Assessment of the Effect of the Mineral Fertilization System on the Nutritional Status of Maize Plants and Grain Yield Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Thermal and Humidity Conditions
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Grain Yield
3.2. Assessment of Maize Nutritional Status
3.3. Component Accumulation in Plants at the BBCH 15/16 Stage
4. Conclusions
- Experimental factors significantly differentiated the level of maize grain yield irrespective of the year of research. The “stay green” variety showed a higher yield-forming reaction to varied mineral fertilization than the classical variety and this difference was particularly evident in the reaction to the lack of phosphorus fertilization.
- The nutritional status of plants was assessed in the initial growth stage of maize. Plant calcium and magnesium malnutrition was observed regardless of the analyzed fertilization variant and variety.
- There was a significant relationship between the nutritional status of maize in the BBCH 15/16 stage, plant biomass and grain yield. Regression analysis showed that grain yield was determined by plant biomass and its component content from 59% to 69%.
Author Contributions
Funding
Conflicts of Interest
References
- Huang, S.; Zhang, W.; Yu, X.; Huang, Q. Effects of long-term fertilization on corn productivity and its sustainability in an Ultisol of Southern China. Agric. Ecosyst. Environ. 2010, 138, 44–50. [Google Scholar] [CrossRef]
- Zhang, K.; Greenwood, D.J.; White, P.J.; Burns, I.G. A dynamic model for the combined effects of N, P and K fertilizers on yield and mineral composition; description and experimental test. Plant Soil 2007, 298, 81–98. [Google Scholar] [CrossRef]
- Sucunza, F.A.; Gutierrez-Boem, F.H.; Garcia, F.O.; Boxler, M. Long-term phosphorus fertilization of wheat, soybean and maize on Molisols: Soil test trends, critical levels and balances. Eur. J. Agron. 2018, 96, 87–95. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Prystupa, P.; Ferraris, G.; Courenot, L.; Maganano, L.; Dignani, D.; BGuttierrez-Bemoem, F. N:P:S stoichiometry in grains and physiological attributes associated with grain yield in maize as affected by phosphorus and sulfur nutrition. Field Crops Res. 2017, 203, 128–138. [Google Scholar] [CrossRef]
- Ma, Q.; Niknam, S.R.; Turner, D.W. Responses of osmotic adjustment and seed yield of Brassica napus and B. junacea to soil water deficit at different growth stages. Aust. J. Agric. Res. 2006, 57, 221–226. [Google Scholar] [CrossRef]
- Roberts, T.L. Improving nutrient use efficiency. Turk. J. Agric. For. 2008, 32, 177–182. [Google Scholar]
- Erley, G.S.; Kaul, H.; Krause, M.; Aufhammer, W. Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinna, and buckwheat under differing nitrogen fertilization. Eur. J. Agron. 2005, 22, 95–100. [Google Scholar] [CrossRef]
- Paponov, I.A.; Sambo, P.; Erley, G.S.; Presterl, T.; Geiger, H.H.; Engels, C. Grain yield and kernel weight of two maize genotypes differing in nitrogen use efficiency at various levels on nitrogen and carbohydrate availability during flowering and grain filling. Plant Soil 2005, 272, 111–123. [Google Scholar] [CrossRef]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Szulc, P.; Bocianowski, J.; Rybus-Zając, M. Accumulation of N, P, K and Mg nutrient elements and nutrient remobilization indices in the biomass of two contrasting maize (Zea mays L.) hybrids. Fresenius Environ. Bull. 2012, 21, 2062–2071. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 11 September 2020).
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://faostat.fao.org/site/567/default.aspx#ancor (accessed on 25 September 2019).
- GUS. Statistical Yearbook of Republic of Poland 2019. 2019. Available online: https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-the-republic-of-poland-2019,2,21.html (accessed on 11 September 2020).
