Estimation of the Imperative of Rural Area Development on Panel Data in the Process of Managing Agricultural Holdings in Poland
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
- There is no basis for rejecting the null hypothesis, which means that the explanatory variable has no significant impact on the response variable—|t| < tβ.
- The null hypothesis is rejected in favour of the alternative hypothesis, i.e., the explanatory variable has a significant impact on the response variable—|t| > tβ.
- There is no basis for rejecting the null hypothesis; the coefficient of autocorrelation ρτ is insignificant if Iτ ≤ I.
- H0 is rejected in favour of H1; the coefficient of autocorrelation ρτ is significant if Iτ > Iα.
4. Results
4.1. Development of Panel Imperatives of Concluded Contracts under the Measure ‘Creation and Development of Micro-Enterprises’
- (1)
- When examining the number of contracts concluded under the measure ‘Creation and development of micro-enterprises’, the number of applications submitted under this measure was adopted as an explanatory variable.
- (2)
- When examining the total amount of contracts concluded under the measure ‘Creation and development of micro-enterprises’, the amount applied for under this measure was adopted as an explanatory variable.
- (3)
- When examining the RDPEF amount of the contracts concluded under the measure ‘Creation and development of micro-enterprises’, the RDPEF amount applied for under this measure was adopted as an explanatory variable.
- DLT—which refers to the number of concluded contracts and the number of submitted applications.
- DKT—which refers to the total amount of concluded contracts and the total amount applied for.
- DET—which refers to the RDPEF amount of contracts concluded and the RDPEF amount applied for.
4.1.1. Theoretical Background—the Analytical form of the Imperative
4.1.2. Results of the Estimation
4.1.3. Estimation of the Elasticity of the Contracts Concluded under the Measure ‘Creation and development of micro-enterprises’ in Individual Provinces of Poland
- What are the short-term elasticities of the number of decisions taken under the measure ‘Creation and development of micro-enterprises’ in relation to the number of submitted applications overall for the provinces under study.
- What are the short-term elasticities of the total amount under the measure ‘Creation and development of micro-enterprises’ in relation to the total amount applied for, when considering all of the provinces under study.
- What are the short-term elasticities of the total RDPEF amount under the measure ‘Creation and development of micro-enterprises’ in relation to the total RDPEF amount applied for, when considering all of the provinces under study.
4.2. DLT Imperative
- −0.460 is estimation of the individual effect for Lower Silesianit;
- 0.518 is estimation of the individual effect for Lubelskieit;
- 0.309 is estimation of the individual effect for Lesser Polandit;
- 0.232 is estimation of the individual effect for Opoleit;
- 0.561 is estimation of the individual effect for Podkarpackieit;
- 0.470 is estimation of the individual effect for Podlaskieit;
- 1.666 is estimation of the individual effect for Silesianit;
- 0.526 is estimation of the individual effect for Świętokrzyskieit;
- 0.238 is estimation of the individual effect for Warmia-Masurianit;
- 0.388 is estimation of the individual effect for Greater Polandit.
4.3. Imperatives DKT and DET
- −0.525 is estimation of the individual effect for Lower Silesianit;
- 0.566 is estimation of the individual effect for Lubelskieit;
- 0.361 is estimation of the individual effect for Lesser Polandit;
- 0.213 is estimation of the individual effect for Opoleit;
- 0.617 is estimation of the individual effect for Podkarpackieit;
- 0.504 is estimation of the individual effect for Podlaskieit;
- 0.190 is estimation of the individual effect for Pomorskieit;
- 1.513 is estimation of the individual effect for Silesianit;
- 0.521 is estimation of the individual effect for Świętokrzyskieit;
- 0.290 is estimation of the individual effect for Warmia-Masurianit;
- 0.475 is estimation of the individual effect for Greater Polandit.
- −0.525 is estimation of the individual effect for Lower Silesianit;
- 0.566 is estimation of the individual effect for Lubelskieit;
- 0.361 is estimation of the individual effect for Lesser Polandit;
- 0.213 is estimation of the individual effect for Opoleit;
- 0.617 is estimation of the individual effect for Podkarpackieit;
- 0.504 is estimation of the individual effect for Podlaskieit;
- 0.190 is estimation of the individual effect for Pomorskieit;
- 1.513 is estimation of the individual effect for Silesianit;
- 0.521 is estimation of the individual effect for Świętokrzyskieit;
- 0.290 is estimation of the individual effect for Warmia-Masurianit;
- 0.475 is estimation of the individual effect for Greater Polandit.
