Changes in Soil Erosion Intensity Caused by Land Use and Demographic Changes in the Jablanica River Basin, Serbia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Erosion Potential Method (EPM)
2.3. The Analysis of Proportional Changes
3. Results
Changes in Erosion Intensity in the Period 1971–2016
4. Discussion
4.1. Analysis of Proportional Changes in Population and Arable Land in Settlements (1961–2011)
4.2. Change in Land Use (1961–2011)
4.3. Demographic Change
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mitasova, H.; Hofierka, J.; Zlocha, M.; Iverson, L. Modeling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Sci. 1997, 10, 629–641. [Google Scholar] [CrossRef]
- Bakker, M.; Govers, G.; Kosmas, C.; Vanacker, V.; Van Oost, K.; Rounsevell, M. A soil erosion as a driver of land use change. Agric. Ecosyst. Environ. 2005, 105, 467–481. [Google Scholar] [CrossRef]
- Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; et al. Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Životić, L.; Perović, V.; Jaramaz, D.; Đorđević, A.; Petrović, R.; Todorović, M. Application of USLE, GIS and Remote Sensing in the Assessment of soil erosion rates in Southeastern Serbia. Pol. J. Environ. Stud. 2012, 21, 1929–1935. [Google Scholar]
- Leh, M.; Bajwa, S.; Chaubey, I. Impact of land use change on erosion risk: An integrated remote sensing, geopraphic information system and modeling methodology. Land Degrad. Dev. 2013, 24, 409–421. [Google Scholar] [CrossRef]
- Serpa, D.; Nunes, J.P.; Santos, J.; Sampaio, E.; Jacinto, R.; Veiga, S.; Lima, J.C.; Moreira, M.; Corte-Real, J.; Keizer, J.J.; et al. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci. Total Environ. 2015, 538, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; He, C.; Burnham, M.; Zhang, L. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 439–449. [Google Scholar] [CrossRef]
- Khaledian, Y.; Kiani, F.; Ebrahimi, S.; Brevik, E.; Aitkenhead-Peterson, J. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degrad. Dev. 2017, 28, 128–141. [Google Scholar] [CrossRef]
- Stefanidis, S.; Chatzichristaki, C. Response of soil erosion in a mountainous watershed to temperature and precipitation trends. Carpathian J. Earth Environ. Sci. 2017, 12, 35–39. [Google Scholar]
- Sharma, A.; Tiwari, K.N.; Bhadoria, P.B. Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ. Monit. Assess. 2011, 173, 789–801. [Google Scholar] [CrossRef]
- Tošić, R.; Dragićević, S.; Lovrić, N. Assessment of soil erosion and sediment yield changes using erosion potential model–case study: Republic of Srpska (BiH). Carpathian J. Earth Environ. Sci. 2012, 7, 147–154. [Google Scholar]
- Tošić, R.; Kapović, M.; Lovrić, N.; Dragićević, S. Assessment of soil erosion potential using Rusle and Gis: A case study of Bosnia and Herzegovina. Fresenius Environ. Bull. 2013, 22, 3415–3423. [Google Scholar]
- Kostadinov, S.; Braunović, S.; Dragićević, S.; Zlatić, M.; Dragović, N.; Rakonjac, N. Effects of erosion control works: Case study-Grdelica Gorge, the South Morava River (Serbia). Water 2018, 10, 1094. [Google Scholar] [CrossRef] [Green Version]
- Uddin, K.; Matin, M.A.; Maharjan, S. Assessment of Land Cover Change and Its Impact on Changes in Soil Erosion Risk in Nepal. Sustainability 2018, 10, 4715. [Google Scholar] [CrossRef] [Green Version]
- Perović, V.; Kadović, R.; Đurđević, V.; Braunović, S.; Čakmak, D.; Mitrović, M.; Pavlović, P. Effects of changes in climate and land use on soil erosion: Case study of the Vranjska Valley, Serbia. Reg. Environ. Chang. 2019, 19, 1035–1046. [Google Scholar] [CrossRef]