- Wang, Y.; Lu, Y. Evaluating the potential health and economic effects of nitrogen fertilizer application in grain production systems of China. J. Clean. Prod. 2020, 264, 121635. [Google Scholar] [CrossRef]
- Davies, B.; Coulter, J.A.; Pagliari, P.H. Timing and rate of nitrogen fertilization influence maize yield and nitrogen use efficiency. PLoS ONE 2020, 15, e0233674. [Google Scholar] [CrossRef] [PubMed]
- Bąk, K.; Gaj, R. The effect of differentiated phosphorus and potassium fertilization on maize grain yield and plant nutritional status at the critical growth stage. J. Elementol. 2016, 21, 337–348. [Google Scholar]
- Shenoy, V.V.; Kalagudi, G.M. Enhancing plant phosphorus use efficiency for suitable cropping. Biotechnol. Adv. 2005, 23, 501–513. [Google Scholar] [CrossRef]
- Banaj, D.; Kovacevic, V.; Simic, D.; Seput, M.; Stojic, B. Phosphorus impacts on yield and nutritional status of maize. Cereal Res. Commun. 2006, 34, 393–396. [Google Scholar] [CrossRef]
- Bai, Z.H.; Li, H.G.; Yang, X.Y.; Zhou, B.K.; Shi, X.J.; Wang, B.R.; Li, D.C.; Shen, J.B.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 2013, 372, 27–37. [Google Scholar] [CrossRef]
- Glibert, P.M. Eutrophication, harmful algae and biodiversity—Challenging paradigms in a world complex nutrient changes. Mar. Pollut. Bull. 2017, 124, 591–606. [Google Scholar] [CrossRef]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of lake waters in China: Cost, causes, and control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef]
- Cakmak, I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 2002, 247, 3–24. [Google Scholar] [CrossRef]
- Stein, A.J. Global impacts of human mineral malnutrition. Plant Soil 2010, 335, 133–154. [Google Scholar] [CrossRef]
- Yi, C.; Jie, Z.; Zhen-Xiang, L.; Zhi-Jin, H.; Shu-Ting, D.; Ji-Wang, Z.; Bin, Z. Modified fertilization management of summer maize (Zea mays L.) in northern China improves grain yield and efficiency of nitrogen use. J. Integr. Agric. 2015, 14, 1644–1657. [Google Scholar]
- Gaj, R. Sustainable management of phosphorus in soil and plant in condition of intensive plant production. In Adaptive Soil Management—From Theory to Practices; Fertilizers and Fertilization; Springer: Berlin, Germany, 2008; Volume 33, p. 143. [Google Scholar]
- Qiu, S.; Xie, J.; Zhao, S.; Xu, X.; Hou, Y.; Wang, X.; Zhou, W.; He, P.; Johnston, A.; Christie, P.; et al. Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in northeast China. Field Crops Res. 2014, 163, 1–9. [Google Scholar] [CrossRef]
