Prediction of Soil Oxalate Phosphorus using Visible and Near-Infrared Spectroscopy in Natural and Cultivated System Soils of Madagascar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sample Dataset
2.2. Laboratory Analyses
2.3. Spectral Data Acquisition Using Vis-NIRS
2.4. Spectral Analyses and Modeling Approaches
3. Results and Discussion
3.1. Soil Characteristics by Chemical Analysis
3.2. Model Prediction Accuracy for Oxalate-Extractable P under Different Land-Use Systems
3.3. Properties of the Prediction-Relevant Wavebands
3.4. Factors Influencing the Prediction Model Accuracy for Oxalate-Extractable P
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andriamananjara, A.; Rakotoson, T.; Razafimbelo, T.; Rabeharisoa, L.; Razafimanantsoa, M.P.; Masse, D. Farmyard manure improves phosphorus use efficiency in weathered P deficient soil. Nutr. Cycl. Agroecosyst. 2019, 115, 407–427. [Google Scholar] [CrossRef]
- Turner, B.L.; Engelbrecht, B. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 2011, 103, 297–315. [Google Scholar] [CrossRef]
- Liu, X.; Meng, W.; Liang, G.; Li, K.; Xu, W.; Huang, L.; Yan, J. Available phosphorus in forest soil increases with soil nitrogen but not total phosphorus: Evidence from subtropical forests and a pot experiment. PLoS ONE 2014, 9, e88070. [Google Scholar] [CrossRef]
- Rabeharisoa, L.; Razanakoto, O.R.; Razafimanantsoa, M.P.; Rakotoson, T.; Amery, F.; Smolders, E. Larger bioavailability of soil phosphorus for irrigated rice compared with rainfed rice in Madagascar: Results from a soil and plant survey. Soil Use Manag. 2012, 28, 448–456. [Google Scholar] [CrossRef]
- Bollyn, J.; Castelein, L.; Smolder, E. Fate and bioavailability of phosphorus loaded to iron oxyhydroxide nanoparticles added to weathered soils. Plant Soil 2019, 438, 297. [Google Scholar] [CrossRef]
- Nawara, S.; Van Dael, T.; Merckx, R.; Amery, F.; Elsen, A.; Odeurs, W.; Vandendriessche, H.; Mcgrath, S.; Roisin, C.; Jouany, C.; et al. A comparison of soil tests for available phosphorus in long-term field experiments in Europe. Eur. J. Soil Sci. 2017, 68, 873–885. [Google Scholar] [CrossRef]
- Nishigaki, T.; Tsujimoto, Y.; Rinasoa, S.; Rakotoson, T.; Andriamananjara, A.; Razafimbelo, T. Phosphorus uptake of rice plants is affected by phosphorus forms and physicochemical properties of tropical weathered soils. Plant Soil 2019, 435, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Yost, R.S. Quantifying the available soil phosphorus pool with the acid ammonium oxalate method. Soil Sci. Soc. Am. J. 1999, 63, 651–656. [Google Scholar] [CrossRef]
- Shahandeh, H.; Hossner, L.R.; Turner, F.T. Phosphorus Relationships in Flooded Rice Soils with Low Extractable Phosphorus. Soil Sci. Soc. Am. J. 1994, 58, 1184–1189. [Google Scholar] [CrossRef]
- Schwertmann, U. The differentiation of iron oxides in soils by extraction with ammonium oxalate solution. Z. Pflanz. Bodenkd. 1964, 105, 194–202. [Google Scholar] [CrossRef]
- Schwertmann, U. Use of oxalate for Fe extraction from soils. Can. J. Soil Sci. 1973, 53, 244–246. [Google Scholar] [CrossRef]
