Seeds of n-GM Soybean Varieties Cultivated in Poland and Their Processing Products as High-Protein Feeds in Cattle Nutrition
Abstract
:1. Introduction
2. N-GM Soybean Varieties Cultivating in Poland
3. The Factors Affecting Soybean Utilization in Cattle Nutrition
4. The Application of Raw Seeds and Their Processing Products in Cattle Feeding
4.1. Whole Full-Fat Raw Soybean Seeds
4.2. Mechanical Processing Products
4.2.1. Cracked Full-Fat Raw Seeds
4.2.2. Cold Press Cake
4.3. Thermal Treatment Processing Products
Roasted Full-Fat Soybean Seeds
4.4. Thermal and Mechanical Processing Products
4.4.1. Extruded Full-Fat Soybean Seeds
4.4.2. Extruded Oil Cake
4.5. Whole-Plant Soybean
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- De Visser, C.L.M.; Schreuder, R.; Stoddard, F. The EU’s dependency on soya bean import for the animal feed industry and potential for EU produced alternatives. OCL 2014, 21, D407. [Google Scholar] [CrossRef] [Green Version]
- Stein, H.H.; Berger, L.L.; Drackley, J.K.; Fahey, G.C., Jr.; Hernot, D.C.; Parsons, C.M. Nutritional properties and feeding values of soybeans and their co-products. In Soybeans, Chemistry, Production, Processing, and Utilization; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL, USA, 2008; pp. 613–660. [Google Scholar]
- Ronald, P. Plant Genetics, Sustainable Agriculture and Global Food Security. Genetics 2011, 188, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flachowsky, G.; Meyer, U. Challenges for Plant Breeders from the View of Animal Nutrition. Agriculture 2015, 5, 1252–1276. [Google Scholar] [CrossRef] [Green Version]
- Dzwonkowski, W.; Rola, K.; Hanczakowska, E.; Niwińska, B.; Światkiewicz, S. Economic Aspects of Replacing GM Soybeans by Protein Feed Crops Grown in Poland; Institute of Agricultural and Food Economics-National Research Institute: Warsaw, Poland, 2016; ISBN 978-83-7658-656-4. (In Polish) [Google Scholar]
- Statistical Yearbook of the Republic of Poland; Central Statistical Office, Ministry of National Education for School Libraries: Warsaw, Poland, 2019.
- Dzwonkowski, W.; Rola, K.; Hanczakowska, E.; Niwińska, B.; Światkiewicz, S. Report on the Situation on the Global GMO Plant Market and Possibilities of Genetically Modified Soybean Substitution with Domestic Protein Crops in Terms of Feed Balance; Institute of Agricultural and Food Economics-National Research Institute: Warsaw, Poland, 2015; ISBN 978-83-7658-569-7. (In Polish) [Google Scholar]
- Bajželj, B.; Richards, K.S.; Allwood, J.M.; Smith, P.; Dennis, J.S.; Curmi, E.; Gilligan, C.A. Importance of food-demand management for climate mitigation. Nat. Clim. Chang. 2014, 4, 924–929. [Google Scholar] [CrossRef] [Green Version]
- Mutsvangwa, T.; Davies, K.L.; McKinnon, J.J.; Christensen, D.A. Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows. J. Dairy Sci. 2016, 99, 6298–6310. [Google Scholar] [CrossRef]
- Britt, J.H.; Cushman, R.A.; Dechow, C.D.; Dobson, H.; Humblot, P.; Hutjens, M.F.; Jones, G.A.; Ruegg, P.S.; Sheldon, I.M.; Stevenson, J.S. Invited review: Learning from the future—A vision for dairy farms and cows in 2067. J. Dairy Sci. 2018, 101, 3722–3741. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Yang, S.; Tang, F.; Zhu, H. Symbiosis specificity in the legume—Rhizobial mutualism. Cell. Microbiol. 2012, 14, 334–342. [Google Scholar] [CrossRef]
- Maghari, B.M.; Ardekani, A.M. Genetically modified foods and social concerns. Avicenna J. Med. Biotechnol. 2011, 3, 109–117. [Google Scholar]
- Labeling GMO-Free Food—A Proposal for Poland. Institute of Civil Affairs. Federation of Greens—Krakow Group. Available online: https://chcewiedziec.pl/przerwij-eksperyment/press/raport_Chce_wiedziec.pdf (accessed on 1 February 2020). (In Polish).