- Leach, K.A.; Hameleers, A. The effects of a foliar spray containing phosphorus and zinc on the development, composition and yield of forage maize. Grass Forage Sci. 2001, 56, 311–315. [Google Scholar] [CrossRef]
- Vega, C.R.C.; Andrade, F.H.; Sadras, V.O.; Uhart, S.A.; Valentinuz, O.R. Seed number as a function of growth. A comparative study in soybean, sunflower and maize. Crop. Sci. 2001, 41, 748–754. [Google Scholar]
- Subedi, K.D.; Ma, B.L. Nitrogen Uptake and Partitioning in Stay-Green and Leafy Maize Hybrids. Crop. Sci. 2005, 45, 740–747. [Google Scholar] [CrossRef]
- Damon, P.M.; Osbornel, D.; Rengel, Z. Canola genotypes differ in potassium efficiency during vegetative growth. Euphytica 2007, 156, 387–397. [Google Scholar] [CrossRef]
- Woodend, J.J.; Glass, A.D.M. Genotype environment interaction and correlation between vegetative and grain production measures of potassium use efficiency in wheat (T. aestivum L.) grown under potassium stress. Plant Soil 1993, 151, 39–44. [Google Scholar] [CrossRef]
- Yang, F.; Wang, G.; Zhang, Z.; Eneji, A.E.; Duan, L.; Li, Z.; Tian, X. Genotypic variations in potassium uptake and utilization in cotton. J. Plant Nutr. 2011, 34, 83–97. [Google Scholar] [CrossRef]
- Askegaard, M.; Eriksen, J.; Johnston, A.E. Sustainable management of potassium. In Managing Soil Quality —Challenges in Modern Agriculture; Schjonning, P., Elmholt, S., Christensen, B.T., Eds.; CABI Publishing International: Wallingford, UK, 2004; pp. 85–102. [Google Scholar]
- Asibi, A.E.; Chai, Q.; Coulter, J.A. Mechanisms of nitrogen use in maize. Agron. J. 2019, 9, 775. [Google Scholar] [CrossRef] [Green Version]
- Lockman, R.B. Relationships between corn fields and nutrient concentrations in seedling whole-plant samples. Agron. Abstr. 1969, 1969, 97. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: New York, NY, USA, 1995. [Google Scholar]
- Schulte, E.; Kelling, K. Plant Analysis: A Diagnostic Tool; University of Wisconsin: Madison, IA, USA, 2000; Available online: www.ces.pardue.edu/extmedia/NCH/NCH-46.html (accessed on 11 September 2020).
- Fageria, V.D. Nutrient interactions in crop plants. J. Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Jin, J.; Jiang, L.; Huang, S.; Liu, Z. Potassium assessment of grain producting soils in North China. Agric. Ecosyst. Environ. 2012, 148, 65–71. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, W.; Ru, S.; Chen, X.; Xiao, K.; Zhang, X.; Assaraf, M.; Imas, P.; Magen, H.; Zhang, F. Effects of potassium fertilization on winter wheat under different production practices in the North China Plain. Field Crops Res. 2013, 140, 69–76. [Google Scholar] [CrossRef]
