Short-Term Impact of Conservation Agriculture on Soil Strength and Saturated Hydraulic Conductivity in the South African Semiarid Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Trial Layout and Treatments
2.3. Trial Management
2.4. Measurements
2.5. Data Analysis
3. Results
3.1. Soil Bulk Density
3.2. Penetration Resistance
3.3. Soil Saturated Hydraulic Conductivity and Water-Conducting Macroporosity
4. Discussion
4.1. Soil Bulk Density
4.2. Penetration Resistance
4.3. Soil Saturated Hydraulic Conductivity and Water-Conducting Macroporosity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Njaimwe, A.N.; Mnkeni, P.N.S.; Chiduza, C.; Muchaonyerwa, P.; Wakindiki, I.I.C. Sensitivity of selected chemical and biological soil quality parameters to tillage and rotational cover cropping at Zanyokwe Irrigation Scheme, South Africa. S. Afr. J. Plant Soil 2018, 35, 321–328. [Google Scholar] [CrossRef]
- Meadows, M.E.; Hoffman, M.T. The nature, extent and causes of land degradation in South Africa: Legacy of the past, lessons for the future? Area 2002, 34, 428–437. [Google Scholar] [CrossRef]
- Mandiringana, O.T.; Mnkeni, P.N.S.; Mkile, Z.; Van Averbeke, W.; Van Ranst, E.; Verplancke, H. Mineralogy and fertility status of selected soils of the Eastern Cape Province. S. Afr. Commun. Soil Sci. Plan. 2005, 36, 2431–2446. [Google Scholar] [CrossRef]
- Hoffman, M.T.; Todd, S.; Ntshona, Z.; Turner, S. Land degradation in South Africa. In A National Review of Land Degradation in South Africa; South African National Biodiversity Institute: Pretoria, South Africa, 1999; Available online: www.sanbi.org/landdeg (accessed on 18 February 2013).
- Mkile, Z. The Use and Agronomic Effectiveness of Kraal Manures in the Transkei Region of the Eastern Cape, South Africa. Master’s Thesis, University of Fort Hare, Alice, South Africa, 2011. [Google Scholar]
- Nyambo, P.; Chiduza, C.; Araya, T. Carbon input and maize productivity as influenced by tillage, crop rotation, residue management and biochar in a semiarid region in South Africa. Agronomy 2020, 10, 705. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Conservation Agriculture–Matching Production with Sustainability. Available online: www.fao.org/ag/agl/agll/prtcons.stm (accessed on 24 March 2020).
- Nyambo, P.; Cornelius, C.; Araya, T. Carbon Dioxide Fluxes and Carbon Stocks under Conservation Agricultural Practices in South Africa. Agriculture 2020, 10, 374. [Google Scholar] [CrossRef]
- Lampurlanes, J.; Cantero-Martınez, C. Soil bulk density and penetration resistance under different tillage and crop management systems and their relationship with barley root growth. Agron. J. 2003, 95, 526–536. [Google Scholar] [CrossRef]
- Tonui, W.; Ndiema, C.; Mutai, E.K. Determination of soil compaction levels by agricultural machinery in cultivated fields using dynamic cone penetrometer. Int. J. Res. Appl. Sci. Eng. Technol. 2016, 4, 494–500. [Google Scholar]
- Moraes, M.T.; DebiasI, H.; Franchini, J.C.; Da Silva, V.R. Correction of resistance to penetration by pedofunctions and a reference soil water content. Revista Brasileira de Ciência do Solo 2012, 36, 1704–1713. [Google Scholar] [CrossRef] [Green Version]
- Moraes, M.T.; Debiasi, H.; Franchini, J.C.; Da Silva, V.R. Soil penetration resistance in a rhodic eutrudox affected by machinery traffic and soil water content. Engenharia Agrícola 2013, 33, 748–757. [Google Scholar] [CrossRef] [Green Version]
- Miriti, J.M.; Kironchi, G.; Esilaba, A.O.; Gachene, C.K.K.; Heng, L.K.; Mwangi, D.M. The effects of tillage systems on soil physical properties and water conservation in a sandy loam soil in Eastern Kenya. J. Soil Sci. Environ. Manag. 2013, 4, 146–154. [Google Scholar] [CrossRef]