- Ozsahin, E.; Duru, U.; Eroglu, I. Land Use and Land Cover Changes (LULCC), a Key to Understand Soil Erosion Intensities in the Maritsa Basin. Water 2018, 10, 335. [Google Scholar] [CrossRef] [Green Version]
- Van Rompaey, A.; Govers, G.; Puttemans, C. Modelling land use changes and their impact on soil erosion and sediment supply to rivers. Earth Surf. Process. Landf. 2002, 27, 481–494. [Google Scholar] [CrossRef]
- Zorn, M.; Komac, B. Response of soil erosion to land use change with particular reference to the last 200 years (Julian Alps, Western Slovenia). In Proceedings of the IAG Regional Conference on Geomorphology: Landslides, Floods and Global Environmental Change in Mountian Regions, Brasov, Romania, 15–25 September 2008; pp. 39–47. [Google Scholar]
- Tošić, R.; Lovrić, N.; Dragićević, S. Assessment of the impact of depopulation on soil erosion: Case study-Republika Srpska (Bosnia & Herzegovina). Carpathian J. Earth Environ. Sci. 2019, 14, 505–518. [Google Scholar]
- Perović, V.; Životić, L.; Kadović, R.; Đorđević, A.; Jaramaz, D.; Mrvić, V.; Todorović, M. Spatial modelling of soil erosion potential in a mountainous watershed of South-eastern Serbia. Environ. Earth Sci. 2013, 68, 115–128. [Google Scholar] [CrossRef]
- Ristić, R.; Košanin-Grubin, M.; Radić, B.; Nikić, Z.; Vasiljević, N. Land Degradation at the Stara Planina Ski Resort. Environ. Manag. 2012, 49, 580–592. [Google Scholar] [CrossRef]
- Zlatić, M.; Vukelić, G. Economic and Social Revival of a Degraded Region in Serbia. Mt. Res. Dev. 2002, 22, 26–28. [Google Scholar] [CrossRef]
- Dragićević, S.; Stepić, M. Changes of the erosion intensity in the Ljig river basin–the influence of the antropogenic factor. Bull. Serb. Geogr. Soc. 2006, 86, 37–44, (In Serbian with English abstract). [Google Scholar]
- Kostadinov, S.; Zlatić, M.; Dragićević, S.; Novković, I.; Košanin, O.; Borisavljević, A.; Lakićević, M.; Mlađan, D. Antropogenic Influence on Erosion Intensity Changes in Rasina River Watershed Area upstream from “Ćelije” Water Reservoir, Central Serbia. Fresenius Environ. Bull. 2014, 23, 254–263. [Google Scholar]
- Ahmad, Z.; Ashraf, A.; Zaheer, M. Hydrological response to environment change in Himalayan watersheds: Assessment from inregrated modeling approach. J. Mt. Sci. 2015, 12, 972–982. [Google Scholar] [CrossRef]
- Feng, X.M.; Wang, Y.F.; Chen, L.D.; Fu, B.J.; Bai, G.S. Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau. Geomorphology 2010, 118, 239–248. [Google Scholar] [CrossRef]
- Lopez-Vicente, M.; Poesen, J.; Navas, A.; Gaspar, L. Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarious in the Spanish Pre-Pyrenees. Catena 2013, 102, 62–73. [Google Scholar] [CrossRef]
- Miljković, P.; Belanović Simić, S. Soil loss data comparation using USLE and WaTEM/SEDEM model in the Polomska River Catchment, Serbia. Fresenius Environ. Bull. 2020, 29, 5012–5020. [Google Scholar]
- Braunović, S. Effects of Erosion Control Works on the State of Erosion in Grdelicka Klisura and Vranjska Kotlina. Ph.D. Thesis, University of Belgrade, Belgrade, Serbia, 2013. (In Serbian). [Google Scholar]
- Perović, V.; Životić, L.; Čakmak, D.; Mrvić, V.; Milanović, M.; Saljinikov, E. Design and implementation of WebGIS technologies in evaluation of erosion intensity in the municipality of Nis (Serbia). Environ. Earth Sci. 2016, 75, 211. [Google Scholar] [CrossRef]
- Perović, V.; Jakšić, D.; Perović, V.; Koković, N.; Čakmak, D.; Mitrović, M.; Pavlović, P. Spatio-temporal analysis of land use/land cover change and its effects on soil erosion (Case study in the Oplenac wine-producting area, Serbia). Environ. Monit. Assess. 2018, 190, 675. [Google Scholar] [CrossRef]
