Particle Size Imbalance Index from Compositional Analysis to Evaluate Cereal Sustainability for Arid Soils in Eastern Algeria
Abstract
:1. Introduction
2. Description of the Study Area
3. Sampling and Soil Analysis
4. Statistical Analysis
5. Rationale
6. Results and Discussion
6.1. Step 1. Selection of Cutoff Yield
6.2. Step 2. Norms Derived from the Acceptable-Yield Subpopulation
6.3. Step 3. Validation of the Threshold Particle Size Imbalance Index
6.4. Step 4. Particle Size Ranges
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Semcheddine, N. Évaluation De La Tolérance à La Sécheresse Chez Le Blé Dur (triticum Durum Desf.) Par L’étude Du Bilan Hydrique Et Des Paramètres Phéno-morpho-physiologiques. Ph.D. Thesis, Campus El Bez, Université Ferhat Abbas, Sétif, Algérie, 2015. [Google Scholar]
- Bencherif, S. Etude De La Dégradation Des Parcours De La Région De Ain Oussera: Cas De La Coopérative Yahiaoui; Centre Universitaire de Djelfa: Djelfa, Algérie, 2000. [Google Scholar]
- Plante, A.; McGill, W. Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies. Soil Tillage Res. 2002, 66, 79–92. [Google Scholar] [CrossRef]
- Kribaa, M.I. Contribution à L’étude De L’irrigation D’appoint Et De La Fertilisation Azotée D’un Blé Dur (waha), En Zone Semi- Aride. Cas Des Hautes Plaines Sétifiennes. Ph.D. Thesis, INA, Alger, Algeria, 1992. [Google Scholar]
- Laryea, K.; Pathak, P.; Klaij, M. Tillage systems and soils in the semi-arid tropics. Soil Tillage Res. 1991, 20, 201–218. [Google Scholar] [CrossRef] [Green Version]
- Ramdani, L. La relance de l’industrie Algerienne des engrais comme facteur de diversification économique: Une optique meso-economique. Rev. Econ. Gest. Soc. 2019, 1, 2–15. [Google Scholar]
- De la Rosa, D.; Sobral, R. Soil quality and methods for its assessment. In Land Use and Soil Resources; Springer: Berlin/Heidelberg, Germany, 2008; pp. 167–200. [Google Scholar]
- Hristov, B.; Filcheva, E.; Nikova, I.; Zdravkov, A.; Ruskov, K.; Petrov, D.; Bakardzhiev, D. Fractional composition of organic matter in surface horizon of soils from “Bobov Dol” valley. Bulg. J. Agric. Sci. 2013, 19, 485–489. [Google Scholar]
- Parton, W.; Schimel, D.S.; Cole, C.; Ojima, D. Analysis of factors controlling soil organic matter levels in Great Plains Grasslands 1. Soil Sci. Soc. Am. J. 1987, 51, 1173–1179. [Google Scholar] [CrossRef]
- Carnol, M.; Ineson, P.; Dickinson, A. Soil solution nitrogen and cations influenced by (NH4)2SO4 deposition in a coniferous forest. Environ. Pollut. 1997, 97, 1–10. [Google Scholar] [CrossRef]
- Chaudhari, S.; Singh, R.; Kundu, D. Rapid textural analysis for saline and alkaline soils with different physical and chemical properties. Soil Sci. Soc. Am. J. 2008, 72, 431–441. [Google Scholar] [CrossRef]
- Nap, J.P.; Metz, P.L.; Escaler, M.; Conner, A.J. The release of genetically modified crops into the environment: Part I. Overview of current status and regulations. Plant J. 2003, 33, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wambeke, A.V. Soils of the Tropics: Properties and Appraisal; McGraw Hill: New York, NY, USA, 1992. [Google Scholar]
- He, Y.; Wei, Y.; DePauw, R.; Qian, B.; Lemke, R.; Singh, A.; Cuthbert, R.; McConkey, B.; Wang, H. Spring wheat yield in the semiarid Canadian prairies: Effects of precipitation timing and soil texture over recent 30 years. Field Crop. Res. 2013, 149, 329–337. [Google Scholar] [CrossRef]
- Katerji, N.; Mastrorilli, M. The effect of soil texture on the water use efficiency of irrigated crops: Results of a multi-year experiment carried out in the Mediterranean region. Eur. J. Agron. 2009, 30, 95–100. [Google Scholar] [CrossRef]
- Xu, Y.; Jimenez, M.A.; Parent, S.-É.; Leblanc, M.; Ziadi, N.; Parent, L.E. Compaction of Coarse-Textured Soils: Balance Models across Mineral and Organic Compositions. Front. Ecol. Evol. 2017, 5, 83. [Google Scholar] [CrossRef] [Green Version]