- Poles on Food Safety and GMOs. Public Opinion Research Center: Warsaw, Poland, BS/2/2013; Available online: https://www.cbos.pl/SPISKOM.POL/2013/K_002_13.PDF (accessed on 1 February 2020).
- Eurostat. Crop Production in EU Standard Humidity. Available online: https://appsso.eurostat.ec.europa.eu/nui/submitViewTableActiondo (accessed on 22 August 2019).
- Agriculture 2018 (2019); Statistics Poland, Agriculture Department: Warsaw, Poland, 2019.
- Bellaloui, N.; McClure, A.M.; Mengistu, A.; Abbas, H.K. The Influence of Agricultural Practices, the Environment, and Cultivar Differences on Soybean Seed Protein, Oil, Sugars, and Amino Acids. Plants 2020, 9, 378. [Google Scholar] [CrossRef] [Green Version]
- Fallen, B.D.; Hatcher, C.N.; Allen, F.L.; Kopsell, D.A.; Saxton, A.M.; Chen, P.; Kantartzi, S.K.; Cregan, P.B.; Hyten, D.L.; Pantalone, V.R. Soybean Seed Amino Acid Content QTL Detected Using the Universal Soy Linkage Panel 1.0 with 1,536 SNPs. Plant Genet. Genomics Biotechnol. 2017, 1, 68–79. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, J.; Zhu, H. Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. Front. Plant Sci. 2018, 9, 313. [Google Scholar] [CrossRef] [PubMed]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Program on Activities in the Field of Obtaining Alternative Protein Sources for GM Soy Protein in Animal Nutrition from 26 March 2018. Ministry of Agriculture and Rural Development of the Republic of Poland: Warsaw, Poland. Available online: https://www.senat.gov.pl/gfx/senat/userfiles/_public/k9/komisje/2018/krrw/materialy/program98pos.pdf (accessed on 1 February 2020). (In Polish)
- 2017/2116(INI). European Strategy for the Promotion of Protein Crops—Encouraging the Production of Protein and Leguminous Plants in the European Agriculture Sector. Available online: https://www.europarl.europa.eu/doceo/document/A-8-2018-0121_EN.html (accessed on 1 February 2020).
- Results of Post-Registration Varietal Experiments. Beans and Soybeans 2018. Research Centre for Cultivar Testing in Poland. Publication no 150. 22/2019, 350. Available online: http://www.coboru.pl/Publikacje_COBORU/Wyniki_PDO/WPDO_Bobowate_2018.pdf (accessed on 1 February 2020).
- Gu, C.; Pan, H.; Sun, Z.; Qin, G. Effect of Soybean Variety on Anti-Nutritional Factors Content, and Growth Performance and Nutrients Metabolism in Rat. Int. J. Mol. Sci. 2010, 11, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Palacios, M.F.; Easter, R.A.; Soltwedel, K.T.; Parsons, C.M.; Douglas, M.W.; Hymowitz, T.; Pettigrew, J.E. Effect of soybean variety and processing on growth performance of young chicks and pigs. J. Anim. Sci. 2004, 82, 1108–1114. [Google Scholar] [CrossRef]
- Strzetelski, J.A.; Brzóska, F.; Kowalski, Z.M.; Osięgłowski, S. Feeding Recommendations for Ruminants and Feed Nutrition Tables; The National Research Institute of Animal Production: Cracow, Poland, 2014; ISBN 978-83-938377-0-0. [Google Scholar]
- Sinclair, L.A.; Garnsworth, P.C.; Newbold, J.R.; Buttery, P.J. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. J. Agric. Sci. 1993, 120, 251–263. [Google Scholar] [CrossRef]
- Nasri, M.H.F.; France, J.; Danesh Mesgaran, M.; Kebreab, E. Effect of heat processing on ruminal degradability and intestinal disappearance of nitrogen and amino acids in Iranian whole soybean. Livest. Sci. 2008, 113, 43–51. [Google Scholar] [CrossRef]
- Lock, A.L.; Harvatine, K.J.; Drackley, J.K.; Bauman, D.E. Concepts in Fat and Fatty Acid Digestion in Ruminants. In Proceedings of the Intermountain Nutrition Conference; Utah State University: Logan, UT, USA, 2006; pp. 85–100. [Google Scholar]