- The number of decisions under a given measure for i-th province in period t and the number of applications submitted under a given measure in i-th province in period t;
- The total amount in respect of the decisions taken under a given measure for i-th province in period t;
- The total amount applied for under a given measure in i-th province in period t;
- RDPEF amount in respect of the decisions taken under a given measure for i-th province in period t;
- RDPEF amount applied for under a given measure in i-th province in period t.
- Introduction of agri-environmental packages.
- Rational use of agricultural land while reducing the negative impact of agriculture on the natural environment.
- Implementation of sustainable agriculture—reduction in fertilisation.
- Intercropping.
- Development of a machinery park.
- Ecological food production.
- Modernisation of technological production infrastructure.
- Reduction in production costs.
- Improvement of work organisation by purchasing new and specialist machinery and equipment.
- Improvement of economic effects of agricultural micro-enterprises.
- Establishment of new agricultural holdings by people under the age of 40—generational turnover in agriculture.
- Increase in income from micro-enterprises through the provision of services, which enables creation of new jobs and self-employment, and in the long-run, reduces the effects of increasing unemployment in Polish rural areas.
- Improvement of micro-enterprises’ competitiveness and economic effects.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Papke-Shields, K.E.; Boyer-Wright, K.M. Strategic planning characteristics applied to project management. Int. J. Proj. Manag. 2017, 35, 169–179. [Google Scholar] [CrossRef]
- Patnaik, S.; Ip, A.W.H.; Tavana, M.; Jain, V. (Eds.) New Paradigm in Decision Science and Management. In Proceedings of ICDSM 2018; Advances in Intelligent Systems and Computing; Springer: Singapore, 2020. [Google Scholar]
- Coppin, A. The Human Capital Imperative. Valuing Your Talent; Palgrave Macmillan: Cham, Switzerland, 2017. [Google Scholar]
- Kersan-Škabić, I.; Tijanić, L. Regional absorption capacity of EU funds. Econ. Res. Ekon. Istraživanja 2017, 30, 1191–1208. [Google Scholar] [CrossRef]
- Hagemann, C. EU Funds in the New Member States: Party Politicization, Administrative Capacities, and Absorption Problems after Accession; Palgrave Macmillan: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Wilkin, J. Obszary Wiejskie w Warunkach Dynamizacji Zmian Strukturalnych. In Ekspertyzy do Strategii Rozwoju Społeczno-Gospodarczego Polski Wschodniej do Roku; Ministerstwo Rozwoju Regionalnego: Warszawa, Poland, 2020; Volume 1, pp. 593–616. [Google Scholar]
- Guijarro, F.; Martínez-Gómez, M.; Visbal-Cadavid, D. A model for sector restructuring through genetic algorithm and inverse DEA. Expert Syst. Appl. 2020, 154, 13. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, J.L.; Ortiz-de-Urbina-Criado, M.; Mora-Valentín, E.M. Thinking about people in mergers and acquisitions processes. Int. J. Manpow. 2019, 40, 643–657. [Google Scholar] [CrossRef]
- Milovanović, D.; Vučenović, S.; Mišić, I. Sources of Financing in the Process of Enterprise Restructuring Focusing on Transitional Countries. In Entrepreneurship in Post-Communist Countries; Ateljević, J., Budak, J., Eds.; Springer: Cham, Switzerland, 2018; pp. 61–75. [Google Scholar] [CrossRef]
- Mba, S.U. New Financing for Distressed Businesses in the Context of Business Restructuring Law; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Prdić, N.; Kuzman, B.; Damjanović, J. Marketing Research in the Function of Business Efficiency. Econ. Agric. 2019, 66, 1039–1054. [Google Scholar] [CrossRef] [Green Version]