- Narteh, L.T.; Sahrawat, K.L. Oxalate and EDTA extractable soil phosphorus and iron in relation to P availability in lowland rice soils of West Africa. Ghana J. Agric. Sci. 1999, 32, 189–198. [Google Scholar] [CrossRef]
- Six, L.; Smolders, E.; Merckx, R. The performance of DGT versus conventional soil phosphorus tests in tropical soils—Maize and rice responses to P application. Plant Soil 2013, 366, 49–66. [Google Scholar] [CrossRef]
- Neyroud, J.A.; Lischer, P. Do different methods used to estimate soil phosphorus availability across Europe give comparable results? J. Soil Sci. Plant Nutr. 2003, 166, 422–431. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.V.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010, 107, 163–215. [Google Scholar]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef] [Green Version]
- Recena, R.; Fernández-Cabanás, V.M.; Delgado, A. Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioning rather than availability indices. Geoderma 2019, 337, 368–374. [Google Scholar] [CrossRef]
- McCarty, G.W.; Reeves, J.B., III. Comparison of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters. Soil Sci. 2006, 171, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Bellon-Maurel, V.; McBratney, A. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils—Critical review and research perspectives. Soil Biol. Biochem. 2011, 43, 1398–1410. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near- infrared reflectance spectroscopy—Principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, B.; Khanna, P.K.; Bauhus, J.; Hopmans, P. Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. For. Ecol. Manag. 2002, 171, 121–132. [Google Scholar] [CrossRef]
- Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biol. Biochem. 2008, 40, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Kruse, J.; Abraham, M.; Amelung, W.; Baum, C.; Bol, R.; Kühn, O.; Lewandowski, H.; Niederberger, J.; Oelmann, Y.; Rüger, C.; et al. Innovative methods in soil phosphorus research: A review. J. Plant Nutr. Soil Sci. 2015, 178, 43–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, K.; Tsujimoto, Y.; Nishigaki, T.; Andriamanajara, A.; Rabenarivo, M.; Asai, H.; Rakotoson, T.; Razafimbelo, T. Laboratory visible and near-infrared spectroscopy with genetic algorithm-based partial least squares regression for assessing the soil phosphorus content of upland and lowland rice fields in Madagascar. Remote Sens. 2019, 11, 506. [Google Scholar] [CrossRef] [Green Version]
- Badjeck, B.; Ibrahima, N.C.; Slaviero, F. Evaluation de la Sécurité Alimentaire à Madagascar; FAO: Rome, Italy, 2013. [Google Scholar]
- Penot, E.; Domas, R.; Paulin, H.; Durand, C. Rôle et Place du Riz Pluvial Dans les Exploitations Agricoles à Madagascar. Le Cas du Lac Alaotra et du Vakinankaratral; Conference paper; Académie d’Agriculture: Antananarivo, Madagascar, 2011. [Google Scholar]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Andriamaniraka, H. Le Phosphore et la Fertilisation Phosphatée Dans les Sols Ferrallitiques à Madagascar: Amélioration de la fertilité des sols. In Mémoire D’habilitation à Diriger des Recherches; Université d’Antananarivo: Antananarivo, Madagascar, 2016. [Google Scholar]