- Sultan, S.M.; Dikshit, N.; Vaidya, U.J. Oil content and fatty acid composition of soybean (Glysine max L.) genotypes evaluated under rainfed conditions of Kashmir Himalayas in India. J. Appl. Nat. Sci. 2015, 7, 910–915. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.L. The Role of Dietary Fats in Efficiency of Ruminants. J. Nutr. 1994, 124, 1377S–1382S. [Google Scholar]
- Tukur, H.M.; Lallès, J.P.; Mathis, C.; Caugant, I.; Toullec, R. Digestion of soybean globulins, glycinin, α-conglycinin and β-conglycinin in the preruminant and the ruminant calf. Can. J. Anim. Sci. 1993, 73, 891–905. [Google Scholar] [CrossRef]
- Liener, I.E. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr. 1994, 34, 31–67. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 2009, 22, 204–219. [Google Scholar] [CrossRef] [PubMed]
- Shiraiwa, M.; Harada, K.; Okubo, K. Composition and Content of Saponins in Soybean Seed According to Variety, Cultivation Year and Maturity. Agric. Biol. Chem. 1991, 55, 323–331. [Google Scholar]
- Wang, B.; Ma, M.P.; Diao, Q.Y.; Tu, Y. Saponin-Induced Shifts in the Rumen Microbiome and Metabolome of Young Cattle. Front. Microbiol. 2019, 10, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paek, N.C.; Sexton, P.J.; Naeve, S.L.; Shibles, R. Differential Accumulation of Soybean Seed Storage Protein Subunits in Response to Sulfur and Nitrogen Nutritional Sources. Plant Prod. Sci. 2000, 3, 268–274. [Google Scholar] [CrossRef]
- Arefrad, M.; Babaian Jelodar, N.; Nematzadeh, G.; Karimi, M.; Kazemitabar, S. Assessment of seed storage protein composition of six Iranian adopted soybean cultivars [Glycine max (L.) Merrill.]. J. Plant Mol. Breed. 2014, 2, 29–44. [Google Scholar]
- Biel, W.; Gawęda, D.; Łysoń, E.; Hury, G. The effect of variety and agrotechnical factors on nutritive value of soybean seeds. Acta Agrophysica 2017, 24, 395–404. [Google Scholar]
- de Barros, É.A.; Broetto, F.; Bressan, D.F.; Sartori, M.M.P.; Costa, V.E. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation. Radiat. Phys. Chem. 2014, 98, 29–32. [Google Scholar] [CrossRef]
- Kanai, M.; Yamada, T.; Hayashi, M.; Mano, S.; Nishimura, M. Soybean (Glycine max L.) triacylglycerol lipase GmSDP1 regulates the quality and quantity of seed oil. Sci. Rep. 2019, 9, 8924. [Google Scholar] [CrossRef]
- Rechenmacher, C.; Wiebke-Strohm, B.; de Oliveira-Busatto, L.A.; Polacco, J.C.; Carlini, C.R.; Bodanese-Zanettini, M.H. Effect of soybean ureases on seed germination and plant development. Genet. Mol. Biol. 2017, 40, 209–216. [Google Scholar] [CrossRef]
- Kania, J.; Zając, T.; Śliwa, J. Economic efficiency of soybean and rapeseed cultivation in western Poland. Ann. Pol. Assoc. Agric. Agribus. Econ. 2017, XVIII, 133–138. [Google Scholar]
- Jerzak, M.; Mikulski, W. The importance of subsidies for the production of grain legumes for reconstruction of the domestic market of protein raw materials of vegetable origin in Poland. Probl. Agric. Econ. 2017, 2, 152–163. [Google Scholar]
- Akbarian, A.; Khorvash, M.; Ghorbani, G.R.; Ghasemi, E.; Dehghan-Banadaky, M.; Shawrang, P.; Hosseini Ghaffari, M. Effects of roasting and electron beam irradiating on protein characteristics, ruminal degradability and intestinal digestibility of soybean and the performance of dairy cows. Livest. Sci. 2014, 168, 45–52. [Google Scholar] [CrossRef]
- Dhiman, T.R.; Korevaar, A.C.; Satter, L.D. Particle Size of Roasted Soybeans and the Effect on Milk Production of Dairy Cows. J. Dairy Sci. 1997, 80, 1722–1727. [Google Scholar] [CrossRef]
- Muya, M.C.; Nkosi, B.D.; Leeuw, K.J. Production response of dairy cows fed different dietary inclusion of cold- pressed soybean meal. Res. Opin. Anim. Vet. Sci. 2011, 1, 344–348. [Google Scholar]
