Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary (Rosmarinus officinalis L.) Biotypes Grown in Pot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rosemary Experimental Field
2.2. Morphological, Aesthetic and Production Characteristics of the Plants
2.3. Chemical-Physical Properties of Compost
2.4. Weather Data
2.5. Statistical Analysis
3. Results
3.1. Temperature Trends
3.2. Chemical–Physical Properties of Substrates
3.3. Effects of Year, Substrate, Irrigation and Plant Habitus on Rosemary Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Pasquale, C.; La Bella, S.; Cammalleri, I.; Gennaro, M.C.; Licata, M.; Leto, C.; Tuttolomondo, T. Agronomical and postharvest evaluation of the essential oils of Sicilian rosemary (Rosmarinus officinalis L.) biotypes. Acta Hortic. 2019, 1255, 139–144. [Google Scholar] [CrossRef]
- Begum, A.; Sandhya, S.; Ali, S.S.; Vinod, K.R.; Swapna, R.; Banji, D. An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae). Acta Sci. Pol. Technol. Aliment. 2013, 12, 61–74. [Google Scholar] [PubMed]
- Heinrich, M.; Kufer, K.; Leonti, M.; Pardo-de-Santayana, M. Ethnobotany and ethnopharmacology—Interdisciplinary links with the historical sciences. J. Ethnopharmacol. 2006, 107, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.; Ojeda Sana, A.M.; Gaya, M.; Barni, M.V.; Castro, A.O.; van Baren, C. Rosemary compounds as nutraceutical health products. In Food Additives, 1st ed.; El-Samragy, Y., Ed.; IntechOpen Science: Rijeka, Croatia, 2012; pp. 157–174. [Google Scholar]
- Tuttolomondo, T.; La Bella, S.; Leto, C.; Gennaro, M.C.; Calvo, R.; D’Asaro, F. Biotechnical characteristics of root systems in erect and prostrate habit Rosmarinus officinalis L. accessions grown in a Mediterranean climate. Chem. Eng. Trans. 2017, 58, 769–774. [Google Scholar] [CrossRef]
- Sarmoum, R.; Haid, S.; Biche, M.; Djazouli, Z.; Zebib, B.; Merah, O. Effect of salinity and water stress on the essential oil components of rosemary (Rosmarinus officinalis L.). Agronomy 2019, 9, 214. [Google Scholar] [CrossRef] [Green Version]
- Durán Zuazo, V.H.; Rodriguez Pleguezelo, C.R. Soil-erosion and runoff prevention by plant covers. A review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Napoli, E.M.; Siracusa, L.; Saija, A.; Speciale, A.; Trombetta, D.; Tuttolomondo, T.; La Bella, S.; Licata, M.; Virga, G.; Leone, R.; et al. Wild Sicilian rosemary: Phytochemical and morphological screening and antioxidant activity evaluation of extracts and essential oils. Chem. Biodivers. 2015, 12, 1075–1094. [Google Scholar] [CrossRef]
- Napoli, E.M.; Curcuruto, G.; Ruberto, G. Screening of the essential oil composition of wild Sicilian rosemary. Biochem. Syst. Ecol. 2010, 38, 659–670. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Dugo, G.; Ruberto, G.; Leto, C.; Napoli, E.M.; Cicero, N.; Gervasi, T.; Virga, G.; Leone, R.; Licata, M.; et al. Study of quantitative and qualitative variations in essential oils of Sicilian Rosmarinus officinalis L. Nat. Prod. Res. 2015, 29, 1928–1934. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Herrero, M. Rosemary (Rosmarinus officinalis) as a functional ingredient: Recent scientific evidence. Curr. Opin. Food Sci. 2017, 14, 13–19. [Google Scholar] [CrossRef]
- Andrade, M.A.; Ribeiro-Santos, R.; Costa Bonito, M.C.; Saraiva, M.; Sanches-Silva, A. Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. LWT-Food Sci. Technol. 2018, 92, 497–508. [Google Scholar] [CrossRef]
- Yosr, Z.; Hnia, C.; Rim, T.; Mohamed, B. Changes in essential oil composition and phenolic fraction in Rosmarinus officinalis L. var. typicus Batt. organs during growth and incidence on the antioxidant activity. Ind. Crop. Prod. 2013, 43, 412–419. [Google Scholar] [CrossRef]
- Alipour, M.; Saharkhiz, M.J. Phytotoxic activity and variation in essential oil content and composition of rosemary (Rosmarinus officinalis L.) during different phenological growth stages. Biocatal. Agric. Biotechnol. 2016, 7, 271–278. [Google Scholar] [CrossRef]