- Nishigaki, T.; Ikazaki, K.; Tsujimoto, Y.; Andriamananjara, A.; Rakotoson, T.; Razafimbelo, T. Soil survey of the east coast and the central highlands indicates need to update Madagascar soil map. Soil Sci. Plant Nutr. 2020. Accepted. [Google Scholar] [CrossRef]
- Cornet, A. Essai de Cartographie Bioclimatique à Madagascar; Notice Explicative No. 55; ORSTOM: Paris, France, 1974. [Google Scholar]
- Schatz, G.E. Endemism in the Malagasy tree flora. In Diversity and Endemism in Madagascar; Lourenço, W.R., Goodman, S.M., Eds.; Mémoires de la Société de Biogéographie: Paris, France, 2000; pp. 1–9. [Google Scholar]
- Andriamananjara, A.; Hewson, J.; Razakamanarivo, H.; Andrisoa, R.H.; Ranaivoson, N.; Ramboatiana, N.; Razafindrakoto, M.; Ramifehiarivo, N.; Razafimanantsoa, M.P.; Rabeharisoa, L.; et al. Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest. Agric. Ecosyst. Environ. 2016, 233, 1–15. [Google Scholar] [CrossRef]
- Andriamananjara, A.; Ranaivoson, N.; Razafimbelo, T.; Hewson, J.; Ramifehiarivo, N.; Rasolohery, A.; Andrisoa, R.H.; Razafindrakoto, M.A.; Razafimanantsoa, M.-P.; Rabetokotany, N.; et al. Towards a better understanding of soil organic carbon variation in Madagascar. Eur. J. Soil Sci. 2017, 68, 6. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kawamura, K.; Tsujimoto, Y.; Rabenarivo, M.; Asai, H.; Andriamananjara, A.; Rakotoson, T. Vis-NIR spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar. Remote Sens. 2017, 9, 1081. [Google Scholar] [CrossRef] [Green Version]
- Pätzold, S.; Leenen, M.; Frizen, P.; Heggemann, T.; Wagner, P.; Rodionov, A. Predicting plant available phosphorus using infrared spectroscopy with consideration for future mobile sensing applications in precision farming. Prec. Agric. 2019, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Ma, W.; Chen, S.; Jiang, Q.; He, K.; Shi, Z. Assessment of important soil properties related to Chinese Soil Taxonomy based on vis–NIR reflectance spectroscopy. Comput. Electron. Agric. 2018, 144, 1–8. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, E.J.M. Smoothing and difference of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Summers, D.; Lewis, M.; Ostendorf, B.; Chittleborough, D. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecol. Indic. 2011, 11, 123–131. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Fouad, Y.; Walter, C. Using a digital camera to measure soil organic carbon and iron contents. Biosyst. Eng. 2008, 100, 149–159. [Google Scholar] [CrossRef]
- Abdi, D.; Tremblay, G.F.; Ziadi, N.; Bélanger, G.; Parent, L.É. Predicting soil phosphorus-related properties using reflectance spectroscopy. Soil Sci. Soc. Am. J. 2012, 76, 2318–2326. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Dardenne, P.; Sinnaeve, G.; Baeten, V. Multivariate calibration and chemometrics for near infrared spectroscopy: Which method? J. Near Infrared Spectrosc. 2000, 8, 229–237. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Saleh, A.M.; Belal, A.B.; Abd-Allah, G. Application of near-infrared reflectance for quantitative assessment of soil properties. Egypt. J. Remote Sens. Space Sci. 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Karoui, R.; De Baerdemaeker, J.; Ramon, H. Classification of soil texture classes by using soil visual near infrared spectroscopy and factorial discriminant analysis techniques. J. Near Infrared Spectrosc. 2005, 13, 231–240. [Google Scholar] [CrossRef]