- Giallongo, F.; Oh, J.; Frederick, T.; Isenberg, B.; Kniffen, D.M.; Fabin, R.A.; Hristov, A.N. Extruded soybean meal increased feed intake and milk production in dairy cows. J. Dairy Sci. 2015, 98, 6471–6485. [Google Scholar] [CrossRef] [Green Version]
- Spanghero, M.; Zanfi, C.; Signor, M.; Davanzo, D.; Volpe, V.; Venerus, S. Effects of plant vegetative stage and field drying time on chemical composition and in vitro ruminal degradation of forage soybean silage. Anim. Feed Sci. Technol. 2015, 200, 102–106. [Google Scholar] [CrossRef]
- Gardinal, R.; Calomeni, G.D.; Zanferari, F.; Vendramini, T.H.A.; Takiya, C.S.; Del Valle, T.A.; Renno, F.P. Different durations of whole raw soybean supplementation during the prepartum period: Milk fatty acid profile and oocyte and embryo quality of early-lactating Holstein cows. J. Dairy Sci. 2018, 101, 675–689. [Google Scholar] [CrossRef] [Green Version]
- Venturelli, B.C.; de Freitas Júnior, J.E.; Takiya, C.S.; de Araújo, A.P.C.; Santos, M.C.B.; Calomeni, G.D.; Gardinal, R.; Vendramini, T.H.A.; Rennó, F.P. Total tract nutrient digestion and milk fatty acid profile of dairy cows fed diets containing different levels of whole raw soya beans. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1149–1160. [Google Scholar] [CrossRef]
- Barletta, R.V.; Gandra, J.R.; Bettero, V.P.; Araújo, C.E.; Del Valle, T.A.; de Almeida, G.F.; Ferreira de Jesus, E.; Mingoti, R.D.; Benevento, B.C.; de Freitas Júnior, J.E.; et al. Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows: Oilseed provides ruminal protection for fatty acids. Anim. Feed Sci. Technol. 2016, 219, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Naves, A.B.; Freitas Júnior, J.E.; Barletta, R.V.; Gandra, J.R.; Calomeni, G.D.; Gardinal, R.; Takiya, C.S.; Vendramini, T.H.A.; Mingoti, R.D.; Rennó, F.P. Effect of raw soya bean particle size on productive performance and digestion of dairy cows. J. Anim. Physiol. Anim. Nutr. 2016, 100, 778–788. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Mustafa, A.F.; Seguin, P. Effects of Feeding Forage Soybean Silage on Milk Production, Nutrient Digestion, and Ruminal Fermentation of Lactating Dairy Cows. J. Dairy Sci. 2008, 91, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Faldet, M.A.; Son, Y.S.; Satter, L.D. Chemical, in vitro, and in vivo Evaluation of Soybeans Heat-Treated by Various Processing Methods. J. Dairy Sci. 1992, 75, 789–795. [Google Scholar] [CrossRef]
- Arelovich, H.M.; Lagrange, S.; Torre, R.; Martinez, M.F.; Laborde, H.E. Feeding value of whole raw soya beans as a protein supplement for beef cattle consuming low-quality forages. J. Anim. Physiol. Anim. Nutr. 2018, 102, e421–e430. [Google Scholar] [CrossRef]
- Freitas, J.E.; Takiya, C.S.; Del Valle, T.A.; Barletta, R.V.; Venturelli, B.C.; Vendramini, T.H.A.; Mingoti, R.D.; Calomeni, G.D.; Gardinal, R.; Gandra, J.R.; et al. Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows fed diets supplemented with soybean oil, whole soybeans, or calcium salts of fatty acids. J. Dairy Sci. 2018, 101, 7881–7891. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, M.; Lee, K.-J.; An, Y.; Kwon, C.; Kim, S.; Yang, Y.; Ahmad, A.; Kim, S.-H.; Chung, I.-M. Changes in Soybean (Glycine max L.) Flour Fatty-Acid Content Based on Storage Temperature and Duration. Molecules 2018, 23, 2713. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.-H.; Rosentrater, K.A. Techno-Economic Analysis of Extruding-Expelling of Soybeans to Produce Oil and Meal. Agriculture 2019, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ren, X.; Wu, H.; Meng, Q.; Zhou, Z. Steam Explosion Treatment of Byproduct Feedstuffs for Potential Use as Ruminant Feed. Animals 2019, 9, 688. [Google Scholar] [CrossRef] [Green Version]
