Biological Control Potential of Native Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae) against Mamestra brassicae L. (Lepidoptera: Noctuidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Insects
2.2. Nematodes
2.3. Bioassay
2.4. Statistical Analyses
3. Results and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Rojas, J.C. The influence of age, sex and mating status, egg load, prior exposure to mates, and time of day on host-finding behavior of Mamestra brassicae (Lepidoptera: Noctuidae). Environ. Entomol. 1999, 28, 155–162. [Google Scholar] [CrossRef]
- Tratwal, A.; Baran, M.; Jakubowska, M.; Roik, K.; Strażyński, P.; Wielkopolan, B. Phytosanitary Status of Crop Plants in Poland in 2017 and Expected Occurrence of Pests in 2018; Institute of Plant Protection–National Research Institute: Poznań, Poland, 2018; p. 124. [Google Scholar]
- Goulson, D.; Cory, J.S. Responses of Mamestra brassicae (Lepidoptera: Noctuidae) to crowding: Interactions with disease resistance, colour phase and growth. Oecologia 1995, 104, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D. Determination of larval melanization in the moth, Mamestra brassicae, and the role of melanin in thermoregulation. Heredity 1994, 73, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Boag, B.; Neilson, R.; Gordon, S.C. Distribution and prevalence of the entomopathogenic nematode Steinernema feltiae in Scotland. Ann. Appl. Biol. 1992, 121, 355–360. [Google Scholar] [CrossRef]
- Stuart, R.J.; Gaugler, R. Patchiness in populations of entomopathogenic nematodes. J. Invertebr. Pathol. 1994, 64, 39–45. [Google Scholar] [CrossRef]
- Nadasy, M.; Saringer, G.Y.; Lucskai, A.; Fodor, A.; Samu, Z.; Ignacz, J.; Budai, C.S.; Klein, M. Effect of Entomopathogenic Nematodes from the Genera Steinernema and Heterorhabditis on Caterpillars of Two Pest Insect Species (Pieris brassicae L. and Mamestra brassicae L.) That Damage Cruciferous Vegetable Crops. In Proceedings of the Integrated Control in Field Vegetables, Chania, Crete, 6–8 October 1999; Finch, S., Hartield, C., Brunel, E., Eds.; IOBC-WPRS Bulletin: Zürich, Switzerland, 1999; Volume 22, pp. 127–135. [Google Scholar]
- Nielsen, O.; Philipsen, H. Recycling of entomopathogenic nematodes in Delia radicum and in other insects from cruciferous crops. BioControl 2004, 49, 285–294. [Google Scholar] [CrossRef]
- Arthurs, S.; Heinz, K.M.; Prasifka, J.R. An analysis of using entomopathogenic nematodes against above-ground pests. B Entomol. Res. 2004, 94, 297–306. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Fuzy, E.M. Effect of white grub developmental stage on susceptibility to entomopathogenic nematodes. J. Econ. Entomol. 2004, 97, 1842–1849. [Google Scholar] [CrossRef]
