Long-Term Productive, Competitive, and Economic Aspects of Spring Cereal Mixtures in Integrated and Organic Crop Rotations
Abstract
:1. Introduction
2. Materials and Methods
Weather Conditions
3. Results
3.1. Yield of Cereals in Pure Sowings and Mixtures
3.2. Leaf Area Index of Cereals in Pure Sowings and Mixtures
3.3. Competition Indices for the Mixtures
3.4. Economic Indices for the Mixtures
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leszczyńska, D. State and conditions of cultivation of grain crops mixtures in Poland. J. Res. Appl. Agric. Eng. 2007, 52, 105–108. [Google Scholar]
- Statistics Poland. Concise Statistical Yearbook of Poland; Zakład Wydawnictw Statystycznych: Warsaw, Poland, 2018. Available online: https://stat.gov.pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/5515/1/19/1/maly_rocznik_statystyczny_polski_2018.pdf (accessed on 20 May 2020).
- Klima, K.; Łabza, T. Yielding and economic efficiency of oats crop cultivated using pure and mixed sowing stands in organic and conventional farming systems. Zywn.-Nauk. Technol. Ja. 2010, 17, 141–147. [Google Scholar]
- Kaut, A.H.E.E.; Mason, H.E.; Navabi, A.; O’Donovan, J.T.; Spaner, D. Organic and conventional management of mixtures of wheat and spring cereals. Agron. Sust. Develop. 2008, 28, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Sobkowicz, P.; Tendziagolska, E.; Łagocka, A. Response of oat-triticale mixture to post-emergence weed harrowing. Acta Agric. Scand. B. 2020, 70, 307–317. [Google Scholar] [CrossRef]
- Jedel, P.E.; Salmon, D.F. Forage potential of spring and winter cereal mixtures in a short-season growing area. Agron. J. 1995, 87, 731–736. [Google Scholar] [CrossRef]
- Juskiw, P.E.; Helm, J.H.; Salmon, D.F. Forage yield and quality for monocrops and mixtures of small grain cereals. Crop. Sci. 2000, 40, 138–147. [Google Scholar] [CrossRef]
- Omokanye, A.; Lardner, H.; Lekshmi, S.; Jeffrey, L. Forage production, economic performance indicators and beef cattle nutritional suitability of multispecies annual crop mixtures in northwestern Alberta, Canada. J. Appl. Anim. Res. 2019, 47, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Juskiw, P.E.; Helm, J.H.; Salmon, D.F. Competitive ability in mixtures of small grain cereals. Crop. Sci. 2000, 40, 159–164. [Google Scholar] [CrossRef]
- Juskiw, P.E.; Helm, J.H.; Salmon, D.F. Postheading biomass distribution for monocrops and mixtures of small grain cereals. Crop Sci. 2000, 40, 148–158. [Google Scholar] [CrossRef]
- Smithson, J.B.; Lenne´, J.M. Varietal mixtures: A viable strategy for sustainable productivity in subsistence agriculture. Ann. Appl. Biol. 1996, 128, 127–158. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Baresel, J.P.; Desclaux, D.; Goldringer, I.; Hoad, S.; Kovacs, G.; Loeschenberger, F.; Miedaner, T.; Østergard, H.; Lammerts van Bueren, E.T. Developments in breeding cereals for organic agriculture. Euphytica 2008, 163, 323–346. [Google Scholar] [CrossRef] [Green Version]
- Pappa, V.A.; Rees, R.M.; Walker, R.L.; Baddeley, J.A.; Watson, C.A. Legumes intercropped with spring barley contribute to increased biomass production and carry-over effects. J. Agric. Sci. 2011, 150, 584–594. [Google Scholar] [CrossRef]
- Klima, K.; Stokłosa, A.; Pużyńska, K. Agricultural and economic circumstances of cereal cultivation under differentiated soil and climate conditions. Zesz. Probl. Postęp. Nauk Rol. 2011, 559, 115–121. [Google Scholar]
- Finckh, M.R.; Gacek, E.S.; Goyeau, H.; Lannou, C.; Ueli, M.; Mundt, C.C.; Munk, L.; Nadziak, J.; Newton, A.C.; de Vallavieille-Pope, C.; et al. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 2000, 20, 813–837. [Google Scholar] [CrossRef] [Green Version]
- Dambolena, J.S.; Lopez, A.G.; Meriles, J.M.; Rubinstein, H.R.; Zygadlo, J.A. Inhibitory effects of 10 natural phenolic compounds on Fusarium verticillioides. A structure-property activity relationship study. Food Cont. 2012, 28, 163–170. [Google Scholar] [CrossRef]