- Borhan, M.; Snyder, H.E. Lipoxygenase destruction in whole soybeans by combinations of heating and soaking in ethanol. J. Food Sci. 1979, 44, 586–590. [Google Scholar] [CrossRef]
- Baker, E.C.; Mustakas, G.C. Heat inactivation of trypsin inhibitor, lipoxygenase and urease in soybeans: Effect of acid and base additives. J. Am. Oil Chem. Soc. 1973, 50, 137–141. [Google Scholar] [CrossRef]
- Rafiee-Yarandi, H.; Alikhani, M.; Ghorbani, G.; Sadeghi-Sefidmazgi, A. Effects of temperature, heating time and particle size on values of rumen undegradable protein of roasted soybean. S. Afr. J. Anim. Sci. 2016, 46, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Tice, E.M.; Eastridge, M.L.; Firkins, J.L. Raw Soybeans and Roasted Soybeans of Different Particle Sizes. 2. Fatty Acid Utilization by Lactating Cows. J. Dairy Sci. 1994, 77, 166–180. [Google Scholar] [CrossRef]
- Salles, M.; D’Abreu, L.; Júnior, L.; César, M.; Guimarães, J.; Segura, J.; Rodrigues, C.; Zanetti, M.; Pfrimer, K.; Netto, A. Inclusion of Sunflower Oil in the Bovine Diet Improves Milk Nutritional Profile. Nutrients 2019, 11, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, P.V.; Morrill, J.L.; Nagaraja, T.G. Release of Free Fatty Acids from Raw of Processed Soybeans and Subsequent Effects on Fiber Digestibilities. J. Dairy Sci. 1994, 77, 3410–3416. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, H.; Wang, F.; Cao, Z.; Li, S. Effects of energy density in close-up diets and postpartum supplementation of extruded full-fat soybean on lactation performance and metabolic and hormonal status of dairy cows. J. Dairy Sci. 2015, 98, 7115–7130. [Google Scholar] [CrossRef] [PubMed]
- Harper, M.T.; Oh, J.; Melgar, A.; Nedelkov, K.; Räisänen, S.; Chen, X.; Martins, C.M.M.R.; Young, M.; Ott, T.L.; Kniffen, D.M.; et al. Production effects of feeding extruded soybean meal to early-lactation dairy cows. J. Dairy Sci. 2019, 102, 8999–9016. [Google Scholar] [CrossRef]
- Kazemi-Bonchenari, M.; Alizadeh, A.R.; Tahriri, A.R.; Karkoodi, K.; Jalali, S.; Sadri, H. The Effects of Partial Replacement of Soybean Meal by Xylose-Treated Soybean Meal in the Starter Concentrate on Performance, Health Status, and Blood Metabolites of Holstein Calves. Ital. J. Anim. Sci. 2015, 14, 3680. [Google Scholar] [CrossRef]
- ZeidAli-Nejad, A.; Ghorbani, G.R.; Kargar, S.; Sadeghi-Sefidmazgi, A.; Pezeshki, A.; Ghaffari, M.H. Nutrient intake, rumen fermentation and growth performance of dairy calves fed extruded full-fat soybean as a replacement for soybean meal. Animal 2018, 12, 733–740. [Google Scholar] [CrossRef]
- Asekova, S.; Shannon, J.G.; Lee, J.-D. The Current Status of Forage Soybean. Plant Breed. Biotechnol. 2014, 2, 334–341. [Google Scholar] [CrossRef] [Green Version]
- Darmosarkoro, W.; Harbur, M.M.; Buxton, D.R.; Moore, K.J.; Devine, T.E.; Anderson, I.C. Growth, Development, and Yield of Soybean Lines Developed for Forage. Agron. J. 2001, 93, 1028–1034. [Google Scholar] [CrossRef]
Soybean Variety | Content (% in Dry Matter) | Yield (ton/ha) | Maturity Groups Qualification | Vegetation Length (Days) | |||
---|---|---|---|---|---|---|---|
Crude Protein | Crude Fat | Crude Fiber | Seed | Crude Protein | |||
ES1 Comandor | 39.2 | 22.0 | 7.1 | 4.3 | 1.3 | Late | 133 |
Coraline | 38.3 | 23.3 | 8.2 | 4.2 | 1.3 | Very late | 141 |
Abelina | 38.1 | 23.6 | 9.0 | 4.1 | 1.2 | Medium late | 129 |
Aligator | 37.2 | 23.7 | 7.5 | 4.1 | 1.2 | Late | 134 |
Erica | 38.4 | 23.1 | 7.7 | 3.9 | 1.1 | Early | 123 |
Augusta | 38.5 | 21.9 | 7.2 | 3.1 | 1.0 | Very early | 121 |
Maja | 39.8 | 23.6 | 7.8 | 3.0 | 1.0 | Medium early | 131 |
Item | Chemical Composition, (g·kg−1 Dry Matter) | Coefficients of Crude Protein Digestibility | References | ||||||