- Gicheru, P.T.; Gachene, C.; Mbuvi, J.; Mare, E. Effects of soil management practices and tillage systems on soil surface soil water conservation and crust formation on a sandy loam in semi-arid Kenya. Soil Tillage Res. 2004, 75, 173–184. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Prakash, V.; Kundu, S.; Gupta, H.S. Effect of tillage and crop rotations on pore size distribution and soil hydraulic conductivity in sandy clay loam soil of the Indian Himalayas. Soil Tillage Res. 2006, 86, 129–140. [Google Scholar] [CrossRef]
- Mwendera, E.J.; Feyen, J. Predicting tillage effects on infiltration. Soil Sci. 1993, 155, 229–235. [Google Scholar] [CrossRef]
- Kilic, K.; Ozgoz, E.; Akba, F. Assessment of spatial variability in penetration resistance as related to some soil physical properties of two fluvents in Turkey. Soil Tillage Res. 2004, 76, 1–11. [Google Scholar] [CrossRef]
- Fabrizzi, K.P.; Garcia, F.O.; Costa, J.L.; Picone, L.I. Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil Tillage Res. 2005, 81, 57–69. [Google Scholar] [CrossRef]
- Pias, O.H.D.C.; Cherubin, M.R.; Basso, C.J.; Santi, A.L.; Molin, J.P.; Cimélio, B. Soil penetration resistance mapping quality: Effect of the number of subsamples Acta Scientiarum’. Agronomy 2018, 40. [Google Scholar] [CrossRef] [Green Version]
- Reichert, J.M.; Da Silva, V.R.; Reiner, D.J. Soil moisture, penetration resistance, and least limiting water range for three soil management systems and black beans yield. In Proceedings of the ISCO 2014—13th International Soil Conservation Organisation Conference, Brisbane, Australia, 4–8 July 2004. [Google Scholar]
- Mupambwa, H.A.; Wakindiki, I.I.C. Winter cover crops effects on soil strength, infiltration and water retention in a sandy loam Oakleaf soil in Eastern Cape, South Africa. S. Afr. J. Plant Soil 2012, 29, 121–126. [Google Scholar] [CrossRef]
- Unger, P.W.; Jones, O.R. Long-term tillage and cropping systems affect bulk density and penetration resistance of soil cropped to dryland wheat and grain sorghum. Soil Tillage Res. 1998, 45, 39–57. [Google Scholar] [CrossRef]
- Villamil, M.B.; Bollero, G.A.; Darmody, R.G.; Simmons, F.W.; Bullock, D.G. No till corn/soybean systems including winter cover crops: Effects on soil properties. Soil Sci. Soc. Am. J. 2006, 70, 193–194. [Google Scholar] [CrossRef]
- Logsdon, S.D.; Cambardella, C.A. Temporal changes in small depth-incremental soil bulk density. Soil Sci. Soc. Am. J. 2000, 64, 710–714. [Google Scholar] [CrossRef]
- Huggins, D.R.; Allmaras, R.R.; Clapp, C.E.; Lamb, J.A.; Randall, G.W. Corn-soybean sequence and tillage effects on soil carbon dynamics and storage. Soil Sci. Soc. Am. J. 2007, 71, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Mtyobile, M.; Muzangwa, L.; Mnkeni, P.N.S. Tillage and crop rotation effects on soil carbon and selected soil physical properties in a Haplic Cambisol in Eastern Cape, South Africa. Soil Water Res. 2020, 15, 47–54. [Google Scholar] [CrossRef]
- Nyamadzawo, G.; Chikowo, R.; Nyamugafata, P.; Giller, K.E. Improve legume tree fallows and tillage effects on structural stability and infiltration rates of a kaolinite sandy soil from central Zimbabwe. Soil Tillage Res. 2007, 96, 182–194. [Google Scholar] [CrossRef]
- Da Veiga, M.; Reinert, D.J.; Reichert, J.M.; Kaiser, D.R. Short and long-term effects of tillage systems and nutrient sources on soil physical properties of a Southern Brazilian Hapludox (1). Revista Brasileira de Ciência do Solo 2008, 32, 1437–1446. [Google Scholar] [CrossRef] [Green Version]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 4, 1–12. [Google Scholar] [CrossRef]
- Ferreras, L.A.; Costa, J.L.; Garcia, F.O.; Pecorari, C. Effect of no-tillage on some soil physical properties of a structural degraded Petrocalcic Paleudoll of the southern “Pampa” of Argentina. Soil Tillage Res. 2000, 54, 31–39. [Google Scholar] [CrossRef]