- Lapinskaite, I.; Skvarciany, V.; Janulevicius, P. Impact of Investment Sources for Sustainability on a Country’s Sustainable Development: Evidence from the EU. Sustainability 2020, 12, 2412. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V.J.; Martinho, D. The Agricultural Economics of the 21st Century; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Field, H.L.; Long, J.M. Introduction to Agricultural Engineering Technology. In A Problem Solving Approach; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Nadykto, V. Modern Development Paths of Agricultural Production. In Trends and Innovations; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Moljevic, S. Influence of quality infrastructure on regional development. Int. J. Qual. Res. 2016, 10, 433–452. [Google Scholar] [CrossRef]
- Räisänen, J.; Tuovinen, T. Digital innovations in rural micro-enterprises. J. Rural Stud. 2020, 73, 56–67. [Google Scholar] [CrossRef]
- Lahner, J. Entwicklung der Wirtschaftsförderung. In Handbuch Innovative Wirtschaftsförderung; Springer: Gabler, Wiesbaden, 2020; pp. 3–24. [Google Scholar] [CrossRef]
- Schwab, K. (Ed.) The Global Competitiveness Report 2019. In World Economic Forum; Cologny: Geneva, Switzerland, 2019. [Google Scholar]
- Baula, O.; Galaziuk, N.; Zelinska, O. Conceptual Framework for Organizational and Economic Mechanism Formation to Increase the Region Competitiveness with the Globalization of the World Economic Relations. Mapкeтинг Мeнeджмeнт Iннoвaцiй 2017, 2, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Staníčková, M.; Fojtíková, L. The Chinese Position as a Global Player in International Comparison with the WTO Members: Efficiency Analysis and 4IR. China WTO Rev. 2020, 1, 7–48. [Google Scholar] [CrossRef]
- Kowalska, A.; Tarnowska, A. Innovation of the economies of European Union countries against selected countries in the world in the years 2007–2016. Top. Econ. Bus. Manag. 2017, 1, 334–338. [Google Scholar]
- Łyżwa, E. Innowacyjność w sektorze rolno-spożywczym na przykładzie gospodarki Polski i Ukrainy. Probl. World Agric. Probl. Rol. Światowego 2019, 19, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Fidlschuster, L.; Dax, T.; Oedl-Wieser, T. Demografischer Wandel, Diversität und Entwicklungsfähigkeit Ländlicher Regionen. In Lebensentwürfe im Ländlichen Raum; Springer: Wiesbaden, Germany, 2016; pp. 7–28. [Google Scholar] [CrossRef]
- Neumeier, S. Social innovation in rural development: Identifying the key factors of success. Geogr. J. 2017, 183, 34–46. [Google Scholar] [CrossRef]
- Żmija, K. Przedsiębiorczość Pozarolnicza w Procesach Dywersyfikacji Gospodarstw Rolnych w Polsce. Przedsiębiorczość i Zarządzanie Zarządzanie Restrukturyzacją Rozwój i Efektywność w Obliczu Zmian 2019, 20, 55–67. [Google Scholar]
- Spoz, A. Innowacyjność Mikro i Małych Przedsiębiorstw a Sharing Economy. Przedsiębiorczość i Zarządzanie Zdolności Innowacyjne Innowacje w MSP i Zarządzaniu Naukowym 2019, 20, 73–90. [Google Scholar]
- Serkova, A.E.; Ignatyeva, E.D.; Mariev, O.S.; Lee, V.A. Do Infrastructure Factors Influence Social and Economic Development of Russian Regions? In Rptss 2018—International Conference on Research Paradigms Transformation in Social Sciences; FUTURE ACAD.: Cairo, Egypt, 2018; Volume 50, pp. 1047–1054. [Google Scholar] [CrossRef]
- Purwanto, A.J.; Heyndrickx, C.; Kiel, J.; Betancor, O.; Socorro, M.P.; Hernandez, A.; Eugenio-Martin, J.L.; Pawlowska, B.; Borkowski, P.; Fiedler, R. Impact of Transport Infrastructure on International Competitiveness of Europe. Transp. Res. Procedia 2017, 25, 2877–2888. [Google Scholar] [CrossRef]
- Adamowicz, M. Zmiany w Systemach Polityki Rolnej i Formach Wsparcia Rolnictwa. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu. Roczniki 2017. [Google Scholar] [CrossRef]
- Drygas, M. Wsparcie rozwoju obszarów wiejskich w Polsce w ramach wspólnej polityki rolnej UE. Studia. Bas. 2016, 4, 101–122. [Google Scholar]