- Finckh, M.R.; Wolfe, M.S. The use of biodiversity to restrict plant diseases and some consequences for farmers and society. In Ecology in Agriculture, 1st ed.; Jackson, L.E., Ed.; Academic Press: San Diego, CA, USA, 1997; pp. 199–233. [Google Scholar]
- Hiltbrunner, J.; Jeanneret, P.; Liedgens, M.; Stamp, P.; Streit, B. Response of weed communities to legume living mulches in winter wheat. J. Agron. Crop. Sci. 2007, 193, 93–102. [Google Scholar] [CrossRef]
- Rajaniemi, T.K.; Allison, V.J.; Goldberg, D.E. Root competition can cause a decline in diversity with increased productivity. J. Ecol. 2003, 91, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, A.; Gontarz, D.; Staniszewski, M. Effect of crop rotation on yielding and leaf area index (LAI) of hard wheat (Triticum durum Desf.). Biuletyn IHAR 2005, 237–238, 13–21. [Google Scholar]
- Srinivasan, V.; Kumar, P.; Long, S.P. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Glob. Chang. Biol. 2016, 23, 1626–1635. [Google Scholar] [CrossRef] [Green Version]
- Hirooka, Y.; Homma, K.; Maki, M.; Sekiguchi, K.; Shiraiwa, T.; Yoshida, K. Evaluation of the dynamics of the leaf area index (LAI) of rice in farmer’s fields in Vientiane Province, Lao PDR. J. Agric. Meteorol. 2017, 73, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Oleksy, A.; Szmigiel, A.; Kołodziejczyk, M. Yielding and leaf area development of selected winter wheat cultivars depending on technology level. Fragm. Agron. 2009, 26, 120–131. [Google Scholar]
- Sobkowicz, P.; Tendziagolska, E.; Lejman, A. Performance of multi-component mixtures of spring cereals. Part 1. Yields and yield components. Acta Sci. Pol. Agric. 2016, 15, 25–35. [Google Scholar]
- Klima, K.; Smaczny, M. Yielding and competitiveness of oats and spring vetch depending of cultivations systems and sowing method. J. Agric. Eng. Res. 2015, 60, 146–149. [Google Scholar]
- Klima, K.; Łabza, T.; Lepiarczyk, A. Yielding of spring triticale grown under organic and integrated systems of farming and economic indicators of its production. J. Agric. Eng. Res. 2015, 60, 142–145. [Google Scholar]
- Wanic, M.; Nowicki, J.; Kurowski, T.P. Regeneracja stanowisk w płodozmianach zbożowych poprzez stosowanie siewów mieszanych. Zesz. Probl. Postęp. Nauk Rol. 2000, 470, 137–143. [Google Scholar]
- Klimek-Kopyra, A.; Bacior, M.; Zając, T. Biodiversity as a creator of productivity and interspecific competitiveness of winter cereal species in mixed cropping. Ecol. Model. 2017, 343, 123–130. [Google Scholar] [CrossRef]
- Vilich, V. Crop rotation with pure stands and mixtures of barley and wheat to control stem and root rot diseases. Crop. Prot. 1993, 12, 373–379. [Google Scholar] [CrossRef]
- Atanasova, D.; Maneva, V.; Nedelcheva, T. Effect of predecessors on the productivity and phytosanitary condition of hull-less oats in organic farming. Agric. Sci. Technol. 2016, 8, 4–7. [Google Scholar] [CrossRef]
- Bednarek, W.; Tkaczyk, P.; Dresler, S.; Jawor, E. Relationship between oat yield and some soil properties and nitrogen fertilization. Acta Agroph. 2013, 20, 29–38. [Google Scholar]
- Buczek, J.; Tobiasz-Salach, R.; Bobrecka-Jamro, D. Assessment of yielding and weeding effects of mixed spring cereals. Zesz. Probl. Postęp. Nauk Rol. 2007, 516, 11–18. [Google Scholar]
- Gawęda, D.; Nowak, A.; Haliniarz, M.; Woźniak, A. Yield and economic effectiveness of soybean grown under different cropping systems. Int. J. Plant Prod 2020, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Klima, K.; Kliszcz, A.; Puła, J.; Lepiarczyk, A. Yield and profitability of crop production in mountain less favoured areas. Agronomy 2020, 10, 700. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014; World Soil Resources Reports No. 106; Available online: http://www.fao.org/publications/card/en/c/942e424c-85a9-411d-a739-22d5f8b6cc41/ (accessed on 20 May 2020).