---|---|---|---|---|---|---|---|---|---|
Crude Protein | Ether Extract | Total Alimentarytract | Microbial in Rumen | Intestinal | |||||
Whole raw seeds | 368 | 175 | 0.82 | 0.72 | 0.65 | [28] | |||
386 | 195 | 0.99 | 0.62 | 0.96 | [45] | ||||
369 | 0.57 | [46] | |||||||
Processing | Mechanical | Cold press cake | 474 | 55 | [47] | ||||
Thermal | Roasting full-fat seeds | 381 | 185 | 0.80 | 0.56 | 0.72 | [28] | ||
386 | 230 | 0.99 | 0.51 | 0.99 | [45] | ||||
Thermal and mechanical | Raw soybeans heated at 146 °C, mean particle size 1.59 mm | 389 | 0.63 | [46] | |||||
Extruded full-fat seeds | 149 °C | 468 | 100 | 0.60 | 0.40 | [48] | |||
171 °C | 469 | 109 | 0.41 | 0.60 | |||||
Extruded oil cake | digestibility of protein in cattle alimentary tract of extruded oil cakes is similar to this characterized soybean meal | [48] | |||||||
Whole plants silage | 164–199 | 18–53 | 0.39 | [49] |
Item | Feeding Period | Milk Yield (kg/d) | Inclusion Level (% in Ration Dry Matter) | Productive Performance Effects | References | ||
---|---|---|---|---|---|---|---|
Whole raw seeds | 90, 60, 30, 0 d relative to the calving—84 d of lactation | 30.1 | 12 | no effects on: milk yield, milk composition compared with control fed without raw soybean | [50] | ||
mid- to late lactation | 0, 9, 18, or 27 | milk yield, lactose, and protein yield decreased, fat and unsaturated fatty acids increased | [51] | ||||
188–201 d of lactation | 18.9 ± 3.2 | 16 | no effects on: milk yield, milk composition compare with control fed without raw soybean | [52] | |||
121–145 d | 30.2 | 20 | milk yield and milk composition not differ compare with control fed without raw soybean | [53] | |||
Processing | Mechanical | Cracked, particle size 2 or 4 mm | 20 | no effects treatment on: milk yield milk composition | [53] | ||
Cold press cake | 15–71 d of lactation | 32–35 | 0, 6, 12, or 18 | no effects of treatment on: milk protein, milk fat, energy-corrected milk yield | [47] | ||
Thermal | Roasting full-fat seeds | no data available | |||||
Thermal and mechanical | Extruded full-fat seeds | 141 169 d of lactation | 41 | 13 | substituting soybean meal with extruded full-fat seeds improved feed intake and milk yield | [48] | |
Extruded oil cake | nutritional value of extruded oil cakes and the range of use in feeding cattle are similar to those of soybean meal | [48] | |||||
Whole plants silage | early to mid-lactation | 35–37 | 35 | no effects on energy-corrected milk yield, milk composition relative to alfalfa silage | [54] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niwińska, B.; Witaszek, K.; Niedbała, G.; Pilarski, K. Seeds of n-GM Soybean Varieties Cultivated in Poland and Their Processing Products as High-Protein Feeds in Cattle Nutrition. Agriculture 2020, 10, 174. https://doi.org/10.3390/agriculture10050174
Niwińska B, Witaszek K, Niedbała G, Pilarski K. Seeds of n-GM Soybean Varieties Cultivated in Poland and Their Processing Products as High-Protein Feeds in Cattle Nutrition. Agriculture. 2020; 10(5):174. https://doi.org/10.3390/agriculture10050174
Chicago/Turabian StyleNiwińska, Barbara, Kamil Witaszek, Gniewko Niedbała, and Krzysztof Pilarski. 2020. "Seeds of n-GM Soybean Varieties Cultivated in Poland and Their Processing Products as High-Protein Feeds in Cattle Nutrition" Agriculture 10, no. 5: 174. https://doi.org/10.3390/agriculture10050174
APA StyleNiwińska, B., Witaszek, K., Niedbała, G., & Pilarski, K. (2020). Seeds of n-GM Soybean Varieties Cultivated in Poland and Their Processing Products as High-Protein Feeds in Cattle Nutrition. Agriculture, 10(5), 174. https://doi.org/10.3390/agriculture10050174