- Conforti, M.; Matteucci, G.; Buttafuoco, G. Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties. J. Soils Sediments 2018, 18, 1009–1019. [Google Scholar] [CrossRef]
- Stevens, A.; Nocita, M.; Toth, G.; Montanarella, L.; van Wesemael, B. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS ONE 2013, 8, e66409. [Google Scholar] [CrossRef] [PubMed]
- Segda, Z.; Bonzi, M.; Gnankambary, Z.; Lompo, F.; Sedogo, M.P. Influence of soil fertility management on organic carbon mineralization in irrigated rice. J. Agric. Crop Res. 2014, 2, 32–43. [Google Scholar]
- Balesdent, J.; Chenu, C.; Balabane, M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000, 53, 215–230. [Google Scholar] [CrossRef]
- Wang, Z.; Kawamura, K.; Sakuno, Y.; Fan, X.; Gong, Z.; Lim, J. Retrieval of chlorophyll-a and total suspended solids using iterative stepwise elimination partial least squares (ISE-PLS) regression based on field hyperspectral measurements in irrigation ponds in Higashi hiroshima, Japan. Remote Sens. 2017, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Nduwamungu, C.; Ziadi, N.; Tremblay, G.F.; Parent, L.-É. Near- infrared reflectance spectroscopy prediction of soil properties: Effects of sample cups and preparation. Soil Sci. Soc. Am. J. 2009, 73, 1896–1903. [Google Scholar] [CrossRef]
- Liu, Y.; Boss, E.; Chase, A.P.; Xi, H.; Zhang, X.; Röttgers, R.; Pan, Y.; Bracher, A. Spectral particulate absorption coefficients and their standard deviation derived from underway AC-S measurements during POLARSTERN cruise PS99.2. PANGAEA 2019. [Google Scholar] [CrossRef]
- Sherman, D.M.; Waite, D.T. Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am. Mineral. 1985, 70, 1262–1269. [Google Scholar]
- Mortimore, J.L.; Marshall, L.J.R.; Almond, M.J.; Hollins, P.; Matthews, W. Analysis of red and yellow ochre samples from Clearwell Caves and Catalhoyuk by vibrational spectroscopy and other techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004, 60, 1179–1188. [Google Scholar] [CrossRef]
- Ramaroson, V.H.; Becquer, T.; Sá, S.O.; Razafimahatratra, H.; Delarivière, J.L.; Blavet, D.; Vendrame, P.R.S.; Rabeharisoa, L.; Rakotondrazafy, A.F.M. Mineralogical analysis of ferralitic soils in Madagascar using NIR spectroscopy. Catena 2018, 168, 102–109. [Google Scholar] [CrossRef]
- Blaschek, M.; Roudier, P.; Poggio, M.; Hedley, C.B. Prediction of soil available water-holding capacity from visible near-infrared reflectance spectra. Sci. Rep. 2019, 9, 12833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, G.R. Spectral signatures of particulate minerals in visible and near-infrared. Trans. Am. Geophys. Union 1977, 58, 553. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.N. Spectroscopy of rocks and minerals and principles of spectroscopy. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing; Rencz, A.N., Ed.; John Wiley & Sons: Chichester, UK, 1999; pp. 3–58. [Google Scholar]
- Ben-Dor, E.; Inbar, Y.; Chen, Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a control decomposition process. Remote Sens. Environ. 1997, 61, 1–15. [Google Scholar] [CrossRef]