- Manojlović, S.; Antić, M.; Šantić, D.; Sibinović, M.; Carević, I.; Srejić, T. Anthropogenic Impact on Erosion Intensity: Case Study of Rural Areas of Pirot and Dimitrovgrad Municipalities, Serbia. Sustainability 2018, 10, 826. [Google Scholar] [CrossRef] [Green Version]
- Zlatić, M. Socio-Economic Aspects of Degradation and Soil Management for Sustainability in Mountainous Regions. In Proceedings of the International Year of Mountains Conference: “Natural and Socio-Economic Effects of Erosion Control in Mountainous Regions, key note paper, Vrujci Spa, Serbia, 10–13 December 2002; pp. 497–516. [Google Scholar]
- Manojlović, S.; Antić, M.; Sibinović, M.; Dragicević, S.; Novković, I. Soil erosion response to demographic and land use changes in the Nišava river basin, Serbia. Fresenius Environ. Bull. 2017, 26, 7547–7560. [Google Scholar]
- Haghizadeh, A.; Teang Shui, L.; Godarzi, E. Forecasting Sediment with Erosion Potential Method with Emphasis on land use changes at basin. Electron. J. Geotech. Eng. 2009, 14, 1–12. [Google Scholar]
- Dragičević, N.; Karleuša, B.; Ožanić, N. A review of the Gavrilović method (erosion potential method) application. Građevinar 2016, 68, 715–725. [Google Scholar]
- Gavrilović, S. Torrential flow Engineering and Erosion Processes; Izgradnja Publisher: Beograd, Serbia, 1972; p. 192. (In Serbian) [Google Scholar]
- Kastridis, A.; Kamperidou, V. Influence of land use changes on alluviation of Volvi Lake wetland (North Greece). Soil Water Res. 2015, 10, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Salahalddin, S.A.; Al-Umary, F.A.; Salar, G.S.; Al-Ansari, N.; Knutsson, S. GIS based soil erosion estimation using EPM method, Garmiyan Area, Kurdistan Region, Iraq. J. Civil Eng. Archit. 2016, 10, 291–308. [Google Scholar] [CrossRef] [Green Version]
- Solaimani, K.; Modallaladoust, S.; Lotfi, S. Investigation of land use changes on soil erosion process using geographical information system. Int. J. Environ. Sci. Technol. 2009, 6, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, R.M.; Santos, C.A.G.; Silva, A.M. Predicting soil erosion and sediment yield in the Tapacura Catchement, Brazil. J. Urban Environ. Eng. 2014, 8, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Lazarević, R. Erosion Map of SR Serbia. Scale 1:500000; Institute of Forestry: Belgrade, Serbia, 1983. [Google Scholar]
- Antić, M.; Šantić, D.; Kašanin-Grubin, M.; Malić, A. Sustainable rural development in Serbia–Relationship between population dynamicss and environment. J. Environ. Prot. Ecol. 2017, 18, 323–331. [Google Scholar]
- Statistical Office of the Republic of Serbia 1961–2011. Available online: http://www.stat.gov.rs (accessed on 5 February 2019).
- Zarei, A.R.; Mokarram, M. Assessment of soil erosion and sediment yield changes using erosion potential method: Case study of Sangcharak catchement in Fars, Iran. Int. J. Agric. Resour. Gov. Ecol. 2016, 12, 344–356. [Google Scholar]
- Spalević, V.; Barović, G.; Fikfak, A.; Kosanović, S.; Đurović, M.; Popović, S. Sediment yield and land use changes in the Northern Montenegrin watersheds: Case study of Seocki potok of the Polimlje region. J. Environ. Prot. Ecol. 2016, 17, 990–1002. [Google Scholar]
- Mustafić, S. Geographic Factors as Determinants of Erosion Intensity in the Nišava River Basin. Ph.D. Thesis, Faculty of Geography, University of Belgrade, Belgrade, Serbia, 2013. (In Serbian). [Google Scholar]
- Manojlović, S. Influence of Geographical Factors on Changes in the Intensity of Water Erosion in the Nišava River Basin; Faculty of Geography: Belgrade, Serbia, 2018. (In Serbian) [Google Scholar]