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R.W. The concept of a land equivalent ratio and advantages in yields for intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Willey, R.W.; Rao, M.R. A competitive ratio for quantifying competition between intercrops. Exp. Agric. 1980, 16, 117–125. [Google Scholar] [CrossRef]
- Tobiasz-Salach, R.; Bobrecka-Jamro, D.; Szpunar-Krok, E. Assessment of the productivity and mutual interactions between spring cereals in mixtures. Fragm. Agron. 2011, 28, 116–122. [Google Scholar]
- Yu, Y.; Stomph, T.J.; Makowski, D.; van der Werf, W. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crop. Res. 2015, 184, 133–144. [Google Scholar] [CrossRef]
- Dhima, K.V.; Lithourgidis, A.S.; Vasilakoglou, I.B.; Dordas, C.A. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crop. Res. 2007, 100, 249–256. [Google Scholar] [CrossRef]
- Zalewski, A.; Chrościcki, J.; Oleksiak, T.; Trajner, M. Rynek środków produkcji i usług dla rolnictwa. In Analizy Rynkowe, 1st ed.; IERiGŻ: Warszawa, Poland, 2018; Volume 45, pp. 1–45. [Google Scholar]
- Pobereźnik, B. Kalkulacje Produkcji Rolniczej, 1st ed.; Wydawnictwo MODR: Karniowice, Poland, 2018; p. 29. [Google Scholar]
- Klikocka, H.; Głowacka, A.; Juszczak, D. The influence of different soil tillage methods and mineral fertilization on the economic parameter of spring barley. Fragm. Agron. 2011, 28, 44–54. [Google Scholar]
- Muzalewski, A. Koszty Eksploatacji Maszyn, 1st ed.; Wydawnictwo IBMER: Warszawa, Poland, 2009; p. 46. [Google Scholar]
- Klepacki, B.; Gołębiewska, B. Opłacalność produkcji ziemniaków jadalnych. In Produkcja i Rynek Ziemniaków Jadalnych, 1st ed.; Chotkowski, J., Ed.; Wyd. Wieś Jutra: Warszawa, Poland, 2002; pp. 40–48. [Google Scholar]
- Kumar, A.; van Duijnen, R.; Delory, B.M.; Reichel, R.; Brüggemann, N.; Temperton, V.M. Barley shoot biomass responds strongly to N:P stoichiometry and intraspecific competition, whereas roots only alter their foraging. bioRxiv 2020, 912352. [Google Scholar] [CrossRef] [Green Version]
- Sobkowicz, P.; Podgórska-Lesiak, M. Experiments with crop mixtures: Interactions, designs and interpretation. Electron. J. Pol. Agric. Univ. 2007, 10, 22. [Google Scholar]
- Narwal, S.S. Allelopathic interactions in multiple cropping systems. In Allelopathy in Ecological Agriculture and Forestry. Proceedings of the III International Congress on Allelopathy in Ecological Agriculture and Forestry, Dharwad, India, 18–21 August 1998; Narwal, S.S., Hoagland, R.E., Dilday, R.H., Reigosa, M.J., Eds.; Springer: Berlin, Germany, 2000; pp. 141–157. [Google Scholar]
- Sobkowicz, P. Interspecies competition in spring cereal mixtures. Zesz. Nauk. AR Wrocław-Rozpr. 2003, 458, 1–105. [Google Scholar]