- Karley, A.; White, P. Moving cationic minerals to edible tissues: Potassium, magnesium, calcium. Curr. Opin. Plant Biol. 2009, 12, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Farhat, N.; Rabhi, M.; Falleh, H.; Lenliz, K.; Smaoui, A.; Abdelly, C.; Lachaal, M.; Karray-Bouraoui, N. Interactive effects of excessive potassium and Mg deficiency on sanfflowe. Acta Physiol. Plant. 2013, 35, 2737–2745. [Google Scholar] [CrossRef]
- Diem, B.; Godbold, D.L. Potassium, calcium and magnesium antagonism in clones of Populus trichocarp. Plant. Soil. 1993, 155, 411–414. [Google Scholar] [CrossRef]
- Pujos, A.; Morasd, P. Effects of potassium deficiency on tomato growth and mineral nutrition at the early production stage. Plant Soil 1997, 189, 189–196. [Google Scholar] [CrossRef]
- Gierth, M.; Mäser, P. Potassium transporters in plants—Involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett. 2007, 581, 2348–2356. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, W.; Hager, A. A Ca2+-ATPase and Mg2+/H+-antiporter are present on tonoplast membranes from foots of Zea mays L. Planta 1993, 191, 377–385. [Google Scholar] [CrossRef]
- Santa-Maria, G.E.; Epstein, E. Potassium/sodium selectivity in wheat and the amphiploid cross wheat X. Lophopyrum elongatum. Plant Sci. 2001, 160, 523–534. [Google Scholar] [CrossRef]
- Nebolsin, A.N.; Nebosina, Z.P.; Alekseev, Y.V.; Yakovleva, L.V. Liming of soils contaminated with heavy metals. Agrochemistry 2004, 3, 48–54. [Google Scholar]
- Skowrońska, A.; Filipek, T. Accumulation of nitrogen and phosphorus by maize as the result of a reduction in the potassium fertilization rate. Ecol. Chem. Eng. S 2010, 17, 83–88. [Google Scholar]
- Zidai, N.; Bêlanger, G.; Cambouris, A.N.; Trmblay, N.; Nolin, M.C.; Claessens, A. Relationship between P and N concentration in corn. Agron. J. 2007, 99, 833–838. [Google Scholar] [CrossRef]
- Sadras, V.O. The N:P stoichiometry of cereal, grain legume and oilseed crops. Field Crops Res. 2006, 95, 13–29. [Google Scholar] [CrossRef]
- Rychter, A.M.; Randall, D.D. The effect of phosphate deficiency on carbohydrate metabolism in bean roots. Physiol. Plant. 1994, 91, 383–388. [Google Scholar] [CrossRef]
- Szulc, P.; Bocianowski, J. Hierarchy of mineral uptake in the creation of generative yield. Fres. Environ. Bull. 2011, 20, 2135–2140. [Google Scholar]
Indicators | Years | |||
---|---|---|---|---|
2009 | 2010 | 2011 | ||
Phosphorus mg P kg−1 of soil | 66.7 | 40.5 | 37.8 | |
Potassium mg K kg−1 of soil | 87.9 | 130.3 | 165.2 | |
Magnesium mg Mg kg−1 | 60.0 | 35.0 | 55.0 | |
pH in 1 mol dm−3 KCl | 5.2 | 5.4 | 5.1 | |
Nmin (kg ha−1) in soil, layer 0–60 cm | 68.5 | 79.2 | 71.4 | |