- MIŚ, T. Rola funduszy i programów UE w wielofunkcyjnym rozwoju obszarów wiejskich. Pr. Nauk. Uniw. Ekon. We Wrocławiu 2016, 439, 241–252. [Google Scholar]
- Sawicki, P. Rozwój MSP w kontekście unijnego wsparcia w perspektywie 2014–2020-dylematy i wyzwania. Zesz. Nauk. ZPSB Firma I Rynek 2019, 1, 49–64. [Google Scholar]
- Kozień, E. Ocena sprawności realizacji projektów. In Zeszyty Naukowe/Uniwersytet Ekonomiczny w Krakowie; Seria Specjalna, Monografie, Uniwersytet Ekonomiczny: Kraków, Poland, 2019; Volume 261. [Google Scholar]
- Idowu, S.O. (Ed.) Encyclopedia of Corporate Social Responsibility; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Maassen, M.A. Sustainable Business Models: An Imperative in the Strategic Management of Companies and Organizations. Manag. Dyn. Knowl. Econ. 2018, 6, 323–335. [Google Scholar]
- Bachtler, J.; Begg, I. Cohesion policy after Brexit: The economic, social and institutional challenges. J. Soc. Pol. 2017, 46, 745–763. [Google Scholar] [CrossRef] [Green Version]
- Dańska-Borsiak, B. Dynamiczne Modele Panelowe w Badanich Ekonomicznych, Wydawnictwo; Uniwersytetu Łódzkiego: Łódz, Poland, 2011; pp. 14–16. [Google Scholar]
- Jurek, W. Estymacja Parametrów Liniowych moDeli Ekonometrycznych Uogólnioną Metodą Najmiejszych Kwadratów. In Estymacja Parametrów Modelu Ekonometrycznego; Guzik, B., Jurek, W., Eds.; Ekonometria z zadaniami, Wydawnictwo Akademii Ekonomicznej: Poznań, Poland, 1993; pp. 83–90. [Google Scholar]
- Szajt, M. Działalność Badawczo—Rozwojowa w Kształtowaniu Aktywności Innowacyjnej w Unii Europejskiej; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2010; p. 148. [Google Scholar]
- Dacko, A.; Dacko, M. Studia nad rozwojem obszarów wiejskich—od paradygmatu wzrostu do rezyliencji. Wieś Rol. 2018, 2, 49–64. [Google Scholar]
- Sakai, T. Laboratory Experiments in Information Retrieval; The Information Retrieval Series 40; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Schumacker, R.; Tome, S. Understanding Statistics Using R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Lovric, M. (Ed.) International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Michalos, A.C. (Ed.) Encyclopedia of Quality of Life and Well-Being Research; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Shekhar, S. Encyclopedia of GIS; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Neusser, K. Time Series Econometrics; Springer Texts in Business and Economics; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Bokovets, V.V.; Zamkova, N.L.; Makhnachova, N.M. Assessment of the Effectiveness of Enterprise Management Components in Modern Conditions. Sci. Bull. Polissia 2017, 4, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Nenadal, J. Adequacy, Suitability, Effectiveness and Efficiency of Quality Management Systems: How to Perceive and Assess them? Qual. Innov. Prosper. 2016, 20, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Hart, M. The Design of Integrated Logistics Management System of an Industrial Company, LOGI 2017. MATEC Web Conf. 2017, 134, 7. [Google Scholar] [CrossRef] [Green Version]
- Mamun, A.A.; Fazal, S.A. Effect of entrepreneurial orientation on competency and micro-enterprise performance. Asia Pac. J. Innov. Entrep. 2018, 12, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Chin, O.; Nor, M.M. Does the Micro Financing Term Dictate the Performance of Micro Enterprises? Procedia Econ. Financ. 2016, 35, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Gherhes, C.; Williams, N.; Vorley, T.; Vasconcelos, A.C. Distinguishing micro-businesses from SMEs: A systematic review of growth constraints. J. Small Bus. Enterp. Dev. 2016, 23, 939–963. [Google Scholar] [CrossRef]