- Shaaf, S.; Bretani, G.; Biswas, A.; Fontana, I.M.; Rossini, L. Genetics of barley tiller and leaf development. J. Integr. Plant. Biol. 2019, 61, 226–256. [Google Scholar] [CrossRef] [Green Version]
- Szarek, K. The competitiveness of spring cereals, cultivated as mixtures and pure sowings, depending on the sowing density. Acta Agrar. Silvest. Agrar. 2008, 51, 3–9. [Google Scholar]
- Kaczmarek, S.; Matysiak, K.; Krawczyk, R. The effect of wheat, barley, and oat root system interactions, in two-species mixtures. J. Plant. Prot. Res. 2013, 53, 65–70. [Google Scholar] [CrossRef]
- Sobkowicz, P. Above-ground and underground competition between barley and oat in the mixture in the initial period of growth. Fragm. Agron. 2001, 18, 103–119. [Google Scholar]
- Cousens, R.D. Comparative growth of wheat, barley, and annual ryegrass (Lolium rigidum) in monoculture and mixture. Austral. J. Agric. Res. 1996, 47, 449–464. [Google Scholar] [CrossRef]
- Hecht, V.L.; Temperton, V.M.; Nagel, K.A.; Raschel, U.; Postma, J.A. Sowing density: A neglected factor fundamentally affecting root distribution and biomass allocation of field grown spring barley (Hordeum vulgare L.). Front. Plant. Sci. 2016, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zając, T.; Oleksy, A.; Stokłosa, A.; Klimek-Kopyra, A.; Styrc, N.; Mazurek, R.; Budzyński, W. Pure sowings versus mixtures of winter cereal species as an effective option for fodder-grain production in temperate zone. Field Crop. Res. 2014, 166, 152–161. [Google Scholar] [CrossRef]
- Stokłosa, A.; Stępnik, K. Development of differentiated in maturity period oats in mixture with spring barley. Fragm. Agron. 2009, 26, 116–125. [Google Scholar]
- Liu, X.; Rahman, T.; Song, C.; Yang, F.; Su, B.; Cui, L.; Bu, W.; Yang, W. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crop. Res. 2018, 224, 91–101. [Google Scholar] [CrossRef]
- Sobkowicz, P.; Tendziagolska, E.; Lejman, A. Performance of multi-component mixtures of spring cereals. part 2. Competitive hierarchy and yield advantage of mixtures. Acta Sci. Pol. Agric. 2017, 15, 37–48. [Google Scholar]
- Rudnicki, F. Impact of forecrop on yielding of various cereals in farm conditions. Fragm. Agron. 2005, 22, 172–182. [Google Scholar]
- Rachoń, L.; Szumiło, G.; Michałek, W.; Bobryk-Mamczarz, A. Variability of leaf area index (LAI) and photosynthetic active radiation (PAR) depending on the wheat genotype and the intensification of cultivation technology. Agron. Sci. 2018, 73, 63–71. [Google Scholar] [CrossRef]
- Crowder, D.W.; Reganold, J.P. Financial competitiveness of organic agriculture on a global scale. Proc. Nat. Acad. Sci. USA 2015, 112, 7611–7616. [Google Scholar] [CrossRef] [Green Version]
- Seufert, V.; Ramankutty, N. Many shades of gray—The context-dependent performance of organic agriculture. Sci. Adv. 2017, 3, 1602638. [Google Scholar] [CrossRef] [Green Version]