- Parent, S.-É.; Parent, L.E.; Rozane, D.-E.; Natale, W. Plant ionome diagnosis using sound balances: Case study with mango (Mangifera Indica). Front. Plant Sci. 2013, 4, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitchison, J.; Greenacre, M. Biplots of compositional data. J. R. Stat. Soc. Series C Appl. Stat. 2002, 51, 375–392. [Google Scholar] [CrossRef] [Green Version]
- Bacon-Shone, J. A short history of compositional data analysis. Compos. Data Anal. 2011, 1–11. [Google Scholar] [CrossRef]
- Khiari, L.; Parent, L.-E.; Tremblay, N. Selecting the high-yield subpopulation for diagnosing nutrient imbalance in crops. Agron. J. 2001, 93, 802–808. [Google Scholar] [CrossRef]
- Khiari, L.; Parent, L.-É.; Tremblay, N. Critical compositional nutrient indexes for sweet corn at early growth stage. Agron. J. 2001, 93, 809–814. [Google Scholar] [CrossRef]
- Khiari, L.; Parent, L.-É.; Tremblay, N. The phosphorus compositional nutrient diagnosis range for potato. Agron. J. 2001, 93, 815–819. [Google Scholar] [CrossRef]
- Pauwels, J.; Van Ranst, E.; Verloo, M.; Mvondo Ze, A. Manuel de Laboratoire de Pédologie—Méthodes D’analyses de Sols et de Plantes, Equipment et Gestion des Stocks de Verrerie et de Produits Chimiques; Publications Agricoles: Bruxelles, Belgium, 1992; 180p. [Google Scholar]
- Mathieu, C.; Pieltain, F.; Jeanroy, E. Analyse Chimique Des Sols: Méthodes Choisies; Lavoisier: Paris, France, 1998; p. 275. [Google Scholar]
- Baize, D. Guide Des Analyses En Pédologie, 2ème Édition Revue Et Augmentée; Institut National De La Recherche Agronomique: Paris, France, 2000; Volume 257. [Google Scholar]
- Mathieu, C.; Pieltain, F.; Jeanroy, E. Analyse Chimique Des Sols: Méthodes Choisies; Lavoisier: Paris, France, 2003. [Google Scholar]
- Team, R.C. R: A Language And Environment For Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Nelson, L.; Anderson, R. Partitioning of soil test—Crop response probability. Soil Test. Correl. Interpret. Anal. Results 1977, 29, 19–38. [Google Scholar]
- Aitchison, J. The statistical analysis of compositional data: Chapman Hall. J. R. Stat. Soc. 1982, 44, 139–177. [Google Scholar]
- Ross, S.M. Introduction to Probability and Statistics for Engineers and Scientists, 1st ed.; John Wieley & Sons: Hoboken, NJ, USA, 1987; p. 512. [Google Scholar]
- Ministère de l’Agriculture et du Développement Rural. Statistiques Agricoles, Superficies et Productions. Direction des Statistiques Agricoles et des Enquêtes Economiques. Available online: www.minagri.dz (accessed on 3 February 2020).
- Chennafi, H.; Bouzerzour, H.; Saci, A.; Chenafi, A. La pratique des façons culturales sur la culture du blé dur (Triticum durum Desf.) en environnement semi-aride. In Proceedings of the 5th International Conference on Land Degradation, Valenzanos, Bari, Italy, 18–22 September 2008; p. 63. [Google Scholar]
- FAO. FAOSTAT. Available online: http://www.fao.org/faostat/en (accessed on 9 September 2019).
- Šimundić, A.-M. Measures of diagnostic accuracy: Basic definitions. Ejifcc 2009, 19, 203. [Google Scholar]
- Prasad, B.; Carver, B.F.; Stone, M.L.; Babar, M.; Raun, W.R.; Klatt, A.R. Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices. Crop Sci. 2007, 47, 1416–1425. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, F.; Asseng, S. Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agric. Syst. 2006, 90, 159–179. [Google Scholar] [CrossRef]
- Asseng, S.; Fillery, I.; Dunin, F.; Keating, B.A.; Meinke, H. Potential deep drainage under wheat crops in a Mediterranean climate. I. Temporal and spatial variability. Aust. J. Agric. Res. 2001, 52, 45–56. [Google Scholar] [CrossRef]