C, org. % | 1.01 | 0.99 | 0.99 | |
Texture % | Sand 2–0.05 mm | 83 | 83 | 83 |
Silt 0.05–0.02 mm | 6 | 6 | 6 | |
Salt 0.02–0.002 mm | 7 | 7 | 4 | |
Clay <0.002 mm | 4 | 4 | 4 | |
Textural group | loamy sand | loamy sand | loamy sand |
Source of Variation | Grain Yield | Plant Biomass at BBCH15–16 | Nutrients Concentration in Maize Leaf at BBCH 15/16 | Nutrient Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Na | N:K | N:P | N:Mg | |||
Year | 7.3 * | 3642 | 0.13 * | 0.09 ** | 0.05 | 0.03 * | 0.025 | 0.012 ** | 0.012 | 326.3 ** | 109.9 * |
Variety | 15.1 * | 2220 | 0.13 * | 0.001 | 0.01 | 0.01 | 0.007 | 0.001 | 0.013 | 0.8 | 19.2 |
Ea | 0.3 | 927 | 0.01 | 0.001 | 0.03 | 0.01 | 0.0007 | 0.001 | 0.002 | 1.7 | 1.5 |
Fertilization | 1.7 *** | 1044 *** | 0.05 * | 0.001 | 0.23 *** | 0.01 * | 0.0015 | 0.0002 * | 0.032 *** | 2.3 * | 5.5 |
Variety: Fertilization | 0.1 | 67 | 0.02 | 0.001 | 0.07 | 0.01 | 0.0003 | 0.0001 | 0.004 | 0.7 | 3.4 |
Eb | 0.1 | 198 | 0.02 | 0.001 | 0.05 | 0.01 | 0.0005 | 0.0001 | 0.006 | 0.9 | 2.6 |
Year | Grain Yield t ha−1 | Plant Biomass at BBCH 15/16 kg ha−1 | Nutrients Concentration in Maize Leaf at BBCH 15/16 g kg−1 | Nutrient Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Na | N:K | N:P | N:Mg | |||
ES Palazzo | |||||||||||
2009 | 9.81 a * | 91.39 a | 4.13 ab | 0.34 a | 3.71 | 0.01 b | 0.23 b | 0.06 a | 1.12 | 12.13 c | 17.74 a |
2010 | 8.75 b | 69.40 b | 4.19 a | 0.25 b | 3.86 | 0.01 b | 0.25 b | 0.07 a | 1.09 | 16.66 b | 16.96 a |
2011 | 10.06 a | 93.61 a | 4.01 b | 0.19 c | 3.81 | 0.02 a | 0.31 a | 0.02 b | 1.06 | 20.63 a | 12.81 b |
ES Paroli SG | |||||||||||
2009 | 11.03 a | 118.01 a | 4.07 | 0.32 a | 3.83 | 0.01 b | 0.22 b | 0.06 a | 1.08 | 12.72 c | 18.25 a |
2010 | 9.92 b | 83.30 b | 4.05 | 0.25 b | 3.87 | 0.01 b | 0.22 b | 0.07 a | 1.05 | 16.20 b | 18.48 a |
2011 | 10.83 a | 91.57 b | 3.92 | 0.18 c | 3.77 | 0.02 a | 0.28 a | 0.02 b | 1.05 | 21.24 a | 14.35 b |
Treatments | Grain Yield t ha−1 | Plant Biomass at BBCH 15/16 kg ha−1 | Nutrients Concentration in Maize Leaf at BBCH 15/16, g kg−1 | Nutrient Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Na | N:K | N:P | N:Mg | |||
Control | 8.50 b * | 75.73 b | 39.8 ab | 2.9 | 38.5 | 1.01 | 2.7 | 0.5 | 1.03 | 14.88 | 14.95 |
N | 9.53 a | 77.80 b | 42.5 a | 2.7 | 38.2 | 2.03 | 2.6 | 0.4 | 1.12 | 16.43 | 16.69 |
NK | 9.59 a | 82.56 ab | 40.1 ab | 2.5 | 38.7 | 1.03 | 2.5 | 0.6 | 1.03 | 16.80 | 16.34 |
NMg | 9.46 ab | 74.38 b | 41.2 ab | 2.6 | 35.2 | 2.04 | 2.8 | 0.4 | 1.18 | 16.52 | 15.37 |
NMgS | 9.41 ab | 79.17 ab | 40.8 ab | 2.5 | 38.4 | 2.03 | 2.7 | 0.6 | 1.06 | 17.21 | 15.45 |
