Development of a Solid Bioherbicide Formulation by Spray Drying Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism, Inoculum, and Fermentation
2.2. Development of Formulations
2.2.1. Liquid Bioherbicide Formulations
2.2.2. Solid Bioherbicide Formulations
2.3. Bioassays
2.4. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Operational Variables of Spray Drying Process
3.2. Comparison of Solid and Liquid Formulas of Bioherbicide
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duke, S.O.; Dayan, F.E.; Romagni, J.G.; Rimando, A.M. Natural products as sources of herbicides: Current status and future trends. Weed Res. 2000, 40, 99–111. [Google Scholar] [CrossRef]
- Hoagland, R.E.; Boyette, C.D.; Weaver, M.A. Bioherbicides: Research and risks. Toxin Rev. 2007, 26, 313–342. [Google Scholar] [CrossRef]
- Dayan, F.O.; Duke, S.O. Natural Compounds as Next Generation Herbicides. Plant Physiol. 2014, 166, 1090–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heap, I. International Survey of Herbicide Resistant Weeds. Weed Sci. Soc. Am. 2019. Available online: http://www.weedscience.org (accessed on 25 November 2019).
- Strange, R.N. Phytotoxins produced by plant pathogens. Nat. Prod. Rep. 2007, 24, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, A.; Mais, M.; Evidente, M.; Superchi, S.; Evidente, A. Fungal phytotoxins with potential herbicidal activity: Chemical and biological characterization. RSC 2015, 16, 29–53. [Google Scholar] [CrossRef] [PubMed]
- Udayanga, D.; Xingzhong, L.; Mckenzie, E.H.C.; Chukeatirote, E.; Bahkali, A.H.A.; Hyde, K.D. The genus Phomopsis: Biology, applications, species concepts and names of common pathogens. Fungal Divers. 2011, 50, 189–225. [Google Scholar] [CrossRef]
- Dai, J.; Krohn, K.; Floerk, E.U.; Gehle, D.; Aust, H.J.; Draeger, S.; Schulz, B.; Rheinheimer, J. Novel highly substituted biraryl ethers, phomopsines D-G, isolated from endophytic fungus Phomopsis sp. from Adenocarpus foliolosus. Eur. J. Org. Chem. 2005, 23, 5100–5105. [Google Scholar] [CrossRef]
- Lin, X.; Huang, Y.; Fang, M.; Wang, J.; Zheng, Z.; Su, W. Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS. Microbiol. Lett. 2005, 251, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.H.; Chen, Y.W.; Shao, S.C.; Wang, L.D.; Li, Z.Y.; Yang, L.Y.; Li, S.L.; Huang, R. Ten-membered lactones from Phomopsis sp.; an endophytic fungus of Azadirachta Indica. J. Nat. Prod. 2008, 71, 731–734. [Google Scholar] [CrossRef]
- Kumaran, R.S.; Hur, B. Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol. Appl. Bioc. 2009, 54, 21–30. [Google Scholar] [CrossRef]
- Ash, G.J. The science art business of successful bioherbicides. Biol. Control 2010, 52, 230–240. [Google Scholar] [CrossRef]
- Bastos, B.O.; Deobald, G.A.; Brun, T.; Dal Prá, V.; Junges, E.; Kuhn, R.C.; Pinto, A.K.; Mazutti, M.A. Solid-state fermentation for production of a bioherbicide from Diaporthe sp. and its formulation to enhance the efficacy. 3 Biotech 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pes, M.P.; Mazutti, M.A.; Almeida, T.C.; Curioletti, L.E.; Melo, A.A.; Guedes, J.V.C.; Kuhn, R.C. Bioherbicide based on Diaporthe sp. secondary metabolites in the control of three tough weeds. Afr. J. Agric. Res. 2016, 11, 4242–4249. [Google Scholar]