- Jalota, S.; Sood, A.; Chahal, G.; Choudhury, B. Crop water productivity of cotton (Gossypium hirsutum L.)–wheat (Triticum aestivum L.) system as influenced by deficit irrigation, soil texture and precipitation. Agric. Water Manag. 2006, 84, 137–146. [Google Scholar] [CrossRef]
- Gu, J.; Nicoullaud, B.; Rochette, P.; Grossel, A.; Hénault, C.; Cellier, P.; Richard, G. A regional experiment suggests that soil texture is a major control of N2O emissions from tile-drained winter wheat fields during the fertilization period. Soil Biol. Biochem. 2013, 60, 134–141. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, 1–15. [Google Scholar] [CrossRef]
Mean | Median | Range | Standard Deviation | Variance Coefficient (%) | |
---|---|---|---|---|---|
C (g100g−1) | 24.6 | 24.0 | 2.1–52.8 | 11.6 | 47.2 |
FL (g100g−1) | 22.2 | 21.8 | 0.5–54.8 | 10.7 | 48.1 |
CL (g100g−1) | 17.0 | 17.0 | 5.1–37.1 | 6.7 | 39.6 |
FS (g100g−1) | 26.0 | 26.4 | 0.02–64.7 | 13.6 | 52.3 |
CS (g 100g−1) | 10.2 | 11.2 | 0.1–55.3 | 8.0 | 78.9 |
BD (gcm−3) | 1.2 | 1.1 | 1.00–1.8 | 0.1 | 15.9 |
P (g100g−1) | 52.7 | 54.7 | 30–61.5 | 7.5 | 14.3 |
EC (dS m−1) | 0.4 | 0.2 | 0.01–3.9 | 0.6 | 149.5 |
pHwater | 8.2 | 8.2 | 7–8.9 | 0.3 | 3.7 |
(CaCO3)Total (g100g−1) | 28.8 | 26.4 | 0–65.6 | 15.7 | 54.6 |
(CaCO3)active (g 100g−1) | 14.3 | 15.0 | 0–36.0 | 8.6 | 60.1 |
OCTotal (g100g−1) | 1.41 | 1.3 | 0.43–2.8 | 0.49 | 35.04 |
NTotal (g100g−1) | 0.1 | 0.1 | 0.04–0.3 | 0.0 | 39.4 |
C/N | 11.1 | 9.4 | 4.9–30.9 | 5.2 | 47.0 |
POlson (mg. kg−1) | 23.2 | 9.4 | 1.0–138.0 | 118.3 | 509.8 |
CaExch (cmol. kg−1) | 39.0 | 38.2 | 32.4–48.8 | 3.6 | 9.4 |
MgExch(cmol kg−1) | 1.9 | 1.9 | 0.05–5.6 | 1.2 | 63.8 |
NaExch (cmol. kg−1) | 0.4 | 0.4 | 0.01–4.0 | 0.5 | 108.3 |
KExch(cmol. kg−1) | 7.7 | 1.3 | 0.1–48.7 | 15.8 | 204.0 |
CEC(cmol. kg−1) | 49.2 | 42.5 | 34.0–98.4 | 17.5 | 35.6 |
Fic(VX) | A | K | M | B | V | Fic(VX)-IP | Yield-IP |
---|---|---|---|---|---|---|---|
Fic(VC) | 102 | 5.54 | 4.66 | 0.134 | 0.229 | 63.0 | 1.56 |
Fic(VFL) | 102 | 1.21 | 5.19 | 0.134 | 0.224 | 61.3 | 1.64 |
Fic(VCL) | 113 | 0.0702 | 2.51 | 0.0994 | 0.202 | 67.5 | 1.36 |
Fic(VFS) | 113 | −2.81 | 5.05 | 0.0817 | 0.296 | 64.9 | 1.99 |
Fic(VCS) | 102 | 4.86 | 4.18 | 0.122 | 0.218 | 62.6 | 1.66 |
V*C | V*FL | V*CL | V*FS | V*CS | |
---|---|---|---|---|---|
Mean | 0.316 | 0.143 | 0.047 | 0.229 | −0.736 |
SD | 0.626 | 0.716 | 0.485 | 0.994 | 1.126 |
Critical Range | |||
---|---|---|---|
Index | Critical Value | Lower Limit | Upper Limit |
IC2 | 0.7 | −0.83 | +0.83 |
I FL2 | 1.9 | −1.37 | +1.37 |
I CL2 | 0.1 | −0.31 | +0.31 |
IFS2 | 0.2 | −0.44 | +0.44 |
ICS2 | 1.7 | −1.30 | +1.30 |
Sum | 4.6 | 0 | 4.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaaboubi, S.; Khiari, L.; Abdesselam, S.; Gallichand, J.; Kebede, F.; Kerrache, G. Particle Size Imbalance Index from Compositional Analysis to Evaluate Cereal Sustainability for Arid Soils in Eastern Algeria. Agriculture 2020, 10, 296. https://doi.org/10.3390/agriculture10070296
Zaaboubi S, Khiari L, Abdesselam S, Gallichand J, Kebede F, Kerrache G. Particle Size Imbalance Index from Compositional Analysis to Evaluate Cereal Sustainability for Arid Soils in Eastern Algeria. Agriculture. 2020; 10(7):296. https://doi.org/10.3390/agriculture10070296
Chicago/Turabian StyleZaaboubi, Siham, Lotfi Khiari, Salah Abdesselam, Jacques Gallichand, Fassil Kebede, and Ghouati Kerrache. 2020. "Particle Size Imbalance Index from Compositional Analysis to Evaluate Cereal Sustainability for Arid Soils in Eastern Algeria" Agriculture 10, no. 7: 296. https://doi.org/10.3390/agriculture10070296
APA StyleZaaboubi, S., Khiari, L., Abdesselam, S., Gallichand, J., Kebede, F., & Kerrache, G. (2020). Particle Size Imbalance Index from Compositional Analysis to Evaluate Cereal Sustainability for Arid Soils in Eastern Algeria. Agriculture, 10(7), 296. https://doi.org/10.3390/agriculture10070296