- Rosa-Schleich, J.; Loos, J.; Musshoff, O.; Tscharntke, T. Ecological-economic trade-offs of Diversified Farming Systems—A review. Ecol. Econ. 2019, 160, 251–263. [Google Scholar] [CrossRef]
- White, K.E.; Cavigelli, M.A.; Conklin, A.E.; Rasmann, C. Economic performance of long-term organic and conventional crop rotations in the Mid-Atlantic. Agron. J. 2019, 111, 1358–1370. [Google Scholar] [CrossRef]
- Wieme, R.A.; Carpenter-Boggs, L.A.; Crowder, D.W.; Murphy, K.M.; Reganold, J.P. Agronomic and economic performance of organic forage, quinoa, and grain crop rotations in the Palouse region of the Pacific Northwest, USA. Agric. Syst. 2020, 177, 102709. [Google Scholar] [CrossRef]
Species | Number of Germinating Grains |
---|---|
Pure sowing 1: | |
Oats cv. Borowiak | 650 |
Spring barley cv. Boss | 410 |
Spring triticale cv. Wanad | 568 |
Mixture: | |
Oats + spring barley | 325 + 205 |
Oats + spring triticale | 325 + 284 |
Spring barley + spring triticale | 205 + 284 |
Year | Month | Ap.– Ag. | J.– Dc. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J. | Fb. | Mr. | Ap. | M. | Jn. | Jl. | Ag. | Sp. | Oc. | Nv. | Dc. | |||
2011 | 36.7 | 15.1 | 27.6 | 106.3 | 72.1 | 44.4 | 278.4 | 85.6 | 15.9 | 34 | 11.1 | 15 | 586.8 | 742.2 |
2012 | 60.9 | 33.2 | 20.5 | 56.6 | 20.6 | 167.7 | 82.2 | 63.3 | 45.4 | 108 | 25.8 | 31.6 | 390.4 | 715.8 |
2013 | 74.1 | 26.6 | 38.4 | 24.7 | 118 | 202.4 | 33.1 | 32.9 | 109.6 | 18 | 92.9 | 29.7 | 411.1 | 800.4 |
2014 | 45.8 | 21.2 | 39.2 | 51.1 | 137.8 | 58.3 | 134.4 | 113.6 | 72.7 | 39.6 | 45.2 | 47.5 | 495.2 | 806.4 |
2015 | 58.8 | 32.2 | 45.4 | 50.5 | 123.8 | 43.5 | 52.1 | 83.7 | 82.5 | 51.3 | 43.8 | 52.1 | 353.6 | 719.7 |
2016 | 21.6 | 73.8 | 36.6 | 62.4 | 56.2 | 62 | 173.1 | 116.9 | 55.9 | 140.5 | 49.7 | 53.6 | 470.6 | 902.3 |
2017 | 162.5 | 81.2 | 45.4 | 121.6 | 69.1 | 38.5 | 100.3 | 89.7 | 189.8 | 59.4 | 53.6 | 42.1 | 419.2 | 1053.2 |
2018 | 67.4 | 11.8 | 16.5 | 25.1 | 82.4 | 85.2 | 118.6 | 85.4 | 85.1 | 53.7 | 48.5 | 42.3 | 396.7 | 722 |
2019 | 51.4 | 15.8 | 25.4 | 85.3 | 234.2 | 26.7 | 60.6 | 94 | 89.7 | 42.5 | 39.1 | 51.6 | 500.8 | 816.3 |
2011–2019 | 64.4 | 34.5 | 32.8 | 64.8 | 101.6 | 81 | 114.8 | 85 | 83 | 60.8 | 45.5 | 40.6 | 447.2 | 808.7 |
1961–1990 1 | 58.1 | 46.9 | 48 | 62.2 | 84.9 | 105 | 114.9 | 98.3 | 78.7 | 56 | 43.9 | 51.2 | 465.3 | 848.1 |
Year | Month | Ap.– Ag. | J.– Dc. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J. | Fb. | Mr. | Ap. | M. | Jn. | Jl. | Ag. | Sp. | Oc. | Nv. | Dc. | |||
2011 | −2.5 | −4 | 2.2 | 8.9 | 12.3 | 17.1 | 16.3 | 17.9 | 12.6 | 7.2 | 1.6 | −0.1 | 14.5 | 7.47 |
2012 | −2.6 | −7.9 | 3.1 | 8.2 | 13.8 | 16.2 | 18.9 | 17.7 | 12.7 | 7.3 | 3.7 | −3.8 | 14.9 | 7.27 |
2013 | −3.7 | −1.6 | −2.1 | 7.2 | 13.1 | 15.5 | 18.1 | 17.7 | 11.4 | 8.7 | 3.6 | −0.1 | 14.3 | 7.3 |