- Rusu, T.; Bogdan, I.; Marin, D.I.; Moraru, P.I.; Pop, A.I.; Duda, B.M. Effect of conservation agriculture on yield and protecting environmental resources. AgroLife Sci. J. 2015, 4, 2015. [Google Scholar]
- Bescansa, P.; Imaz, M.J.; Virto, I.; Enrique, A.; Hoogmoed, W.B. Soil water retention as affected by tillage and residue management in semi-arid Spain. Soil Tillage Res. 2006, 87, 19–27. [Google Scholar] [CrossRef]
- Gülser, C.; Ekberli, I.; Candemir, F.; Demir, Z. Spatial variability of soil physical properties in a cultivated field. Eurasian J. Soil Sci. 2016, 5, 192. [Google Scholar]
- Soil Classification Working Group. Soil Classification—A Taxonomic System for South Africa, 2nd ed.; Memoirs oor die natuurlike landbouhulpbronne van Suid-Afrika No. 15; Department of Agricultural Development: Pretoria, South Africa, 1991. [Google Scholar]
- WRB, Iuss Working Group. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO Rome: Rome, Italy, 2015. [Google Scholar]
- Gura, I.; Mnkeni, P.N.S. Crop rotation and residue management effects under no-till on the soil quality of a Haplic Cambisol in Alice, Eastern Cape, South Africa. Geoderma 2019, 337, 927–934. [Google Scholar] [CrossRef]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory Methods of Soil Analysis: A Working Manual, 2nd ed.; TSBR-CIAT and SACRED Africa: Nairobi, Kenya, 2002. [Google Scholar]
- Herrick, J.E.; Jones, T.L. A dynamic cone penetrometer for measuring soil penetration resistance. Soil Sci. Soc. Am J. 2002, 66, 1320–1324. [Google Scholar] [CrossRef]
- Watson, K.W.; Luxmoore, R.J. Estimating Macroporosity in a Forest Watershed by use of a Tension Infiltrometer. Soil Sci. Soc. Am. J. 1986, 50, 578–582. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; Elsevier: New York, NY, USA, 1972. [Google Scholar]
- Bouwer, H.; Rice, R.C. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour. Res. 1976, 12, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Kavdir, Y.; Rasse, D.P.; Smucker, A.J.M. Specific contributions of decaying alfalfa roots to nitrate leaching in a Kalamazoo loam soil. Agric. Ecosyst. Environ. 2005, 109, 97–106. [Google Scholar] [CrossRef]
- Grossman, R.B.; Reinsch, T.G. Bulk density and linear extensibility. In Methods of Soil Analysis Part 4; Dane, J.H., Topp, G.C., Eds.; SSSA: Madison, WI, USA, 2002; pp. 201–228. [Google Scholar]
- Nyambo, P.; Taeni, T.; Chiduza, C.; Araya, T. Effects of Maize Residue Biochar Amendments on Soil Properties and Soil Loss on Acidic Hutton Soil. Agronomy 2018, 8, 256. [Google Scholar] [CrossRef] [Green Version]
- Landon, J.; Booker, R. Tropical Soil Manual: A Handbook of Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics; Longman Scientific & Technical; Wiley, Booker/Tate: Hoboken, NJ, USA; Routledge: London, UK, 1991. [Google Scholar]
- Ordoñez-Morales, K.D.; Cadena-Zapata, M.; Zermeño-González, A.; Campos-Magaña, S. Effect of tillage systems on physical properties of a clay loam soil under oats. Agriculture 2019, 9, 62. [Google Scholar]
- Bergamin, A.C.; Vitorino, A.C.T.; Franchini, J.C.; Souza, C.M.A.; Souza, F.R. Induced compaction of a Rhodic Acrustox as related to maize root growth. Revista Brasileira de Ciência do Solo 2010, 34, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.R.; Reichert, J.M.; Reinert, D.J.; Bortoluzzi, E.C. Soil water dynamics related to the degree of compaction of two Brazilian Oxisols under no-tillage. Revista Brasileira de Ciência do Solo 2009, 33, 1097–1104. [Google Scholar] [CrossRef] [Green Version]
- Cornell Soil Health Manual. Physical Indicator: How Penetration Resistance Relates to Soil Function: Field Penetration Resistance; Cornel University: New York, NY, USA, 2016; pp. 28–29. Available online: https://www.canr.msu.edu/foodsystems/uploads/files/cornell_soilhealth.pdf (accessed on 18 March 2016).