- Laznik, Ž.; Tóth, T.; Lakatos, T.; Vidrih, M.; Trdan, S. Oulema melanopus (L.) (Coleoptera: Chrysomelidae) adults are susceptible to entomopathogenic nematodes (Rhabditida) attack: Results from a laboratory study. J. Plant Dis. Prot. 2010, 11, 30–32. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.I.; Cottrell, T.E.; Mizell, R.F.; Horton, D.L. Efficacy of Steinernema carpocapsae plus fire gel applied as a single spray for control of the lesser peachtree borer, Synanthedon pictipes. Biol. Control 2016, 94, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Makirita, W.E.; Pentok, M.; Wu, L.; Liu, Y.; Chacha, M.; He, N.; Li, X.; Zhang, F.; Liu, T. Sustainable crop protection using nematodes (Steinernema Spp.) as biological control agents. J. Biobased Mater. Biol. 2019, 13, 279–289. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M. Microbial control of turfgrass insects. In Handbook of Turfgrass Management and Physiology; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 299–314. [Google Scholar]
- Dillman, A.R.; Chaston, J.M.; Adams, B.; Ciche, T.; Goodrich-Blair, H.; Stock, S.P.; Sternberg, P.W. An entomopathogenic nematode by any other name. PLoS Pathog. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, F.R.; Crook, N.E.; Entwistle, P.F. Viruses as pathogens for the control of insects. In Microbiological Methods for Environmental Biotechnology; Grainger, J.M., Lynch, J.M., Eds.; Academic Press: London, UK, 1984; pp. 323–347. [Google Scholar]
- Kazimirova, M. Influence of larval crowding and matting on lifespain and fecundity of Mamestra brassicae (Lepidoptera: Noctuidae). Eur. J. Entomol. 1996, 93, 45–52. [Google Scholar]
- Tumialis, D.; Pezowicz, E.; Skrzecz, I.; Mazurkiewicz, A.; Maszewska, J.; Jarmuł Pietraszczyk, J.; Kucharska, K. Occurrence of entomopathogenic nematodes in Polish soils. Ciên. Rural 2016, 46, 1126–1129. [Google Scholar] [CrossRef] [Green Version]
- Kaya, H.K.; Stock, S.P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology; Lacey, L.A., Ed.; Academic Press: London, UK, 1997; pp. 281–324. [Google Scholar]
- White, G.F. A method for obtaining infective nematode larvae from cultures. Science 1927, 66, 302–303. [Google Scholar] [CrossRef]
- Bajc, N.; Držaj, U.; Trdan, S.; Laznik, Z. Compatibility of acaricides with entomopathogenic nematodes (Steinernema and Heterorhabditis). Nematology 2017, 19, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Mazurkiewicz, A.; Jakubowska, M.; Tumialis, D.; Pezowicz, E.; Skrzecz, I. Susceptibility of Agrotis exclamationis L. (Lepidoptera: Noctuidae) larvae to native strains of entomopathogenic nematodes. Acta Scientiarum Polonorum. Hortorum Cultus 2016, 15, 121–127. [Google Scholar]
- Mazurkiewicz, A.; Tumialis, D.; Pezowicz, E.; Skrzecz, I.; Błażejczyk, G. Susceptibility of Pieris brassicae, P. napi and P. rapae (Lepidoptera: Pieridae) larvae to native strains of Steinernema feltiae (Filipjev, 1934). J. Plant Dis. Prot. 2017, 124, 521–524. [Google Scholar] [CrossRef] [Green Version]
- Tumialis, D.; Skrzecz, I.; Mazurkiewicz, A.; Pezowicz, E. Susceptibility of caterpillars of the pine tree lappet moth Dendrolimus pini to native isolates of entomopathogenic nematodes. Int. J. Pest. Manag. 2019, 65, 332–337. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.I.; Gougeb, D.H.; Piggott, S.J.; Patterson Fife, J. Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biol. Control 2006, 38, 124–133. [Google Scholar] [CrossRef]