2014 | −3 | 0.7 | 5.3 | 8.5 | 12.6 | 14.4 | 18.7 | 16.2 | 13.9 | 8.8 | 3.7 | −0.9 | 14 | 8.32 |
2015 | −0.1 | 1 | 3.1 | 7 | 11.6 | 15.7 | 18.9 | 20.2 | 13.2 | 7.8 | 1.1 | −2.4 | 14.6 | 7.92 |
2016 | −3.6 | 2.5 | 3.5 | 7.8 | 12.8 | 17.5 | 18.1 | 16.6 | 14.2 | 6.8 | 1 | −2.5 | 14.5 | 7.9 |
2017 | −6.8 | −1.1 | 4.9 | 6.2 | 12.3 | 16.8 | 17.7 | 18.4 | 11.6 | 7.3 | 1.4 | −2.4 | 14.2 | 7.19 |
2018 | −0.3 | −4.4 | −0.7 | 12.5 | 15.8 | 17.1 | 18.6 | 19.3 | 12.1 | 7.1 | 1.5 | −2.2 | 16.6 | 8.01 |
2019 | −1.6 | −3.8 | 0.8 | 14.9 | 16 | 18.1 | 19.3 | 20.2 | 12.1 | 8.1 | 1.2 | −1.8 | 17.7 | 8.62 |
2011−2019 | −2.7 | −2.1 | 2.2 | 9 | 13.4 | 16.5 | 18.3 | 18.2 | 12.6 | 7.7 | 2.1 | −1.8 | 15 | 7.8 |
1961–1990 1 | −4.4 | −3.2 | 1.2 | 6.2 | 11.5 | 14.2 | 16 | 14.8 | 11.2 | 7 | 0.9 | −2.7 | 12.6 | 6.1 |
Cereal/Cereal Mixture | Crop Rotation | Mean 1 | |
---|---|---|---|
Integrated | Organic | ||
Oats | 4.14 | 3.21 | 3.67 A |
Spring barley | 4.58 | 3.73 | 4.15 C |
Spring triticale | 4.18 | 3.35 | 3.76 AB |
Oats + spring barley | 4.86 | 4.15 | 4.50 D |
Oats + spring triticale | 4.37 | 3.6 | 3.98 BC |
Spring triticale + spring barley | 4.55 | 3.84 | 4.19 C |
Mean | 4.44 B | 3.64 A |
Component of Mixture | Crop Rotation | Mean 1 | |
---|---|---|---|
Integrated | Organic | ||
Oats + | 2.24 ef | 1.86 b | 2.05 A |
spring barley | 2.62 h | 2.29 f | 2.45 C |
Oats + | 2.15 d | 1.74 a | 1.94 A |
spring triticale | 2.22 e | 1.86 b | 2.04 A |
Spring barley + | 2.35 g | 1.97 c | 2.16 B |
spring triticale | 2.2 de | 1.87 b | 2.03 A |
Mean1 | 2.29 B | 1.93 A |
Cereal/Cereal Mixture | Crop Rotation | Mean 1 | |
---|---|---|---|
Integrated | Organic | ||
Oats | 1.93 | 1.5 | 1.71 A |
Spring barley | 2.23 | 1.82 | 2.02 BC |
Spring triticale | 2.07 | 1.67 | 1.87 AB |
Oats + spring barley | 2.36 | 2.02 | 2.19 D |
Oats + spring triticale | 2.12 | 1.76 | 1.94 B |
Spring triticale + spring barley | 2.25 | 1.9 | 2.07 CD |
Mean1 | 2.16 B | 1.77 A |
Component of Mixture | Crop Rotation | Mean 1 | |
---|---|---|---|
Integrated | Organic | ||
Oats + | 1.04 | 0.86 | 0.95 B |
spring barley | 1.32 | 1.16 | 1.24 E |
Oats + | 1.01 | 0.81 | 0.91 A |
spring triticale | 1.11 | 0.95 | 1.03 C |
Spring barley + | 1.15 | 0.96 | 1.05 D |
spring triticale | 1.1 | 0.94 | 1.02 C |
Mean1 | 1.12 B | 0.94 A |
Component of Mixture | Crop Rotation | |||||
---|---|---|---|---|---|---|
Integrated | Organic | Mean | ||||
Component of Mixture | Sum 1 | Component of Mixture | Sum 1 | Component of Mixture | Sum 1 | |
Oats + | 0.54 | 1.11 B | 0.57 | 1.18 B | 0.55 | 1.14 B |
spring barley | 0.57 | 0.61 | 0.59 | |||
Oats + | 0.52 | 1.05 A | 0.54 | 1.09 A | 0.53 | 1.07 A |
spring triticale | 0.53 | 0.55 | 0.54 | |||
Spring barley + | 0.51 | 1.03 A | 0.53 | 1.08 A | 0.52 | 1.05 A |
spring triticale | 0.52 | 0.55 | 0.53 | |||
Mean1 | 1.06 a | 1.11 b |