- De Moraes, M.T.; Debiasi, H.; Carlesso, R.; Franchini, J.C.; Silva, V.R. Critical limits of soil penetration resistance in a rhodic eutrudox. Revista Brasileira de Ciência do Solo 2014, 38, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, D.E.; Siements, M.C.; Albrecht, S.L. Changes in soil physical characteristics during transition from intensive tillage to direct seeding. Trans. ASAE 2002, 45, 877–880. [Google Scholar] [CrossRef]
- Małecka, I.; Blecharczyk, A.; Sawinska, Z.; Dobrzeniecki, T. The effect of various long-term tillage systems on soil properties and spring barley yield. Turk. J. Agric. For. 2012, 36, 217–226. [Google Scholar]
- Castellini, M.; Niedda, M.; Pirastru, M.; Ventrella, D. Temporal changes of soil physical quality under two residue management systems. Soil Use Manag. 2014, 30, 423–434. [Google Scholar] [CrossRef]
- Alvarez, C.R.; Taboada, M.A.; Gutierrez-Boem, F.H.; Bono, A.; Fernandez, P.L.; Prystupa, P. Topsoil properties as affected by tillage systems in the rolling pampa region of Argentina. Soil Sci. Soc. Am. J. 2009, 73, 1242–1250. [Google Scholar] [CrossRef]
- Moreira, W.H.; Tormena, C.A.; Karlen, D.L.; da Silvad, A.P.; Keller, T.; Betioli, E., Jr. Seasonal changes in soil physical properties under long-term no-tillage. Soil Tillage Res. 2016, 160, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Shao, M.A.; Wang, Q.J.; Fan, J.; Horton, R. Temporal changes of soil hydraulic properties under different land uses. Geoderma 2009, 149, 355–366. [Google Scholar] [CrossRef]
- Kodešová, R.; Vignozzi, N.; Rohošková, M.; Hájková, T.; Kočárek, M.; Pagliai, M.; Kozák, J.; Šimůnek, J. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types. J. Contam. Hydrol. 2009, 104, 107–125. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P.; Poulovassilis, A. Infiltration of rain water in semi-arid areas under three land surface treatments. Soil Tillage Res. 2012, 120, 15–24. [Google Scholar] [CrossRef]
- Moreno, F.; Pelegrin, F.; Fernandez, J.E.; Murillo, J.M. Soil physical properties, water depletion and crop development under traditional and conservation tillage in southern Spain. Soil Tillage. Res. 1997, 41, 25–42. [Google Scholar] [CrossRef]
- Medina-Sauza, R.M.; Álvarez-Jiménez, M.; Delhal, A.; Reverchon, F.; Blouin, M.; Guerrero-Analco, J.A.; Cerdán, C.R.; Guevara, R.; Villain, L.; Barois, I. Earthworms building up soil microbiota, a review. Front. Environ. Sci. 2019, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Elliott, E.T.; Paustian, K.; Doran, J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, J.P.; Flury, M.; Bezdicek, D.F. Hydraulic properties in a silt loam soil under natural prairie, conventional tillage and no-till. Soil Sci. Soc. Am. J. 2004, 68, 1679–1688. [Google Scholar] [CrossRef] [Green Version]
- Raczkowski, C.W.; Mueller, J.P.; Busscher, W.J.; Bell, M.C.; McGraw, M.L. Soil physical properties of agricultural systems in a large-scale study. Soil Tillage. Res. 2012, 119, 50–59. [Google Scholar] [CrossRef]
- Drees, L.R.; Karathanasis, A.D.; Wilding, L.P.; Blevins, R.L. Micromorphological characteristics of long-term no-till and conventionally tilled soils. Soil Sci. Soc. Am. J. 1994, 58, 508–517. [Google Scholar] [CrossRef]
