The Influence of the Application Technique and Amount of Liquid Starter Fertilizer on Corn Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agro-Climatic Conditions
2.2. Trial Design and Applied Corn Production Technology
2.3. The Working Principle of the Prototype of the Electronic Device EUKU-01
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
EUKU-01 | electronic device name |
NPK | mineral fertilizer (Nitrogen, Phosphorous, Potassium) |
KAN | mineral fertilizer (Potassium, Ammonia, Nitrogen) |
E1, E2, …E15 | experimental plots |
T0, T1 and T2 | mineral fertilizer sub treatments |
TT0, TT1, … TT4 | starter fertilizer treatments |
Q | yield of dry corn grain, with 14% of water, t ha−1 |
P | yield of raw grain, t ha−1 |
U | water content in the grain at the time of harvest, % |
H | allowed water content in the grain (14%), % |
References
- Starcevic, L.J.; Latkovic, D. Favorable Year for Record Corn Yields. In 75 Years at the Service of Agriculture (1938–2013); Institute of Field and Vegetable Crops: Novi Sad, Serbia, 2006. [Google Scholar]
- Egli, D.B. Comparison of Corn and Soybean Yields in the United States: Historical Trends and Future Prospects. Agron. J. 2008, 100, S79–S88. [Google Scholar] [CrossRef] [Green Version]
- Assefa, Y.; Vara-Prasad, P.V.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Ciampitti, I.A. A New Insight into Corn Yield: Trends from 1987 through 2015. Crop Sci. 2017, 57, 2799–2811. [Google Scholar] [CrossRef] [Green Version]
- Elmore, R.; Al-Kaisi, M.; Hanna, M. Corn Seeding Depth: Back to the Basics; University of Maryland Extension: College Park, MD, USA, 2014. [Google Scholar]
- Kostic, M.; Rakic, D.; Radomirovic, D.; Savin, L.; Dedovic, N.; Crnojevic, V.; Ljubicic, N. Corn seeding process fault cause analysis based on a theoretical and experimental approach. Comp. Electron. Agric. 2018, 151, 207–218. [Google Scholar] [CrossRef]
- Poncet, A.M.; Fulton, J.P.; McDonald, T.P.; Knappenberger, T.; Shaw, J.N.; Bridges, R.W. Effect of Heterogeneous Field Conditions on Corn Seeding Depth Accuracy and Uniformity. Appl. Eng. Agric. 2018, 34, 819–830. [Google Scholar] [CrossRef]
- Stanacev, V.; Savic, S.; Kovcin, S.; Starcevic, L.j.; Latkovska, M.; Latkovic, D. Influence of fertilization on grain chemical characteristics and yield of selected NS maize hybrids. Acta Periodica Tehnol. 2000, 31, 207–212. [Google Scholar]
- Shapiro, C.A.; Ferguson, R.B.; Hergert, G.W.; Wortmann, C.S.; Walters, D.T. Fertilizer Suggestions for Corn; University of Nebraska Extension: Lincoln, NE, USA, 2008; Available online: https://agronomy.unl.edu/faculty/ferguson/ec117.pdf (accessed on 4 July 2020).