Component of Mixture | Crop Rotation | Mean 1 | |
---|---|---|---|
Integrated | Organic | ||
Oats + | 0.94 | 0.93 | 0.93 A |
spring barley | 1.05 | 1.07 | 1.06 C |
Oats + | 0.98 | 0.98 | 0.98 B |
spring triticale | 1.02 | 1.02 | 1.02 BC |
Spring barley + | 0.98 | 0.96 | 0.97 AB |
spring triticale | 1.02 | 1.04 | 1.03 C |
Mean1 | 0.99 | 1 |
Source of Cost | Pure Sowing | Spring Cereal Mixture | Mean | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oats | Barley | Triticale | Oats + Barley | Oats + Triticale | Triticale + Barley | I | O | |||||||
I | O | I | O | I | O | I | O | I | O | I | O | |||
Input costs | 544.3 | 421.9 | 612.8 | 499.2 | 588.9 | 471.9 | 570.6 | 496.8 | 523.1 | 431.1 | 544.7 | 459.7 | 564.0 | 463.3 |
SGM without subsidies | 57.7 | 123.7 | 138.6 | 214.4 | 103.7 | 175.1 | 89.9 | 204.7 | 37.2 | 133.6 | 64.9 | 168.3 | 82.1 | 169.8 |
SGM with subsidies | 235.6 | 487.6 | 316.5 | 578.3 | 281.6 | 539.0 | 267.8 | 568.6 | 215.1 | 497.5 | 242.8 | 532.2 | 260.0 | 533.7 |
Share of subsidies in the SGM (%) | 75 | 74 | 56 | 63 | 63 | 67 | 66 | 64 | 82 | 73 | 73 | 68 | 68 | 68 |
Direct profitability index | ||||||||||||||
Without subsidies | 1.11 | 1.41 | 1.29 | 1.74 | 1.21 | 1.58 | 1.18 | 1.69 | 1.07 | 1.44 | 1.13 | 1.57 | 1.17 | 1.57 |
With subsidies | 1.48 | 2.63 | 1.66 | 3.01 | 1.57 | 2.81 | 1.55 | 2.94 | 1.44 | 2.67 | 1.50 | 2.82 | 1.53 | 2.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klima, K.; Synowiec, A.; Puła, J.; Chowaniak, M.; Pużyńska, K.; Gala-Czekaj, D.; Kliszcz, A.; Galbas, P.; Jop, B.; Dąbkowska, T.; et al. Long-Term Productive, Competitive, and Economic Aspects of Spring Cereal Mixtures in Integrated and Organic Crop Rotations. Agriculture 2020, 10, 231. https://doi.org/10.3390/agriculture10060231
Klima K, Synowiec A, Puła J, Chowaniak M, Pużyńska K, Gala-Czekaj D, Kliszcz A, Galbas P, Jop B, Dąbkowska T, et al. Long-Term Productive, Competitive, and Economic Aspects of Spring Cereal Mixtures in Integrated and Organic Crop Rotations. Agriculture. 2020; 10(6):231. https://doi.org/10.3390/agriculture10060231
Chicago/Turabian StyleKlima, Kazimierz, Agnieszka Synowiec, Joanna Puła, Maciej Chowaniak, Katarzyna Pużyńska, Dorota Gala-Czekaj, Angelika Kliszcz, Patryk Galbas, Beata Jop, Teresa Dąbkowska, and et al. 2020. "Long-Term Productive, Competitive, and Economic Aspects of Spring Cereal Mixtures in Integrated and Organic Crop Rotations" Agriculture 10, no. 6: 231. https://doi.org/10.3390/agriculture10060231
APA StyleKlima, K., Synowiec, A., Puła, J., Chowaniak, M., Pużyńska, K., Gala-Czekaj, D., Kliszcz, A., Galbas, P., Jop, B., Dąbkowska, T., & Lepiarczyk, A. (2020). Long-Term Productive, Competitive, and Economic Aspects of Spring Cereal Mixtures in Integrated and Organic Crop Rotations. Agriculture, 10(6), 231. https://doi.org/10.3390/agriculture10060231