- Baur, M.E.; Kaya, H.K.; Gaugler, R.; Tabashnik, B.E. Effects of adjuvants on entomopathogenic nematode persistence and efficacy against Plutella xylostella. Biocontrol Sci. Technol. 1997, 7, 513–525. [Google Scholar] [CrossRef]
- Schroer, S.; Ehlers, R.U. Foliar application of the entomopathogenic nematode Steinernema carpocapsae for biological control of diamondback moth larvae (Plutella xylostella). Biol. Control 2005, 33, 81–86. [Google Scholar] [CrossRef]
- Head, J.; Lawrence, A.J.; Walters, K.F.A. Efficacy of the entomopathogenic nematode, Steinernema feltiae, against Bemisia tabaciin relation to plant species. J. Appl. Entomol. 2004, 128, 543–547. [Google Scholar] [CrossRef]
- Navon, A.; Nagalakshmi, V.K.; Shlomit, L.; Salame, L.; Glazer, I. Effectiveness of entomopathogenic nematodes in an alginate gel formulation against Lepidopterous pests. Biocontrol Sci. Technol. 2002, 12, 737–746. [Google Scholar] [CrossRef]
- Hazir, S.; Keskin, N.; Stock, S.P.; Kaya, H.K.; Ozcan, S. Diversity and distribution of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Turkey. Biodivers. Conserv. 2003, 12, 375–386. [Google Scholar] [CrossRef]
- Trdan, S.; Vidrih, M.; Andjusn, L.; Laznik, Ž. Activity of four entomopathogenic nematode species against different developmental stages of Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera, Chrysomelidae). Helminthologia 2009, 46, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Laznik, Ž.; Tóth, T.; Lakatos, T.; Vidrih, M.; Trdan, S. Control of the Colorado potato beetle (Leptinotarsa decemlineata [Say]) on potato under field conditions: A comparison of the efficacy of foliar application of two strains of Steinernema feltiae (Filipjev) and spraying with thiametoxam. J. Plant Dis. Prot. 2010, 117, 129–135. [Google Scholar] [CrossRef]
- Bélair, G.; Fournier, Y.; Dauphinais, N. Efficacy of steinernematid nematodes against three insect pests of crucifers in Quebec. J. Nematol. 2003, 35, 259–265. [Google Scholar]
- Trdan, S.; Vidrih, M.; Valič, M.; Laznik, Ž. Impact of entomopathogenic nematodes on adults of Phyllotreta spp. (Coleoptera: Chrysomelidae) under laboratory conditions. Acta Agric. Scand. Sect. B Soil Plant Sci. 2008, 58, 169–175. [Google Scholar]
- Andaló, V.; Santos, V.; Moreira, G.F.; Moreira, C.C.; Moino, A., Jr. Evaluation of entomopathogenic nematodes under laboratory and greenhouses conditions for the control of Spodoptera frugiperda. Ciência Rural 2010, 40, 1860–1866. [Google Scholar] [CrossRef] [Green Version]
- Lewis, E.E.; Campbell, J.; Griffin, C.; Kaya, H.; Peters, A. Behavioral ecology of entomopathogenic nematodes. Biol. Control 2006, 38, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Gulcu, B.; Ulug, D.; Hazir, C.; Karagoz, M.; Hazir, S. Biological control potential of native entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) against Spodoptera cilium (Lepidoptera: Noctuidae) in turfgrass. Biocontrol Sci. Technol. 2014, 24, 965–970. [Google Scholar] [CrossRef]