- Knadel, M.; Viscarra Rossel, R.A.; Deng, F.; Thomsen, A.; Greve, M.H. Visible–near infrared spectra as a proxy for topsoil texture and Glacial boundaries. Soil Sci. Soc. Am. J. 2013, 77, 568. [Google Scholar] [CrossRef]
- Sørensen, L.K.; Dalsgaard, S. Determination of clay and other soil properties by near infrared spectroscopy. Soil Sci. Soc. Am. J. 2005, 69, 159–167. [Google Scholar] [CrossRef]
- Jiang, X.; Bol, R.; Willbold, S.; Vereecken, H.; Klumpp, E. Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil. Biogeosciences 2015, 12, 6443–6452. [Google Scholar] [CrossRef] [Green Version]
- Khalid, R.A.; Patrick, W.H.; Delaune, R.D. Phosphorus sorption characteristics of flooded soils. Soil Sci. Soc. Am. Proc. 1977, 41, 305–310. [Google Scholar] [CrossRef]
- Brown, D.J.; Bricklemyer, R.S.; Miller, P.R. Validation requirements for diffuse reflectance soil characterization models with a case study of VNIR soil C prediction in Montana. Geoderma 2005, 129, 251–267. [Google Scholar] [CrossRef]
Regions | System | Land Uses | Altitude (m) | MAT (°C) | MAP (mm) | Sampling Year | Number of Samples |
---|---|---|---|---|---|---|---|
Central (Vakinankaratra) | Cultivated systems | Upland rice | 1247–1481 | 16.9 | 1381 | 2017–2018 | 8 |
Lowland rice | 1237–1481 | 2017–2018 | 134 | ||||
Eastern | Natural systems | Forest | 134–1200 | 18–24 | 2500 | 2014–2015 | 16 |
Non-Forest | 94–1101 | 2014–2015 | 58 |
Soil Parameters | Cultivated System Area | Natural System Area |
---|---|---|
Sand (%) | 34.6 [10.4–72.5] | 53.6 [30.8–80.6 ] |
Silt (%) | 32.8 [7.92–63.7] | 14.4 [4.72–23.6] |
Clay (%) | 32.6 [4.30–52.0] | 32.0 [9.45–53.6] |
SOC (mg kg−1) | 25.5 [9.47–94.9] | 37.9 [7.29–75.4] |
Feox (g kg−1) | 7.44 [1.03–19.1] | 2.38 [0.32–9.45] |
Pox (mg kg−1) | 115.1 [22.3–856.8] | 35.1 [21.9–57.9] |
System | n | Min | Max | Mean | SD | CV (%) |
---|---|---|---|---|---|---|
All systems | 216 | 21.89 | 856.84 | 87.66 | 130.23 | 148.57 |
Cultivated system | 142 | 22.25 | 856.84 | 115.07 | 153.69 | 133.56 |
Natural system | 74 | 21.89 | 57.93 | 35.05 | 7.79 | 22.23 |
Pox | SOC | Sand | Silt | Clay | Feox | |
---|---|---|---|---|---|---|
All Systems | ||||||
Pox | 1.00 | 0.10 | −0.20 | 0.23 | −0.00 | 0.55 |
SOC | 1.00 | 0.15 | −0.32 | 0.24 | −0.06 | |
Sand | 1.00 | −0.82 | −0.49 | −0.41 | ||
Silt | 1.00 | −0.09 | 0.35 | |||
Clay | 1.00 | 0.18 | ||||
Feox | 1.00 | |||||
Natural | ||||||
Pox | 1.00 | 0.61 | −0.29 | −0.06 | 0.37 | 0.45 |
SOC | 1.00 | −0.44 | −0.00 | 0.53 | 0.32 | |
Sand | 1.00 | −0.67 | −0.96 | −0.48 | ||
Silt | 1.00 | 0.45 | 0.22 | |||
Clay | 1.00 | 0.50 | ||||
Feox | 1.00 | |||||
Cultivated | ||||||
Pox | 1.00 | 0.30 | −0.03 | 0.05 | −0.03 | 0.51 |
SOC | 1.00 | −0.05 | −0.05 | 0.15 | 0.33 | |
Sand | 1.00 | −0.79 | −0.32 | 0.06 | ||
Silt | 1.00 | −0.33 | −0.15 | |||
Clay | 1.00 | 0.14 | ||||
Feox | 1.00 |
Processing | Systems | n | NLV | R2 | RMSECV | RPD |
---|---|---|---|---|---|---|
FS-PLS | All systems | 216 | 13 | 0.48 | 96.58 | 1.34 |
Cultivated | 142 | 15 | 0.70 | 83.72 | 1.82 | |
Natural | 74 | 2 | 0.18 | 7.10 | 1.08 | |
ISE–PLS | All systems | 216 | 13 | 0.70 | 71.87 | 1.81 |