- Lussier, R.N.; Sonfield, M.C. “Micro” versus “small” family businesses: A multinational analysis. J. Small Bus. Enterp. Dev. 2015, 22, 380–396. [Google Scholar] [CrossRef] [Green Version]
- Pietrzykowski, R. Klasyfikacja Obiektów w Ujęciu Czasowo-Przestrzennym z Zastosowaniem Analizy Funkcjonalnej. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu Taksonomia Klasyfikacja i Analiza Danych—Teoria i Zastosowania 2018, 508, 170–179. [Google Scholar]
- Strojny, J.; Musiał, W. Obszary wiejskie w systemie ekonomiczno-społecznym państw Unii Europejskiej. Zesz. Nauk. SGGW Polityki Eur. Finans. Mark. 2019, 22. [Google Scholar] [CrossRef]
- Kozak, S.; Nagel, S.; Santosh, S. Shrinking the cross-section. J. Financ. Econ. 2020, 135, 271–292. [Google Scholar] [CrossRef]
- Górna, J.; Górna, K. Modelowanie Wzrostu Gospodarczego z Wykorzystaniem Narzędzi Ekonometrii Przestrzennej. Prace Naukowe Uniwersytetu Ekonomicznego we Wroclawiu 2016, 427. [Google Scholar]
- Geise, A. Przestrzenno-czasowe modelowanie zmienności produkcji w sektorach mikro-, małych, średnich i dużych przedsiębiorstw w Polsce. Przegląd Stat. 2013, 60, 269–282. [Google Scholar]
- López-Bazo, E.; Royuela, V. Citizens’ perception of the Cohesion Policy and support for the European Union. Reg. Sci. Policy Pr. 2019, 11, 733–749. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Pose, A.; Courty, J. Regional lobbying and Structural funds: Do regional representation offices in Brussels deliver? Reg. Fed. Stud. 2018, 28, 199–229. [Google Scholar] [CrossRef]
- Novosák, J.; Hájek, O.; Horváth, P.; Nekolová, J. Structural Funding and Intrastate Regional Disparities in Post-Communist Countries. Transylv. Rev. Adm. Sci. 2017, 51, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Calabretta, G.; Gemser, G.; Wijnberg, N.M. The Interplay between Intuition and Rationality in Strategic Decision Making: A Paradox Perspective. Organ. Stud. 2017, 38, 365–401. [Google Scholar] [CrossRef] [Green Version]
- Cristofaro, M. Herbert Simon’s bounded rationality its historical evolution in management and cross-fertilizing contribution. J. Manag. Hist. 2017, 23, 170–190. [Google Scholar] [CrossRef]
- Bogt, H.; Scapens, R.W. Institutions, situated rationality and agency in management accounting: A research note extending the Burns and Scapens framework. Account. Audit. Account. J. 2019, 32, 1801–1825. [Google Scholar] [CrossRef] [Green Version]
- Molthan-Hill, P. Making the business case? Intercultural differences in framing economic rationality related to environmental issues. Crit. Perspect. Int. Bus. 2015, 11, 72–91. [Google Scholar] [CrossRef] [Green Version]
- Leibus, I. Tax Incentives for Micro Enterprises—Latvia’s Experience. In Proceedings of the 2019 International Conference “ECONOMIC SCIENCE FOR RURAL DEVELOPMENT”, Jelgava, Latvia, 9–10 May 2019; Volume 52, pp. 287–295. [Google Scholar]
- Al, M.A.; Ibrahim, M.D. Development Initiatives, Micro-Enterprise Performance and Sustainability. Int. J. Financ. Stud. 2018, 6, 15. [Google Scholar]
- Faherty, U.; Stephens, S. Innovation in micro enterprises: Reality or fiction? J. Small Bus. Enterp. Dev. 2016, 23, 349–362. [Google Scholar] [CrossRef]
- Weske, M. Business Process Management: Concepts, Languages, Architectures; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Hyötyläinen, T. Steps to Improved Firm Performance with Business Process Management: Adding Business Value with Business Process Management and its Systems; Springer: Wiesbaden, Germany, 2015. [Google Scholar]
- Dumas, M.; La Rosa, M.; Mendling, J.; Reijers, H.A. Fundamentals of Business Process Management; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Szmedra, P. Economic Efficiency and Its Influencing Factors on Urban Agglomeration—An Analysis Based on China’s Top 10 Urban Agglomerations. Sustainability 2019, 11, 5380. [Google Scholar] [CrossRef] [Green Version]