- Vuksanović, G. The formation of old age agricultural households. Matica Srp. Proc. Soc. Sci. 1991, 90, 149–155. [Google Scholar]
Soil Protection Coefficient | X |
Mixed and dense forest | 0.05–0.20 |
Thin forest with grove | 0.05–0.20 |
Coniferous forest with little grove, scarce bushes, bushy prairie | 0.20–0.40 |
Damaged forest and bushes, pasture | 0.40–0.60 |
Damaged pasture and cultivate land | 0.60–0.80 |
Areas without vegetal cover | 0.80–1.00 |
Soil Erodibility Coefficient | Y |
Hard rock, erosion resistance | 0.1–0.3 |
Rock with moderate erosion resistance | 0.3–0.5 |
Weak rock, schistose, stabilized | 0.5–0.6 |
Sediments, moraines, clay and other rock with little resistance | 0.6–0.8 |
Fine sediments and soils without erosion resistance | 0.8–1.0 |
Erosion and Stream Network Development Coefficient | φ |
Little erosion on watershed | 0.1–0.2 |
Erosion in waterways in 20–50% of the basin area | 0.3–0.5 |
Erosion in rivers, gullies and alluvial deposits, karstic erosion | 0.6–0.7 |
50–80% of the basin area affected by surface erosion and landslides | 0.8–0.9 |
Whole watershed affected by erosion | 1.0 |
Erosion Category | Erosion Intensity | Range of Z | Range of W (m3/km2/Year) | 1971 | 2016 | ||
---|---|---|---|---|---|---|---|
Area (km2) | (%) | Area (km2) | (%) | ||||
I | excessive | 1.01–1.50 | >3000 | 21.5 | 2.4 | ||
II | intensive | 0.71–1.00 | 1200–3000 | 235.4 | 25.9 | 16.5 | 1.76 |
III | medium | 0.41–0.70 | 800–1200 | 115.7 | 12.7 | 262.76 | 28.83 |
IV | weak | 0.21–0.40 | 400–800 | 312.6 | 34.3 | 595.95 | 65.39 |
V | very weak | 0.01–0.20 | 100–400 | 160.5 | 17.6 | 36.55 | 4.01 |
accumulation | 63.8 | 7.0 |
Land Use Type | 1961 | 2011 |
---|---|---|
F (ha) | ||
Ploughed land and gardens | 21,051.00 | 12,215.72 |
Vineyards | 522.30 | 259.61 |
Orchards | 1997.23 | 2107.38 |
Meadows | 4237.22 | 4512.57 |
Arable land | 27,807.75 | 19,095.28 |
Forests | 10,991.70 | 9995.87 |
Pastures | 968.58 | 1072.94 |
Other | 769.60 | 867.02 |
Total | 40,537.63 | 31,031.11 |
Year | Average Population in Settlements | Hypsometric Zone | Average Number of Households in a Settlement | ||
---|---|---|---|---|---|
<300 m | 300–500 m | >500 m | |||
1961 | 629 | 760 | 636 | 547 | 116 |
1971 | 574 | 794 | 570 | 431 | 122 |
1981 | 527 | 833 | 518 | 320 | 127 |
1991 | 463 | 840 | 457 | 197 | 123 |
2002 | 408 | 800 | 383 | 145 | 119 |
2011 | 336 | 718 | 339 | 73 | 102 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gocić, M.; Dragićević, S.; Radivojević, A.; Martić Bursać, N.; Stričević, L.; Đorđević, M. Changes in Soil Erosion Intensity Caused by Land Use and Demographic Changes in the Jablanica River Basin, Serbia. Agriculture 2020, 10, 345. https://doi.org/10.3390/agriculture10080345
Gocić M, Dragićević S, Radivojević A, Martić Bursać N, Stričević L, Đorđević M. Changes in Soil Erosion Intensity Caused by Land Use and Demographic Changes in the Jablanica River Basin, Serbia. Agriculture. 2020; 10(8):345. https://doi.org/10.3390/agriculture10080345
Chicago/Turabian StyleGocić, Milena, Slavoljub Dragićević, Aleksandar Radivojević, Nataša Martić Bursać, Ljiljana Stričević, and Milan Đorđević. 2020. "Changes in Soil Erosion Intensity Caused by Land Use and Demographic Changes in the Jablanica River Basin, Serbia" Agriculture 10, no. 8: 345. https://doi.org/10.3390/agriculture10080345
APA StyleGocić, M., Dragićević, S., Radivojević, A., Martić Bursać, N., Stričević, L., & Đorđević, M. (2020). Changes in Soil Erosion Intensity Caused by Land Use and Demographic Changes in the Jablanica River Basin, Serbia. Agriculture, 10(8), 345. https://doi.org/10.3390/agriculture10080345