- Salvadori, J.D.M.; Schumacher Defferrari, M.; Ligabue-Braun, R.; Yamazaki Lau, E.; Salvadori, J.R.; Carlini, C.R. Characterization of entomopathogenic nematodes and symbiotic bacteria active against Spodoptera frugiperda (Lepidoptera: Noctuidae) and contribution of bacterial urease to the insecticidal effect. Biol. Control. 2012, 63, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Yuksel, E.; Taskesen, Y.E.; Erarslan, D.; Canhilal, R. Effectiveness of different entomopathogenic nematode species against the variegated cutworm, Peridroma saucia (Hubner) (Lepidoptera: Noctuidae). Egypt J. Biol. Pest. Control 2018. [Google Scholar] [CrossRef] [Green Version]
- Gözel, U.; Güneş, Ç. Effect of entomopathogenic nematode species on the corn stalk borer (Sesamia cretica Led. Lepidoptera: Noctuidae) at different temperatures. Türk. Entomol. Derg. 2013, 37, 65–72. [Google Scholar]
Species | Isolate | Sampling Site | Geographic Coordinates |
---|---|---|---|
Steinernema feltiae | K10 | fallow lands near Katowice | N 50°10′27.5″ E 18°56′51.3″ |
S. feltiae | K11 | wheat crop near Katowice | N 50°20′5.5968″ E 19°2′14.0388″ |
S. feltiae | K13 | field (Miscantus giganteus crop) (Silesia Region) | N 50°15′58.68″ E 19°5′52.08″ |
S. feltiae | ZAG11 | deciduous forest, the Zagożdżonka River valley (Kozienicka Forest) | N 51°30′19.3″ E 21°29′13.9″ |
S. feltiae | ZAG15 | meadow, the Zagożdżonka River valley (Kozienicka Forest) | N 51°23′10.4820″ E 21°33′15.5412″ |
S. feltiae | ZWO21 | meadow, the Zwoleńka River valley (Kozienicka Forest) | N 51°23′21.7″ E 21°33′38.9 |
S. feltiae | ZWO23 | meadow, the Zwolenka River valley (Kozienicka Forest) | N 51°23′11.2″ E 21°33′10.1″ |
S. feltiae | ZWO4 | meadow, the Zwolenka River valley (Kozienicka Forest) | N 51°23′10.5″ E 21°33′33.7″ |
Heterorhabditis megidis | Wipsowo | wheat field (Pojezierze Olsztyńskie) | N 53°54′32.0″ E 20°47′54.4″ |
Isolate | Temperature and Dosages of EPNs | |||||
---|---|---|---|---|---|---|
17 °C | 22 °C | |||||
25 IJs | 50 IJs | 100 IJs | 25 IJs | 50 IJs | 100 IJs | |
K10 | 40 | 82.9 | 88.6 | 48.6 | 88.6 | 91.4 |
K11 | 45.7 | 91.4 | 94.3 | 48.6 | 94.3 | 100 |
K13 | 54.3 | 91.4 | 97.1 | 57.1 | 100 | 100 |
ZWO 4 | 11.4 | 31.4 | 51.4 | 20 | 42.9 | 48.6 |
ZWO 21 | 48.6 | 91.4 | 97.1 | 54.3 | 97.1 | 100 |
ZWO 23 | 20 | 45.7 | 85.7 | 22.9 | 37.1 | 80 |
ZAG 11 | 48.6 | 85.7 | 94.3 | 40 | 88.6 | 100 |
ZAG15 | 31.4 | 57.1 | 71.4 | 37.1 | 51.4 | 65.7 |
Wipsowo | 0 | 5.7 | 8.6 | 2.9 | 31.4 | 34.3 |
Isolate | Temperature and Dosages of EPNs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
25 IJs | 50 IJs | 100 IJS | ||||||||||
17 °C | 22 °C | χ2 | p * | 17 °C | 22 °C | χ2 | p * | 17 °C | 22 °C | χ2 | p * | |
K10 | 40 | 48.6 | 0.52 | 0.4704 | 82.9 | 88.6 | 0.47 | 0.4945 | 88.6 | 91.4 | 0.16 | 0.6903 |
K11 | 45.7 | 48.6 | 0.06 | 0.8108 | 91.4 | 94.3 | 0.22 | 0.6426 | 94.3 | 100 | 2.06 | 0.1513 |