- Zhang, S.L.; Simelton, E.; Lovdahl, L.; Grip, H.; Chen, D.L. Simulated long-term effects of different soil management regimes on the water balance in the Loess Plateau, China. Field Crop. Res. 2007, 100, 311–319. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Impacts of long-term wheat straw management on soil hydraulic properties under no-tillage. Soil Sci. Soc. Am. J. 2007, 71, 1166–1173. [Google Scholar] [CrossRef] [Green Version]
- Alletto, L.; Coquet, Y. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems. Geoderma 2009, 152, 85–94. [Google Scholar] [CrossRef]
- Karunatilake, U.P.; Van Es, H.M. Rainfall and tillage effects on soil structure after alfalfa conversion to maize on a clay loam soil in New York. Soil Tillage Res. 2002, 67, 135–146. [Google Scholar] [CrossRef]
Factor | Treatment | Level |
---|---|---|
Main plot factor | Tillage | Conventional tillage (CT) No-till (NT) |
Subplot factor | Crop rotation | Maize-fallow-maize (MFM) Maize-fallow-soybean (MFS) Maize-wheat-maize (MWM) Maize-wheat-soybean (MWS) |
Sub-subplot factor | Residue management | Residue retained (R+) Residue removed (R−) |
Rotation | Summer 2012/13 (Nov–April) | Winter 2013 (May–Oct) | Summer 2013/14 (Nov–April) | Winter 2014 (May–Oct) | Summer 2014/15 (Nov–April) |
---|---|---|---|---|---|
MFM | Maize | Fallow | Maize | Fallow | Maize |
MFS | Maize | Fallow | Soybean | Fallow | Maize |
MWM | Maize | Wheat | Maize | Wheat | Maize |
MWS | Maize | Wheat | Soybean | Wheat | Maize |
Source of Variation | BD | PR | Ks | Macroporosity |
---|---|---|---|---|
Tillage (T) | 0.096 | 0.001 | 0.374 | 0.077 |
Residue management (R) | 0.228 | 0.098 | 0.908 | 0.404 |
Crop rotation (CR) | 0.009 | 0.098 | 0.787 | 0.497 |
T × R | 0.092 | 0.215 | 0.136 | 0.155 |
T × CR | 0.112 | 0.654 | 0.830 | 0.935 |
CR × R | 0.935 | 0.823 | 0.746 | 0.063 |
T × CR × R | 0.468 | 0.509 | 0.733 | 0.788 |
CV | 15.9 | 27.8 | 10.5 | 11.8 |
Bulk Density | Penetration Resistance | Hydraulic Conductivity | |
---|---|---|---|
(g cm−3) | (MPa) | (mm h−1) | |
Minimum | 1.16 | 10.56 | 1.10 |
Maximum | 1.51 | 29 | 210.54 |
Mean | 1.34 | 18.94 | 45.10 |
Coefficient of variance | 6.81 | 25.4 | 105 |
Standard deviation | 0.09 | 4.80 | 47.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nebo, G.I.; Manyevere, A.; Araya, T.; van Tol, J. Short-Term Impact of Conservation Agriculture on Soil Strength and Saturated Hydraulic Conductivity in the South African Semiarid Areas. Agriculture 2020, 10, 414. https://doi.org/10.3390/agriculture10090414
Nebo GI, Manyevere A, Araya T, van Tol J. Short-Term Impact of Conservation Agriculture on Soil Strength and Saturated Hydraulic Conductivity in the South African Semiarid Areas. Agriculture. 2020; 10(9):414. https://doi.org/10.3390/agriculture10090414
Chicago/Turabian StyleNebo, Godwin Iloabuchi, Alen Manyevere, Tesfay Araya, and Johan van Tol. 2020. "Short-Term Impact of Conservation Agriculture on Soil Strength and Saturated Hydraulic Conductivity in the South African Semiarid Areas" Agriculture 10, no. 9: 414. https://doi.org/10.3390/agriculture10090414
APA StyleNebo, G. I., Manyevere, A., Araya, T., & van Tol, J. (2020). Short-Term Impact of Conservation Agriculture on Soil Strength and Saturated Hydraulic Conductivity in the South African Semiarid Areas. Agriculture, 10(9), 414. https://doi.org/10.3390/agriculture10090414