- Souza, A.R.C.; Baldoni, D.B.; Lima, J.; Porto, V.; Marcuz, C.; Ferraz, R.C.; Kuhn, R.C.; Jacques, R.J.S.; Guedes, J.V.C.; Mazutti, M.A. Bioherbicide production by Diaporthe sp. isolated from the Brazilian Pampa biome. Biocatal. Agric. Biotechnol. 2015, 4, 575–578. [Google Scholar] [CrossRef]
- Costa-Silva, T.A.; Said, S.; Souza, C.R.F.; Oliveira, W.P. Stabilization of Endophytic Fungus Cercospora kikuchii Lipase by Spray Drying in the Presence of Maltodextrin and Cyclodextrin. Drying Technol. 2010, 28, 1245–1254. [Google Scholar] [CrossRef]
- Liao, Y.H.; Brown, M.B.; Quader, A.; Martin, G.P. Investigation of the physical properties of spray-dried stabilized lysozyme particles. J. Pharm. Pharmacol. 2003, 55, 1213–1223. [Google Scholar] [CrossRef]
- Marques, L.G.; Prado, M.M.; Freire, J.T. Rehydration characteristics of freeze dried tropical fruits. LWT 2009, 42, 1232–1237. [Google Scholar] [CrossRef]
- Peighambardoust, S.H.; Golshan, T.A.; Hesari, J. Application of spray drying for preservation of latic acid starter cultures: A review. Trends Food Sci. Technol. 2011, 22, 215–224. [Google Scholar] [CrossRef]
- Kamoun, A.S.; Haddar, A.; Ali, N.E.; Frikha, B.G.; Kanoun, S.; Nasri, M. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 2008, 163, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Jesus, S.S.; Maciel Filho, R. Drying of α-amylase by spray drying and freeze drying—A comparative study. Braz. J. Chem. Eng. 2013, 31, 625–631. [Google Scholar] [CrossRef]
- Frans, R.; Crowley, H. Experimental Design and Techniques for Measuring and Analyzing Plant Responses to Weed Control Practices. In Southern Weed Science Society. Research Methods in Weed Science, 3rd ed.; Clemson: South Carolina, SC, USA, 1986; pp. 29–45. [Google Scholar]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Zeraik, A.E.; Souza, F.S.; Fatibello-Filho, O. Desenvolvimento de um spot test para o monitoramento da atividade da peroxidase em um procedimento de purificação. Quím. Nova 2008, 31, 731–734. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.F. Sisvar: A Computer Statistical Analysis System. Ciência e Agrotecnologia (UFLA) 2011, 35, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Varejão, E.V.V.; Demuner, A.J.; Barbosa, L.C.A.; Barreto, R.W.; Veira, B.S. Toxicidade de filtrados de cultura de Alternaria euphorbiicola em folhas de Euphorbia heterophylla. Planta Daninha (Impresso) 2013, 31, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Todero, I.; Confortin, T.C.; Soares, J.F.; Brun, T.; Luft, L.; Rabuske, J.E.; Kuhn, R.C.; Tres, M.V.; Zabot, G.L.; Mazutti, M.A. Concentration of metabolites from Phoma sp. using microfiltration membrane for increasing bioherbicidal activity. Environ. Technol. 2018, 40, 2364–2372. [Google Scholar] [CrossRef]