NP | 9.76 a | 89.46 ab | 41.9 ab | 2.6 | 35.7 | 2.08 | 2.7 | 0.5 | 1.18 | 16.98 | 15.94 |
NPK | 9.94 a | 97.66 ab | 42.0 ab | 2.7 | 38.5 | 1.91 | 2.7 | 0.4 | 1.10 | 16.09 | 15.74 |
NPKMgS | 10.00 a | 111.23 a | 39.5 b | 2.7 | 40.2 | 1.85 | 2.5 | 0.5 | 0.98 | 15.75 | 16.15 |
NS | 9.66 a | 75.21 b | 42.0 ab | 2.5 | 37.8 | 1.96 | 2.7 | 0.5 | 1.11 | 17.61 | 15.89 |
Treatments | Grain Yield t ha−1 | Plant Biomass at BBCH 15/16 kg ha−1 | Nutrients Concentration in Maize Leaf at BBCH 15/16 g kg−1 | Nutrient Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Na | N:K | N:P | N:Mg | |||
Control | 9.21 d * | 88.68 | 39.8 | 2.6 | 38.7 ab | 1.06 | 2.5 | 0.4 | 1.03 ab | 16.51 | 16.59 |
N | 10.67 abc | 88.33 | 40.6 | 2.5 | 35.2 b | 2.10 | 2.5 | 0.5 | 1.15 a | 17.09 | 16.92 |
NK | 10.28 c | 86.21 | 37.5 | 2.4 | 42.2 a | 1.82 | 2.1 | 0.6 | 0.89 b | 16.54 | 17.71 |
NMg | 10.65 abc | 80.35 | 39.9 | 2.4 | 35.2 b | 2.52 | 2.4 | 0.5 | 1.14 a | 17.26 | 16.77 |
NMgS | 10.44 bc | 99.73 | 39.6 | 2.4 | 37.1 ab | 2.33 | 2.7 | 0.5 | 1.07 ab | 17.50 | 15.05 |
NP | 11.25 a | 114.56 | 41.2 | 2.7 | 37.6 ab | 1.52 | 2.5 | 0.5 | 1.10 ab | 16.20 | 16.63 |
NPK | 11.16 ab | 107.25 | 40.2 | 2.6 | 37.8 ab | 1.02 | 2.5 | 0.4 | 1.06 ab | 16.12 | 15.95 |
NPKMgS | 11.26 a | 123.58 | 41.1 | 2.7 | 43.1 a | 1.63 | 2.0 | 0.5 | 0.95 ab | 15.91 | 20.93 |
NS | 10.44 bc | 89.96 | 41.1 | 2.5 | 36.9 ab | 2.02 | 2.5 | 0.5 | 1.11 ab | 17.36 | 16.69 |
Variety | Year | Nutrients Accumulation, kg ha−1 | |||||
---|---|---|---|---|---|---|---|
UN | UP | UK | UCa | UMg | UNa | ||
ES Palazzo | 2009 | 3.76 ± 0.61 a * | 0.32 ± 0.06 a | 3.40 ± 0.77 a | 1.01 ± 0.2 b | 0.21 ± 0.04 b | 0.05 ± 0.04 a |
2010 | 1.90 ± 0.53 b | 0.17 ± 0.04 b | 2.69 ± 0.48 b | 1.01 ± 0.1 c | 0.17 ± 0.02 c | 0.03 ± 0.01 ab | |
2011 | 4.55 ± 2.14 a | 0.16 ± 0.03 b | 3.58 ± 0.81 a | 1.02 ± 0.3 a | 0.29 ± 0.04 a | 0.02 ± 0.01 b | |
ES Paroli SG | 2009 | 4.81 ± 0.95 a | 0.38 ± 0.08 a | 4.53 ± 0.96 a | 1.01 ± 0.2 b | 0.26 ± 0.05 a | 0.10 ± 0.06 a |
2010 | 2.94 ± 1.93 b | 0.21 ± 0.07 b | 3.25 ± 0.89 b | 1.01 ± 0.2 c | 0.18 ± 0.03 b | 0.05 ± 0.03 b | |
2011 | 4.01 ± 2.43 ab | 0.17 ± 0.05 b | 3.49 ± 1.04 b | 1.02 ± 0.3 a | 0.25 ± 0.04 a | 0.02 ± 0.01 b |
Treatments | Nutrients Accumulation, kg ha−1 | |||||
---|---|---|---|---|---|---|
UN | UP | UK | UCa | UMg | UNa | |
Control | 2.56 ± 0.61 | 0.21 ± 0.10 ab * | 2.91 ± 0.25 b | 1.01 ± 0.4 | 0.21 ± 0.05 | 0.02 ± 0.012 |
N | 3.02 ± 1.17 | 0.20 ± 0.08 ab | 2.98 ± 0.60 b | 1.06 ± 0.4 | 0.21 ± 0.08 | 0.02 ± 0.007 |
NK | 2.80 ± 1.26 | 0.23 ± 0.07 ab | 3.20 ± 0.28 ab | 1.05 ± 0.5 | 0.21 ± 0.05 | 0.03 ± 0.008 |