- Latkovic, D.; Jacimovic, G.; Marinkovic, B.; Malesevic, M.; Crnobarac, J. Fertilization system as a function of maize yield in monoculture and two-field. Ann. Sci. Pap. 2009, 1, 77–84. [Google Scholar]
- Spalevic, V.; Lakicevic, M.; Radanovic, D.; Billi, P.; Barovic, G.; Vujacic, D.; Sestras, P.; Khaledi Darvishan, A. Ecological-Economic (Eco-Eco) modelling in the river basins of Mountainous regions: Impact of land cover changes on sediment yield in the Velicka Rijeka in Montenegro. Not. Bot. Horti Agrobot. Cluj Napoca 2017, 45, 602–610. [Google Scholar] [CrossRef] [Green Version]
- McDaniel, M.D.; Walters, D.T.; Bundy, L.G.; Li, X.; Drijber, R.A.; Sawyer, J.E.; Castellano, M.J.; Laboski, C.A.M.; Scharf, P.C.; Horwath, W.R. Combination of biological and chemical soil tests best predict maize nitrogen response. Agron. J. 2020, 112, 1263–1278. [Google Scholar] [CrossRef] [Green Version]
- Teare, I.D.; Wright, D.L. Corn Hybrid-Starter Fertilizer Interaction for Yield and Lodging. Crop Sci. 1990, 30, 1298–1303. [Google Scholar] [CrossRef]
- Mascagni, H.; Boquet, D. Starter Fertilizer and Planting Date Effects on Corn Rotated with Cotton. Agron. J. 1996, 88, 975–982. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Bergmann, N.; Kaiser, D.E. Corn Responses to In-Furrow Phosphorus and Potassium Starter Fertilizer Applications. Agron. J. 2011, 103, 685–694. [Google Scholar] [CrossRef]
- Bundy, L.G.; Andraski, T.W. Site-Specific Factors Affecting Corn Response to Starter Fertilizer. J. Product. Agric. 2013, 12, 664–670. [Google Scholar] [CrossRef]
- Penas, E.J.; Herget, G.W. Using Starter Fertilizers for Corn, Grani Sorghum and Soybeans; Cooperative Extension, Institute of Agriculture and Natural Resources; University of Nebraska: Lincoln, NE, USA, 1990. [Google Scholar]
- Rehm, G.W.; Lamb, J.A. Corn Response to Fluid Fertilizers Placed Near the Seed at Planting. Soil Sci. Soc. Am. J. 2009, 73, 1427–1434. [Google Scholar] [CrossRef]
- Steele, K.W.; McCormick, S.J.; Percival, N.; Brown, N.S. Nitrogen, phosphorus, potassium, magnesium, and sulphur requirements for maize grain production. N. Z. J. Exp. Agric. 1981, 9, 243–249. [Google Scholar] [CrossRef]
- Hergert, G.W.; Wortmann, C.S.; Ferguson, R.B.; Shapiro, C.A.; Shaver, T.M. Using Starter Fertilizers for Corn, Grain Sorghum, and Soybeans; University of Nebraska Extension: Lincoln, NE, USA, 2012; Available online: http://extensionpublications.unl.edu/assets/pdf/g361.pdf (accessed on 4 July 2020).
- Carsky, R.J.; Reid, W.S. Response of Corn to Zinc Fertilization. J. Prod. Agric. 1990, 3, 502–507. [Google Scholar] [CrossRef]
- Mirta, R.; Bukvic, G.; Josipovic, M. Response of Corn to Zinc Fertilization. Energy Effic. Agric. Eng. 2002, 1, 131–136. [Google Scholar]
- Hajabbasi, M.A.; Schumacher, T.E. Phosphours effects on root growth and development in two maize genotypes. Plant Soil 1994, 158, 39–46. [Google Scholar] [CrossRef]
- Alley, M.; Reiter, S.; Thomason, W.; Reiter, M. Pop-Up and/or Starter Fertilizers for Corn; Virginia Cooperative Extension: Blacksburg, VA, USA, 2010; pp. 1438–3002. [Google Scholar]
- Hedges, W. Starter Fertilizer Management for Corn and Soybean in the Southern Plains. Bachelor’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2014. Available online: https://hdl.handle.net/11244/9329 (accessed on 4 July 2020).
- Beegle, D.; Roth, G.; Lingenfelter, D. Starter Fertilizer. In Penn State Extension, Agronomy Facts 51; The Pennsylvania State University: State College, PA, USA, 2007. [Google Scholar]
- Gordon, W.B. Starter Fertilizer Application Method and Composition in Reduce-Tillage Corn Production. Better Crops 2009, 93, 10–11. [Google Scholar]
- Nkebiwe, P.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crop Sci. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Nouraein, M.; Skataric, G.; Spalevic, V.; Dudic, B.; Gregus, M. Short-Term Effects of Tillage Intensity and Fertilization on Sunflower Yield, Achene Quality, and Soil Physicochemical Properties under Semi-Arid Conditions. Appl. Sci. 2019, 9, 5482. [Google Scholar] [CrossRef] [Green Version]
- Jokela, W.E. Applying Starter Fertilizer. Advanced Silage Corn Management. 2004. Available online: https://farmwest.com/node/949 (accessed on 4 July 2020.).