- Meng, X.; Yu, J.; Yu, M.; Yin, X.; Liu, Y. Dry flowable formulations of antagonistic Bacillus subtilis strain T429 by spray drying to control rice blast disease. Biol. Cont. 2015, 55, 46–51. [Google Scholar] [CrossRef]
- Oancea, F.; Raut, I.; Şesan, T.E.; Cornea, P.C. Dry Flowable Formulation of Biostimulants Trichoderma Strains. Agric. Agric. Sci. Procedia 2016, 10, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Piyaboon, O.; Pawongrat, R.; Unartngam, J.; Chinawong, S. Pathogenicity, host range and activities of a secondary metabolite and enzyme from Myrothecium roridum on water hyacinth from Thailand. Weed Biol. Manag. 2016, 16, 132–144. [Google Scholar] [CrossRef]
- Brun, T.; Rabuske, J.E.; Todero, I.; Almeida, T.C.; Junior, J.J.D.; Ariotti, G.; Confortin, T.; Arnemann, J.A.; Kuhn, R.C.; Guedes, J.V.C.; et al. Production of bioherbicide by Phoma sp. in a stirred-tank bioreactor. 3 Biotech 2016, 6, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Todero, I.; Confortin, T.C.; Luft, L.; Brun, T.; Ugalde, G.A.; Almeida, T.C.; Arneman, J.A.; Zabot, G.L.; Mazutti, M.A. Formulation of a bioherbicide with metabolites from Phoma sp. Sci. Hortic. 2018, 241, 285–292. [Google Scholar] [CrossRef]
- Wang, W.; Lu, J.; Ren, T.; Li, X.K.; Su, W.; Lu, M. Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production. Field Crops Res. 2012, 137, 37–48. [Google Scholar] [CrossRef]
- Ehsani-Moghaddam, B.; Charles, M.T.; Carisse, O.; Khanizadeh, S. The effect of leaf spot disease on specific antioxidant activity of strawberry. Acta Horti. 2007, 744, 329–334. [Google Scholar] [CrossRef]
- Freitas-Silva, L.; Rodriguez-Ruiz, M.; Houmani, H.; Silva, L.C.; Palma, J.M. Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway OxPPP involved in NADPH generation. J. Plant. Physiol. 2017, 218, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Langaro, A.C.; Agostinetto, R.Q.; Garcia, J.R.; Perboni, L.T. Oxidative stress caused by the use of preemergent herbicides in rice crops. Rev. Ciên. Agron. 2017, 48, 358–364. [Google Scholar] [CrossRef]
- Laxmi, S.; Chambhare, M.R.; Kadlag, S.; Ahire, M.L.; Nikam, T.D. Herbicide effects on pigments and antioxidant enzymes of Portulaca oleracea. J. Pharmacogn. Phytochem. 2018, 7, 2024–2031. [Google Scholar]
- Moldes, C.A.; Medici, L.O.; Abrahão, O.S.; Tsai, S.M.; Azevedo, R.A. Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiol. Plant. 2008, 30, 469–479. [Google Scholar] [CrossRef]
- Takano, H.K.; Beffa, R.; Preston, C.; Westra, P.; Dayan, F.E. Reactive oxygen species trigger the fast action of glufosinate. Planta 2019, 249, 1837–1849. [Google Scholar] [CrossRef]
Runs | Feed Flowrate (L h−1) | Air Flow Rate (L min−1) | Solid Yield (wt%) |
---|---|---|---|
1 | 0.5 (−1) | 1.4 (−1) | 16.61 |
2 | 1.7 (1) | 1.4 (−1) | 9.22 |
3 | 0.5 (−1) | 3.6 (1) | 11.70 |
4 | 1.7 (1) | 3.6 (1) | 11.39 |
5 | 0.2 (−1.41) | 2.5 (0) | 19.23 |
6 | 2.0 (1.41) | 2.5 (0) | 10.46 |
7 | 1.1 (0) | 1.0 (−1.41) | 10.23 |
8 | 1.1 (0) | 4.0 (1.41) | 9.33 |
9 | 1.1 (0) | 2.5 (0) | 13.59 |
10 | 1.1 (0) | 2.5 (0) | 11.02 |