- He, M.-L.; Jiang, O.; Hong, Z. Mathematical analysis of financial decentralization and economic efficiency in both state-owned and private enterprises. Concurr. Comput. Pr. Exp. 2019, 31, e4750. [Google Scholar] [CrossRef]
- Čaušević, F. Global Financial Centers, Economic Power, and (in) Efficiency, Palgrave Pivot; Springer: Cham, Switzerland, 2020. [Google Scholar]
Variable | Parameter Error | t-Statistic |
---|---|---|
lnWLT | 0.008 | 97.625 |
Lower Silesian | 0.107 | −4.299 |
Lubelskie | 0.109 | 4.752 |
Lesser Poland | 0.109 | 2.835 |
Opole | 0.109 | 2.128 |
Podkarpackie | 0.110 | 5.100 |
Podlaskie | 0.109 | 4.312 |
Silesian | 0.107 | 3.636 |
Świętokrzyskie | 0.110 | 4.782 |
Warmia-Masurian | 0.110 | 2.164 |
Greater Poland | 0.111 | 3.495 |
R2 | 0.941 | |
F(10.21) | 50.280 | |
−0.150 | ||
Ve (in per cent) | 3.33 |
Variable | Parameter Error | t-Statistic |
---|---|---|
Lower Silesian | ηD | 0.631 |
Lubelskie | ηL | 1.679 |
Lesser Poland | ηM | 1.362 |
Opole | ηO | 1.261 |
Podkarpackie | ηP | 1.752 |
Podlaskie | ηPD | 1.600 |
Silesian | ηS | 1.476 |
Świętokrzyskie | ηSW | 1.692 |
Warmia-Masurian | ηWM | 1.269 |
Greater Poland | ηW | 1.474 |
Detailed statistics relating to decomposed intercepts | ||
xmax | 1.752 | |
xmin | 0.631 | |
Range | 1.121 |
Variable | Imperative DKT | Imperative DET | ||
---|---|---|---|---|
Parameter Error | t-Statistic | Parameter Error | t-Statistic | |
constant | 0.189 | −2.984 | 0.174 | −3.563 |
lnWKT | 0.055 | 14.600 | ||
lnWET | 0.055 | 14.600 | ||
Lower Silesian | 0.125 | −4.200 | 0.125 | −4.200 |
Lubelskie | 0.123 | 4.602 | 0.123 | 4.602 |
Lesser Poland | 0.123 | 2.935 | 0.123 | 2.935 |
Opole | 0.123 | 1.732 | 0.123 | 1.732 |
Podkarpackie | 0.126 | 4.897 | 0.126 | 4.897 |
Podlaskie | 0.123 | 4.098 | 0.123 | 4.098 |
Pomorskie | 0.123 | 1.545 | 0.123 | 1.545 |
Silesian | 0.124 | 4.137 | 0.124 | 4.137 |
Świętokrzyskie | 0.124 | 4.202 | 0.124 | 4.202 |
Warmia-Masurian | 0.124 | 2.339 | 0.124 | 2.339 |
Greater Poland | 0.134 | 3.545 | 0.134 | 3.545 |
R2 | 0.943 | |||
F(12.19) | 44.140 | |||
−0.161 | ||||
Ve (in per cent) | 6.53 | 7.41 |
Variable | Imperative DKT | Imperative DET | ||
---|---|---|---|---|
Parameter | Estimation of the Parameter (Elasticity) | Parameter | Estimation of the Parameter (Elasticity) | |
Lower Silesian | ψD | 0.592 | ϑD | 0.592 |
Lubelskie | ψL | 1.761 | ϑL | 1.761 |
Lesser Poland | ψM | 1.435 | ϑM | 1.435 |
Opole | ψO | 1.237 | ϑO | 1.237 |
Podkarpackie | ψP | 1.853 | ϑP | 1.853 |
Podlaskie | ψPD | 1.655 | ϑPD | 1.655 |
Pomerania | ψPM | 1.209 | ϑPM | 1.209 |
Silesian | ψS | 1.670 | ϑS | 1.670 |
Świętokrzyskie | ψSW | 1.684 | ϑSW | 1.684 |
Warmia-Masurian | ψWM | 1.336 | ϑWM | 1.336 |
Greater Poland | ψW | 1.608 | ϑW | 1.608 |
xmax | 1.853 | |||
xmin | 0.592 | |||
Range | 1.261 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzozowska, A.; Bubel, D. Estimation of the Imperative of Rural Area Development on Panel Data in the Process of Managing Agricultural Holdings in Poland. Agriculture 2020, 10, 294. https://doi.org/10.3390/agriculture10070294
Brzozowska A, Bubel D. Estimation of the Imperative of Rural Area Development on Panel Data in the Process of Managing Agricultural Holdings in Poland. Agriculture. 2020; 10(7):294. https://doi.org/10.3390/agriculture10070294
Chicago/Turabian StyleBrzozowska, Anna, and Dagmara Bubel. 2020. "Estimation of the Imperative of Rural Area Development on Panel Data in the Process of Managing Agricultural Holdings in Poland" Agriculture 10, no. 7: 294. https://doi.org/10.3390/agriculture10070294
APA StyleBrzozowska, A., & Bubel, D. (2020). Estimation of the Imperative of Rural Area Development on Panel Data in the Process of Managing Agricultural Holdings in Poland. Agriculture, 10(7), 294. https://doi.org/10.3390/agriculture10070294