K13 | 54.3 | 57.1 | 0.16 | 0.6903 | 91.4 | 100 | 3.13 | 0.0767 | 97.1` | 100 | 1.01 | 0.3138 |
ZWO 4 | 11.4 | 20 | 0.97 | 0.3245 | 31.4 | 42.9 | 0.98 | 0.3224 | 51.4 | 48.6 | 0.06 | 0.8111 |
ZWO 21 | 48.6 | 54.3 | 0.23 | 0.6324 | 91.4 | 97.1 | 1.06 | 0.3031 | 97.1 | 100 | 1.01 | 0.3138 |
ZWO 23 | 20 | 22.9 | 0.08 | 0.7708 | 45.7 | 37.1 | 0.53 | 0.4667 | 85.7 | 80 | 0.40 | 0.5259 |
ZAG 11 | 48.6 | 40 | 0.52 | 0.4704 | 85.7 | 88.6 | 0.13 | 0.7210 | 94.3 | 100 | 2.06 | 0.1513 |
ZAG15 | 31.4 | 37.1 | 0.78 | 0.3758 | 57.1 | 51.4 | 2.32 | 0.1277 | 71.4 | 65.7 | 0.27 | 0.6066 |
Wipsowo | 0 | 2.9 | 1.01 | 0.3138 | 5.7 | 31.4 | 7.65 | 0.0057 | 8.6 | 34.3 | 6.87 | 0.0088 |
Isolate | 17 °C | 22 °C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
25 × 50 IJs | 50 × 100 IJs | 25 × 100 IJs | 25 × 50 IJs | 50 × 100 IJs | 25 × 100 IJs | |||||||
χ2 | p * | χ2 | p * | χ2 | p * | χ2 | p * | χ2 | p * | χ2 | p * | |
K10 | 5.233 | 0.022 | 0.067 | 0.796 | 6.422 | 0.011 | 4.083 | 0.043 | 0.016 | 0.900 | 4.592 | 0.032 |
K11 | 5.333 | 0.021 | 0.015 | 0.901 | 5.898 | 0.015 | 5.120 | 0.024 | 0.059 | 0.808 | 6.231 | 0.013 |
K13 | 3.314 | 0.069 | 0.061 | 0.806 | 4.245 | 0.039 | 4.091 | 0.043 | 0.000 | 1.000 | 4.091 | 0.043 |
ZWO 4 | 3.267 | 0.071 | 1.690 | 0.194 | 8.909 | 0.003 | 2.909 | 0.088 | 0.125 | 0.724 | 4.167 | 0.041 |
ZWO 21 | 4.592 | 0.032 | 0.061 | 0.806 | 5.667 | 0.017 | 4.245 | 0.039 | 0.014 | 0.904 | 4.741 | 0.029 |
ZWO 23 | 3.522 | 0.061 | 4.261 | 0.039 | 14.297 | <0.001 | 1.190 | 0.275 | 5.488 | 0.019 | 11.111 | 0.001 |
ZAG 11 | 3.596 | 0.058 | 0.143 | 0.705 | 5.120 | 0.024 | 6.422 | 0.011 | 0.242 | 0.622 | 9.000 | 0.003 |
ZAG15 | 2.613 | 0.106 | 0.556 | 0.456 | 5.444 | 0.020 | 0.806 | 0.369 | 0.610 | 0.435 | 2.778 | 0.096 |
Wipsowo | - | - | 0.200 | 0.655 | - | - | 8.333 | 0.004 | 0.043 | 0.835 | 9.308 | 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazurkiewicz, A.; Tumialis, D.; Jakubowska, M. Biological Control Potential of Native Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae) against Mamestra brassicae L. (Lepidoptera: Noctuidae). Agriculture 2020, 10, 388. https://doi.org/10.3390/agriculture10090388
Mazurkiewicz A, Tumialis D, Jakubowska M. Biological Control Potential of Native Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae) against Mamestra brassicae L. (Lepidoptera: Noctuidae). Agriculture. 2020; 10(9):388. https://doi.org/10.3390/agriculture10090388
Chicago/Turabian StyleMazurkiewicz, Anna, Dorota Tumialis, and Magdalena Jakubowska. 2020. "Biological Control Potential of Native Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae) against Mamestra brassicae L. (Lepidoptera: Noctuidae)" Agriculture 10, no. 9: 388. https://doi.org/10.3390/agriculture10090388
APA StyleMazurkiewicz, A., Tumialis, D., & Jakubowska, M. (2020). Biological Control Potential of Native Entomopathogenic Nematodes (Steinernematidae and Heterorhabditidae) against Mamestra brassicae L. (Lepidoptera: Noctuidae). Agriculture, 10(9), 388. https://doi.org/10.3390/agriculture10090388