Cultivated | 142 | 15 | 0.90 | 48.57 | 3.15 | |
Natural | 74 | 14 | 0.90 | 2.39 | 3.22 |
Processing | Systems | n | R2 | RMSEP |
---|---|---|---|---|
FS-PLS | All systems | 64 | 0.502 ± 0.124 | 89.01 ± 9.21 |
Cultivated | 42 | 0.678 ± 0.079 | 79.13 ± 8.30 | |
Natural | 22 | 0.141 ± 0.096 | 7.15 ± 1.62 | |
ISE–PLS | All systems | 64 | 0.703 ± 0.115 | 60.48 ± 5.94 |
Cultivated | 42 | 0.883 ± 0.038 | 57.42 ± 5.57 | |
Natural | 22 | 0.822 ± 0.051 | 3.26 ± 0.59 |
Spectra Regions (nm) | Common Selected Wavelength (nm) | Specific Wavelength (nm) for Cultivated | Specific Wavelength (nm) for Natural | Functional Groups | References |
---|---|---|---|---|---|
Visible | |||||
400–700 | 409, 430, 431, 443, 444,591, 592 | 527–590 | Associated to mineral with Fe (hematite, goethite) SOM: chromophores and darkness of OM | [54,55] | |
550 | 550–557 | Chromophore FeOOH in goethite | [55] | ||
Near Infra-Red (NIR) | |||||
751, 825 | 763, 826 | 738–740, 753 | Amine C-H, aromatic C-H | [59] | |
860 | 870 | Ferric oxide, Fe3+ | [58] | ||
1000 | 1000 | Amine N-H | [59] | ||
1100 | 1122–1144 | Aromatic C-H | [59] | ||
1170 | 1170 | Alkyl asymmetric-symmetric doublet (C-H) | [59,60] | ||
1260 | 1291 | Lignin, starch, protein, | [61] | ||
1465, 1470 | 1464–1483 | OH in water, CH2, cellulose, lignin, starch, pectin | [61] | ||
2160 | 2160–2164 | Al-OH, Kaolin | [62] | ||
2200–2300 | 2200–2270 | Metal-OH, O-H | [15] | ||
2300, 2350 | 2302–23062350–2355 | C-H stretch fundamentals | [59,60] | ||
2335 | 2330–2334 | Carbonates | [58] | ||
850, 1200, 1400, 1900 | 1950–1956 | H2O | [15,58] | ||
2200, 2300 | 2200–2270 | Al-OH, O-H | [59] | ||
1900 | 1906–1907 | H-O-H | [59] | ||
Visible-NIR | |||||
450, 900 | 453–457 | Fe+3 | [54] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakotonindrina, H.; Kawamura, K.; Tsujimoto, Y.; Nishigaki, T.; Razakamanarivo, H.; Andrianary, B.H.; Andriamananjara, A. Prediction of Soil Oxalate Phosphorus using Visible and Near-Infrared Spectroscopy in Natural and Cultivated System Soils of Madagascar. Agriculture 2020, 10, 177. https://doi.org/10.3390/agriculture10050177
Rakotonindrina H, Kawamura K, Tsujimoto Y, Nishigaki T, Razakamanarivo H, Andrianary BH, Andriamananjara A. Prediction of Soil Oxalate Phosphorus using Visible and Near-Infrared Spectroscopy in Natural and Cultivated System Soils of Madagascar. Agriculture. 2020; 10(5):177. https://doi.org/10.3390/agriculture10050177
Chicago/Turabian StyleRakotonindrina, Hobimiarantsoa, Kensuke Kawamura, Yasuhiro Tsujimoto, Tomohiro Nishigaki, Herintsitohaina Razakamanarivo, Bruce Haja Andrianary, and Andry Andriamananjara. 2020. "Prediction of Soil Oxalate Phosphorus using Visible and Near-Infrared Spectroscopy in Natural and Cultivated System Soils of Madagascar" Agriculture 10, no. 5: 177. https://doi.org/10.3390/agriculture10050177
APA StyleRakotonindrina, H., Kawamura, K., Tsujimoto, Y., Nishigaki, T., Razakamanarivo, H., Andrianary, B. H., & Andriamananjara, A. (2020). Prediction of Soil Oxalate Phosphorus using Visible and Near-Infrared Spectroscopy in Natural and Cultivated System Soils of Madagascar. Agriculture, 10(5), 177. https://doi.org/10.3390/agriculture10050177