- McGrath, J.M.; Binford, G. Corn Response to Starter Fertilizer with and without AVAIL. Crop Sci. 2012, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Endres, G.; Franzen, D.; Kandel, H.; Ostlie, M.; Schatz, B. Corn Response to Phosphorus Starter Fertilizer in North Dakota; North Dakota State University Extention Service: Fargo, ND, USA, 2017. [Google Scholar]
- Bremner, J.M. Nitrogen Total. In Methods of Soil Analysis Part 3: Chemical Methods; SSSA Book Series 5; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1122. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nahrstoffzustandes der Boden, II: Chemische Extractionsmetoden zu Phosphorund Kaliumbestimmung. Kungliga Lantbrukshügskolans Annaler 1960, 26, 199–215. [Google Scholar]
- Spalevic, V. Assessment of soil erosion processes by using the ‘IntErO model‘: Case study of the Duboki Potok, Montenegro. J. Environ. Prot. Ecol. 2019, 20, 657–665. [Google Scholar]
- Nikolic, G.; Spalevic, V.; Curovic, M.; Khaledi Darvishan, A.; Skataric, G.; Pajic, M.; Kavian, A.; Tanaskovik, V. Variability of Soil Erosion Intensity Due to Vegetation Cover Changes: Case Study of Orahovacka Rijeka, Montenegro. Not. Bot. Horti Agrobo. 2019, 47, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Todorovic, J.; Lazic, B.; Komljenovic, I.; Nenadic, N.; Djurovka, M.; Janjic, V. Crops and Vegetable Manual; University of Banja Luka: Banja Luka, Bosnia and Herzegovina, 2003. [Google Scholar]
- Murányi, E. Effect of plant density and row spacing on maize (Zea mays L.) grain yield in different crop year. Columella J. Agric. Environ. Sci. 2015, 2, 57–63. [Google Scholar] [CrossRef]
- Dražić, S.M. Development and Optimization of Novel Electronic Device for Automatic Control of Liquid Starter Fertilizer Injection in Maize Sowing; Faculty of Agriculture, University of Belgrade: Belgrade, Serbia, 2017. [Google Scholar]
- Camberato, J.; Hornaday, C.; Nielsen, B. Response of Corn to Starter Fertilizer—2015 Research Update; Agronomy Department, Purdue University: West Lafayette, IN, USA, 2016. [Google Scholar]
- Ritchie, K.B.; Hoeft, R.G.; Nafziger, E.D.; Gonzini, L.C.; Warren, J.J.; Banwart, W.L. Starter Fertilizers for No-till Corn. Better Crop. 1996, 80, 6–9. [Google Scholar]
- Quinn, J.D.; Lee, D.C.; Poffenberger, J.H. Corn Yield Response to Sub-surface Banded Starter Fertilizer in the U.S.: A Meta-analysis. Field Crop. Res. 2020, 254. [Google Scholar] [CrossRef]
- Liang, B.C.; MacKenzie, A.F.; Schnitzer, M.; Monreal, C.M.; Voroney, P.R.; Beyaert, R.P. Management-induced change in labile soil organic matter under continuous cornin eastern Canadian soils. Biol. Fertility Soil. 1997, 26, 88–94. [Google Scholar] [CrossRef]
- Glamoclija, D.J. Special Farming—Cereals and Legumes; Faculty of Agriculture, University of Belgrade: Belgrade, Serbia, 2012. [Google Scholar]
- Gatiboni, L.; Osmond, D.; Hardy, D.; Kulesza, S. Starter Phosphorus Fertilizer and Additives in North Carolina Soils: Use, Placement, and Plant Response. Available online: https://content.ces.ncsu.edu/starter-phosphorus-fertilizer-and-additives-in-nc-soils-use-placement-and-plant-response (accessed on 4 July 2020).
