 b | 102 b | 71 b |
Tunnel | 90 a | 1472 a | 396 a | 86 a | 171 a | 129 a | 306 a | |
2018 | Field | 84 a | 3645 a | 1189 a | 251 a | 416 a | 333 a | 712 a |
Tunnel | 86 a | 1618 b | 820 b | 12 b | 107 b | 23 b | 177 b | |
Year | ns | *** | *** | ** | *** | *** | *** | |
Viticultural practice | ** | *** | ns | *** | *** | *** | *** | |
Interaction | * | *** | *** | *** | *** | *** | *** |
TAA | TPC | ACCHPLC | Dp | Cy | Pt | Pn | Mv | |
---|---|---|---|---|---|---|---|---|
‘Hasansky Sladky’ | ||||||||
SAT BBCH 71–79 | −0.306 ns | −0.276 ns | 0.717 * | 0.551 ns | −0.988 ** | 0.676 * | −0.233 ns | 0.759 * |
SAT BBCH 81–89 | 0.400 ns | 0.505 ns | 0.992 ** | 0.973 ** | −0.586 ns | 0.987 ** | 0.500 ns | 0.988 ** |
Year, SAT | −0.087 ns | −0.029 ns | 0.865 ** | 0.738 * | −0.925 ** | 0.834 ** | 0.001 ns | 0.895 ** |
HI | −0.211 ns | −0.167 ns | 0.789 * | 0.639 ns | −0.968 ** | 0.752 * | −0.130 ns | 0.826 ** |
August, RF | 0.842 ** | 0.958 ** | 0.679 * | 0.812 ** | 0.138 ns | 0.712 * | 0.910 ** | 0.633 ns |
September, RF | −0.428 ns | −0.415 ns | 0.606 ns | 0.423 ns | −0.996 ** | 0.560 ns | −0.366 ns | 0.654 ns |
Frost-free period | 0.026 ns | 0.097 ns | 0.920 ** | 0.815 ** | −0.871 ** | 0.894 ** | 0.120 ns | 0.943 ** |
Precipitation | −0.497 ns | −0.608 ns | −0.978 ** | −0.986 ** | 0.481 ns | −0.979 ** | −0.595 ns | −0.966 ** |
August, RH% | −0.774 * | −0.893 ** | −0.800 ** | −0.901 ** | 0.045 ns | −0.825 ** | −0.854 ** | −0.763 * |
September, RH% | −0.287 ns | −0.383 ns | −0.989 ** | −0.942 ** | 0.691 * | −0.977 ** | −0.387 ns | −0.994 ** |
‘Rondo’ | ||||||||
SAT BBCH 71–79 | 0.583 ns | 0.801 ** | 0.915 ** | 0.839 ** | 0.938 ** | 0.900 ** | 0.965 ** | 0.919 ** |
SAT BBCH 81–89 | 0.103 ns | 0.979 ** | 0.911 ** | 0.964 ** | 0.671 * | 0.924 ** | 0.545 ns | 0.916 ** |
Year, SAT | 0.463 ns | 0.923 ** | 0.983 ** | 0.945 ** | 0.918 ** | 0.977 ** | 0.894 ** | 0.988 ** |
HI | 0.534 ns | 0.862 ** | 0.953 ** | 0.893 ** | 0.937 ** | 0.942 ** | 0.941 ** | 0.957 ** |
August, RF | −0.416 ns | 0.581 ns | 0.379 ns | 0.524 ns | 0.027 ns | 0.411 ns | −0.171 ns | 0.382 ns |
September, RF | 0.638 ns | 0.704 * | 0.846 ** | 0.750 * | 0.922 ** | 0.827 ** | 0.978 ** | 0.850 ** |
Frost-free period | 0.390 ns | 0.963 ** | 0.994 ** | 0.977 ** | 0.886 ** | 0.992 ** | 0.837 ** | 0.999 ** |
Precipitation | −0.014 ns | −0.949 ** | −0.854 ** | −0.926 ** | −0.584 ns | −0.871 ** | −0.440 ns | −0.859 ** |
August, RH% | 0.303 ns | −0.719 * | −0.541 ns | −0.669 * | −0.198 ns | −0.569 ns | −0.007 ns | −0.545 ns |
September, RH% | −0.198 ns | −0.994 ** | −0.957 ** | −0.988 ** | −0.755 * | −0.965 ** | −0.651 ns | −0.962 ** |
‘Zilga’ | ||||||||
SAT BBCH 71–79 | 0.142 ns | 0.149 ns | 0.825 ** | 0.783 * | −0.838 ** | 0.954 ** | −0.817 ** | 0.899 ** |
SAT BBCH 81–89 | −0.387 ns | −0.608 ns | 0.967 ** | 0.987 ** | −0.948 ** | 0.805 ** | −0.965 ** | 0.340 ns |
Year, SAT | −0.028 ns | −0.099 ns | 0.936 ** | 0.912 ** | −0.939 ** | 0.976 ** | −0.929 ** | 0.775 * |
HI | 0.067 ns | 0.039 ns | 0.881 ** | 0.847 ** | −0.890 ** | 0.971 ** | −0.874 ** | 0.850 ** |
August, RF | −0.663 ns | −0.978 ** | 0.543 ns | 0.610 ns | −0.504 ns | 0.196 ns | −0.547 ns | −0.390 ns |
September, RF | 0.240 ns | 0.294 ns | 0.733 * | 0.682 * | −0.752 * | 0.913 ** | −0.724 * | 0.945 ** |
Frost-free period | −0.114 ns | −0.223 ns | 0.970 ** | 0.956 ** | −0.968 ** | 0.963 ** | −0.964 ** | 0.694 * |
Precipitation | 0.454 ns | 0.700 * | −0.932 ** | −0.961 ** | 0.909 ** | −0.730 * | 0.931 ** | −0.223 ns |
August, RH% | 0.632 ns | 0.937 ** | −0.685 * | −0.744 * | 0.649 ns | −0.368 ns | 0.688 * | 0.220 ns |
September, RH% | 0.306 ns | 0.496 ns | −0.988 ** | −0.998 ** | 0.975 ** | −0.873 ** | 0.985 ** | −0.462 ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maante-Kuljus, M.; Rätsep, R.; Moor, U.; Mainla, L.; Põldma, P.; Koort, A.; Karp, K. Effect of Vintage and Viticultural Practices on the Phenolic Content of Hybrid Winegrapes in Very Cool Climate. Agriculture 2020, 10, 169. https://doi.org/10.3390/agriculture10050169
Maante-Kuljus M, Rätsep R, Moor U, Mainla L, Põldma P, Koort A, Karp K. Effect of Vintage and Viticultural Practices on the Phenolic Content of Hybrid Winegrapes in Very Cool Climate. Agriculture. 2020; 10(5):169. https://doi.org/10.3390/agriculture10050169
Chicago/Turabian StyleMaante-Kuljus, Mariana, Reelika Rätsep, Ulvi Moor, Leila Mainla, Priit Põldma, Angela Koort, and Kadri Karp. 2020. "Effect of Vintage and Viticultural Practices on the Phenolic Content of Hybrid Winegrapes in Very Cool Climate" Agriculture 10, no. 5: 169. https://doi.org/10.3390/agriculture10050169
APA StyleMaante-Kuljus, M., Rätsep, R., Moor, U., Mainla, L., Põldma, P., Koort, A., & Karp, K. (2020). Effect of Vintage and Viticultural Practices on the Phenolic Content of Hybrid Winegrapes in Very Cool Climate. Agriculture, 10(5), 169. https://doi.org/10.3390/agriculture10050169