11 | 1.1 (0) | 2.5 (0) | 12.28 |
Rates | Attributes | Description Phytotoxicity of the Culture | Rates |
---|---|---|---|
0 | No Effects | No injury or reduction | 0 |
10 | Slight Effect | Slight discoloration or atrophy | 10 |
20 | Some discoloration or atrophy | 20 | |
30 | Injury more pronounced, but not lasting | 30 | |
40 | Moderate Effect | Moderate injury, usually with recovery | 40 |
50 | More lasting injury, doubtful recovery | 50 | |
60 | Lasting injury without recovery | 60 | |
70 | Severe Effect | Heavy injury, stand reduction | 70 |
80 | Next crop destruction | 80 | |
90 | Rarely some plants remain | 90 | |
100 | Total Effect | Complete destruction of culture | 100 |
Formulation | Adjuvant | Fermentation Broth (v/v, %) | Dry Matter (g) | Phytotoxicity (%) |
---|---|---|---|---|
Liquid | Without | 5 | 0.161 a | 0.0 c |
25 | 0.144 b | 1.7 c | ||
100 | 0.126 c | 6.7 c | ||
With | 5 | 0.135 c | 5.0 c | |
25 | 0.126 c | 13.3 c | ||
100 | 0.112 c | 40.0 b | ||
Solid | Without | 5 | 0.144 b | 3.3 c |
25 | 0.125 c | 20.0 b | ||
100 | 0.119 c | 40.0 b | ||
With | 5 | 0.138 c | 11.7 c | |
25 | 0.123 c | 25.0 b | ||
100 | 0.101 c | 96.7 a | ||
Control | 0.167 a | 0.0 c |
Formulation | Adjuvant | Fermentation Broth (v/v, %) | POD (U mg−1 Protein) | SOD (U mg−1 Protein) |
---|---|---|---|---|
Liquid | Without | 5 | 7.5 b | 224.9 b |
25 | 6.2 b | 266.3 b | ||
100 | 9.3 b | 256.0 b | ||
With | 5 | 10.1 b | 244.8 b | |
25 | 7.2 b | 224.4 b | ||
100 | 7.4 b | 244.3 b | ||
Solid | Without | 5 | 10.7 b | 242.9 b |
25 | 16.8 a | 213.9 b | ||
100 | 13.7 a | 267.3 b | ||
With | 5 | 15.1 a | 190.1 b | |
25 | 20.0 a | 254.3 b | ||
100 | 15.8 a | 386.7 a | ||
Control | 5.8 b | 194.6 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Almeida, T.C.; Spannemberg, S.S.; Brun, T.; Schmaltz, S.; Escobar, O.; Sanchotene, D.M.; Dornelles, S.H.B.; Zabot, G.L.; Tres, M.V.; Kuhn, R.C.; et al. Development of a Solid Bioherbicide Formulation by Spray Drying Technology. Agriculture 2020, 10, 215. https://doi.org/10.3390/agriculture10060215
de Almeida TC, Spannemberg SS, Brun T, Schmaltz S, Escobar O, Sanchotene DM, Dornelles SHB, Zabot GL, Tres MV, Kuhn RC, et al. Development of a Solid Bioherbicide Formulation by Spray Drying Technology. Agriculture. 2020; 10(6):215. https://doi.org/10.3390/agriculture10060215
Chicago/Turabian Stylede Almeida, Thiago C., Stefani S. Spannemberg, Thiarles Brun, Silvana Schmaltz, Otávio Escobar, Danie M. Sanchotene, Sylvio H. B. Dornelles, Giovani L. Zabot, Marcus V. Tres, Raquel C. Kuhn, and et al. 2020. "Development of a Solid Bioherbicide Formulation by Spray Drying Technology" Agriculture 10, no. 6: 215. https://doi.org/10.3390/agriculture10060215
APA Stylede Almeida, T. C., Spannemberg, S. S., Brun, T., Schmaltz, S., Escobar, O., Sanchotene, D. M., Dornelles, S. H. B., Zabot, G. L., Tres, M. V., Kuhn, R. C., & Mazutti, M. A. (2020). Development of a Solid Bioherbicide Formulation by Spray Drying Technology. Agriculture, 10(6), 215. https://doi.org/10.3390/agriculture10060215