- Touchton, J.T.; Karim, F. Corn Growth and Yield responses to Starter Fertilizers in Conservation—Tillage Systems. Soil Tillage Res. 1986, 7, 135–144. [Google Scholar] [CrossRef]
- Dražić, M.; Pajić, M.; Dumanović, Z.; Radojičić, D.; Gligorević, K.; Stojanović, M.; Božić, S. Effects of mechanized method of liquid fertilizer application in corn production. Poljoprivredna Tehnika 2012, 37, 63–70. [Google Scholar]
- Oljača, M.; Raičević, D.; Ercegović, Đ; Vukić, Đ; Oljača, S.; Radojević, R.; Zivković, M.; Gligorević, K.; Pajić, M.; Spalevic, V.; et al. Aspects of using machinery and tools in contemporary plant production—Marsh soils case. Agric. For. 2014, 60, 39–51. [Google Scholar]
Year | Site | Depth (cm) | pH | Humus | Total N | CaCO3 | Ca | P2O5 | P | K2O | K | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O | 1 M KCL | (%) | mg/100 g | |||||||||
2016 | 1 | 0–30 | 6.79 | 6.08 | 2.75 | 0.31 | 0 | 0 | 15.9 | 6.94 | 25.7 | 21.42 |
30–60 | 6.51 | 5.95 | 2.69 | 0.26 | 0 | 0 | 12.3 | 5.37 | 24.9 | 20.75 | ||
2 | 0–30 | 6.72 | 6.42 | 3.26 | 3.46 | 0 | 0 | 17.9 | 7.81 | 22.1 | 18.42 | |
30–60 | 7.10 | 6.69 | 2.77 | 2.93 | 0.5 | 0.2 | 12.1 | 5.28 | 24.9 | 20.75 | ||
2017 | 1 | 0–30 | 6.54 | 6.14 | 2.29 | 0.22 | 0 | 0 | 16.9 | 7.38 | 20.9 | 17.42 |
30–60 | 6.32 | 5.97 | 2.35 | 0.26 | 0 | 0 | 14.3 | 6.24 | 19.1 | 15.92 | ||
2 | 0–30 | 6.93 | 6.31 | 3.29 | 2.71 | 0 | 0 | 18.6 | 8.12 | 24.4 | 20.33 | |
30–60 | 7.43 | 6.50 | 2.71 | 2.8 | 0.1 | 0.04 | 15.0 | 6.55 | 20.5 | 17.08 | ||
2018 | 1 | 0–30 | 7.21 | 6.31 | 2.47 | 0.28 | 0 | 0 | 17.3 | 7.55 | 19.9 | 16.58 |
30–60 | 6.77 | 6.35 | 2.46 | 1.98 | 0 | 0 | 15.1 | 6.59 | 21.3 | 17.75 | ||
2 | 0–30 | 6.80 | 6.79 | 2.82 | 3.25 | 1.2 | 0.48 | 16.6 | 7.25 | 22.7 | 18.92 | |
30–60 | 7.11 | 6.85 | 2.60 | 2.72 | 1.6 | 0.64 | 14.9 | 6.51 | 18.1 | 15.08 |
Nutrients | Content |
---|---|
Nitrogen (N) | 10%/−1.1% (8% of NH4-N, 2% of NO3-N) |
Phosphorus (as P2O5) | 40%/−1.1% (water-soluble) |
Potassium (as K2O) | 10%/−1.1% (water-soluble) |
Boron (B) | 0.02%/−0.004% |
Copper (Cu) EDTA | 0.015%/−0.003% |
Iron (Fe) DTPA | 0.04%/−0.008% |
Manganese (Mn) EDTA | 0.04%/−0.008% |
Molybdenum (Mo) | 0.008%/−0.0016% |
Zink (Zn) EDTA | 0.015%/−0.004% |
Heavy Metals | Maximum Content in mg/kg by Dry Weight of Plant Nutrition Products |
Lead (Pb) | 100 |
Cadmium (Cd) | 75 mg/kg P2O5 |
Chrome(Cr) | 500 |
Nickel (Ni) | 100 |
Mercury (Hg) | 1 |
Starter Fertilizer Application Technique | Sprayer Designation | Working Pressure (bar) | Starter Fertilizer Amount (L ha−1) |
---|---|---|---|
Application in belt | TR 80-02 | 3 | 100 |
Application in point | ID-120-08 | 8 | 70 |
Application in belt | TR 80-01 | 3 | 50 |
Application in point | ID-120-04 | 8 | 35 |
Liquid Starter Fertilizer Treatments | Amounts of Starter Fertilizers (L ha−1) | Amounts of Mineral Fertilizers -Sub Treatments (kg ha−1) | ||
---|---|---|---|---|