NMg | 2.94 ± 1.28 | 0.17 ± 0.05 b | 2.60 ± 0.32 b | 1.09 ± 0.5 | 0.21 ± 0.08 | 0.02 ± 0.007 |
NMgS | 2.69 ± 1.72 | 0.21 ± 0.15 ab | 3.05 ± 1.18 ab | 1.03 ± 0.3 | 0.21 ± 0.08 | 0.05 ± 0.054 |
NP | 4.06 ± 1.62 | 0.22 ± 0.08 ab | 3.18 ± 0.53 ab | 1.07 ± 0.7 | 0.24 ± 0.08 | 0.04 ± 0.014 |
NPK | 4.44 ± 1.96 | 0.24 ± 0.06 ab | 3.76 ± 0.73 ab | 1.01 ± 0.3 | 0.27 ± 0.07 | 0.04 ± 0.002 |
NPKMgS | 5.31 ± 3.28 | 0.29 ± 0.13 a | 4.47 ± 1.09 a | 1.08 ± 0.3 | 0.27 ± 0.07 | 0.07 ± 0.056 |
NS | 2.72 ± 0.79 | 0.19 ± 0.08 ab | 2.85 ± 0.30 b | 1.09 ± 0.3 | 0.20 ± 0.03 | 0.03 ± 0.012 |
Treatments | Nutrients Accumulation, kg ha−1 | |||||
---|---|---|---|---|---|---|
UN | UP | UK | UCa | UMg | UNa | |
Control | 2.75 ± 1.40 | 0.23 ± 0.12 | 3.45 ± 1.14 | 1.01 ± 0.7 ab * | 0.21 ± 0.04 abc | 0.04 ± 0.04 |
N | 3.12 ± 1.17 | 0.22 ± 0.10 | 3.11 ± 0.51 | 1.01 ± 0.5 ab | 0.22 ± 0.05 abc | 0.03 ± 0.02 |
NK | 2.70 ± 1.02 | 0.22 ± 0.08 | 3.65 ± 0.66 | 1.01 ± 0.3 b | 0.18 ± 0.03 c | 0.04 ± 0.03 |
NMg | 2.75 ± 1.07 | 0.20 ± 0.09 | 2.80 ± 0.20 | 1.01 ± 0.4 ab | 0.20 ± 0.04 bc | 0.03 ± 0.02 |
NMgS | 3.43 ± 2.65 | 0.27 ± 0.22 | 3.77 ± 2.11 | 1.02 ± 0.6 ab | 0.26 ± 0.08 abc | 0.09 ± 0.12 |
NP | 5.31 ± 1.37 | 0.30 ± 0.16 | 4.27 ± 0.70 | 1.02 ± 0.7 a | 0.29 ± 0.06 a | 0.07 ± 0.05 |
NPK | 5.22 ± 2.20 | 0.26 ± 0.06 | 4.07 ± 0.73 | 1.01 ± 0.3 ab | 0.27 ± 0.03 ab | 0.05 ± 0.01 |
NPKMgS | 6.73 ± 1.55 | 0.33 ± 0.06 | 5.32 ± 0.19 | 1.01 ± 0.3 ab | 0.25 ± 0.03 abc | 0.10 ± 0.05 |
NS | 3.28 ± 1.63 | 0.28 ± 0.14 | 3.34 ± 1.05 | 1.01 ± 0.4 ab | 0.22 ± 0.06 abc | 0.04 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaj, R.; Szulc, P.; Siatkowski, I.; Waligóra, H. Assessment of the Effect of the Mineral Fertilization System on the Nutritional Status of Maize Plants and Grain Yield Prediction. Agriculture 2020, 10, 404. https://doi.org/10.3390/agriculture10090404
Gaj R, Szulc P, Siatkowski I, Waligóra H. Assessment of the Effect of the Mineral Fertilization System on the Nutritional Status of Maize Plants and Grain Yield Prediction. Agriculture. 2020; 10(9):404. https://doi.org/10.3390/agriculture10090404
Chicago/Turabian StyleGaj, Renata, Piotr Szulc, Idzi Siatkowski, and Hubert Waligóra. 2020. "Assessment of the Effect of the Mineral Fertilization System on the Nutritional Status of Maize Plants and Grain Yield Prediction" Agriculture 10, no. 9: 404. https://doi.org/10.3390/agriculture10090404
APA StyleGaj, R., Szulc, P., Siatkowski, I., & Waligóra, H. (2020). Assessment of the Effect of the Mineral Fertilization System on the Nutritional Status of Maize Plants and Grain Yield Prediction. Agriculture, 10(9), 404. https://doi.org/10.3390/agriculture10090404