Starter-A | T0 NPK + KAN (Plots E1–E5) | T1 NPK + KAN (Plots E6–E10) | T2 NPK + KAN (Plots E11–E15) | |
TT0–control | 0 | 0 + 0 | 150 + 100 | 300 + 200 |
TT1–point form | 35 | |||
TT2–belt form | 50 | |||
TT3–point form | 70 | |||
TT4–belt form | 100 |
Year | Locality | April | May | June | July | August | September | Unit |
---|---|---|---|---|---|---|---|---|
2016 | 1 | 60.5 | 138.3 | 125.9 | 79.1 | 124.7 | 55 | mm |
17 | 17.4 | 22.8 | 24.4 | 22.1 | 20 | °C | ||
2 | 57.9 | 63.4 | 156 | 34.7 | 50.6 | 60.1 | mm | |
20.4 | 22.2 | 27.4 | 28.7 | 27.8 | 25.3 | °C | ||
2017 | 1 | 81.2 | 77.3 | 47.4 | 26.5 | 46.1 | 63.1 | mm |
13.2 | 18.5 | 24.2 | 26.3 | 27.3 | 19.3 | °C | ||
2 | 45.6 | 82.1 | 35.8 | 37.7 | 26.6 | 58.2 | mm | |
17.7 | 23.2 | 29.4 | 31.1 | 32.3 | 23.7 | °C | ||
2018 | 1 | 50.5 | 88.7 | 198.5 | 216.1 | 6.6 | 17.7 | mm |
19.1 | 21.1 | 21.6 | 21.7 | 25.2 | 20.6 | °C | ||
2 | 39.7 | 42.6 | 78.7 | 89.9 | 30.8 | 15.2 | mm | |
23.1 | 26.3 | 27.1 | 27.4 | 30.8 | 26.2 | °C | ||
Conditionally optimal precipitation | 50 | 75 | 90 | 100 | 95 | 80 | mm | |
Conditionally optimal temperature | 15 | 18.3 | 20 | 23.3 | 22.8 | 18 | °C |
Year | Treatment (t ha−1) | |||||
---|---|---|---|---|---|---|
TT0 | TT1 | TT2 | TT3 | TT4 | Overall Mean | |
2016 | 3.73 | 4.14 | 4.17 | 4.42 | 4.51 | 4.19 |
2017 | 2.75 | 2.95 | 2.89 | 3.21 | 3.21 | 3.00 |
2018 | 3.70 | 3.89 | 3.99 | 4.29 | 4.12 | 4.00 |
Overall mean | 3.39 | 3.66 | 3.68 | 3.97 | 3.95 | 3.73 |
p-Values | ||||
---|---|---|---|---|
df | 2016 | 2017 | 2018 | |
Sub treatment | 2 | 1.143 × 10−11 *** | 1.644 × 10−5 *** | 1.968 × 10−8 *** |
Treatment | 4 | 0.00575 ** | 0.4944 | 0.1437 |
Sub treatment × Treatment | 8 | 0.94973 | 0.9998 | 0.9982 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drazic, M.; Gligorevic, K.; Pajic, M.; Zlatanovic, I.; Spalevic, V.; Sestras, P.; Skataric, G.; Dudic, B. The Influence of the Application Technique and Amount of Liquid Starter Fertilizer on Corn Yield. Agriculture 2020, 10, 347. https://doi.org/10.3390/agriculture10080347
Drazic M, Gligorevic K, Pajic M, Zlatanovic I, Spalevic V, Sestras P, Skataric G, Dudic B. The Influence of the Application Technique and Amount of Liquid Starter Fertilizer on Corn Yield. Agriculture. 2020; 10(8):347. https://doi.org/10.3390/agriculture10080347
Chicago/Turabian StyleDrazic, Milan, Kosta Gligorevic, Milos Pajic, Ivan Zlatanovic, Velibor Spalevic, Paul Sestras, Goran Skataric, and Branislav Dudic. 2020. "The Influence of the Application Technique and Amount of Liquid Starter Fertilizer on Corn Yield" Agriculture 10, no. 8: 347. https://doi.org/10.3390/agriculture10080347
APA StyleDrazic, M., Gligorevic, K., Pajic, M., Zlatanovic, I., Spalevic, V., Sestras, P., Skataric, G., & Dudic, B. (2020). The Influence of the Application Technique and Amount of Liquid Starter Fertilizer on Corn Yield. Agriculture, 10(8), 347. https://doi.org/10.3390/agriculture10080347