- Najar, B.; Demasi, S.; Caser, M.; Gaino, W.; Cioni, P.L.; Pistelli, L.; Scariot, V. Cultivation substrate composition influences morphology, volatilome and essential oil of Lavandula angustifolia Mill. Agronomy 2019, 9, 411. [Google Scholar] [CrossRef] [Green Version]
- Carrubba, A.; Abbate, L.; Sarno, M.; Sunseri, F.; Mauceri, A.; Lupini, A.; Mercati, F. Characterization of Sicilian rosemary (Rosmarinus officinalis L.) germplasm through a multidisciplinary approach. Planta 2020, 251, 37. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Franz, C.; Novak, J. Sources of essential oils. In Handbook of Essential Oils: Science, Technology, and Application, 3rd ed.; Başer, K.H.C., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2020; Volume 1, pp. 1–43. [Google Scholar]
- Farouk, S.; Al-Amri, S.M. Exogenous melatonin-mediated modulation of arsenic tolerance with improved accretion of secondary metabolite production, activating antioxidant capacity and improved chloroplast ultrastructure in rosemary herb. Ecotox. Environ. Safe 2019, 180, 333–347. [Google Scholar] [CrossRef]
- Raffo, A.; Mozzanini, E.; Ferrari Nicoli, S.; Lupotto, E.; Cervelli, C. Effect of light intensity and water availability on plant growth, essential oil production and composition in Rosmarinus officinalis L. Eur. Food Res. Technol. 2020, 246, 167–177. [Google Scholar] [CrossRef]
- Böszörményi, A.; Dobi, A.; Skribanek, A.; Pávai, M.; Solymosi, K. The effect of light on plastid differentiation, chlorophyll biosynthesis, and essential oil composition in rosemary (Rosmarinus officinalis) leaves and cotyledons. Front. Plant Sci. 2020, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Blanco, J.M.; Ferrández, T.; Navarro, A.; Bañon, S.; Alarcón, J. Effects of irrigation and air humidity preconditioning on water relations, growth and survival of Rosmarinus officinalis plants during and after transplanting. J. Plant Physiol. 2004, 161, 1133–1142. [Google Scholar] [CrossRef]
- Bernstein, N.; Chaimovitch, D.; Dudai, N. Effect of irrigation with secondary treated effluent on essential oil, antioxidant activity, and phenolic compounds in oregano and rosemary. Agron. J. 2009, 101, 1–10. [Google Scholar] [CrossRef]
- Singh, M.; Guleria, N. Influence of harvesting stage and inorganic and organic fertilizers on yield and oil composition of rosemary (Rosmarinus officinalis L.) in a semi-arid tropical climate. Ind. Crop. Prod. 2013, 42, 37–40. [Google Scholar] [CrossRef]
- Khalil, S.E.; Khalil, A.M. Effect of water irrigation intervals, compost and dry yeast on growth, yield and oil content of Rosmarinus officinalis L. plant. Am. Eurasian J. Sustain. Agric. 2015, 9, 36–51. [Google Scholar]
- Ganjali, A.; Kaykhaii, M. Investigating the essential oil composition of Rosmarinus officinalis before and after fertilizzating with vermicompost. J. Essent. Oil Bear. Plants 2017, 20, 1413–1417. [Google Scholar] [CrossRef]
- Pirzad, A.; Mohammadzadeh, S. Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris). Agric. Water Manag. 2018, 204, 1–10. [Google Scholar] [CrossRef]
- Tawfeeq, A.; Culham, A.; Davis, F.; Reeves, M. Does fertilizer type and method of application cause significant differences in essential oil yield and composition in rosemary (Rosmarinus officinalis L.)? Ind. Crop. Prod. 2016, 88, 17–22. [Google Scholar] [CrossRef]
- Singh, M.; Wasnik, K. Effect of vermicompost and chemical fertilizer on growth, herb, oil yield, nutrient uptake, soil fertility, and oil quality of rosemary. Commun. Soil Sci. Plant Anal. 2013, 44, 2691–2700. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Nogués, I.; Jones, S.; Allison, G.G. The effect of anaerobic digestate derived composts on the metabolite composition and thermal behaviour of rosemary. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Singh, M. Effects of plant spacing, fertilizer, modified urea material and irrigation regime on herbage, oil yield and oil quality of rosemary in semi-arid tropical conditions. J. Hortic. Sci. Biotechnol. 2004, 79, 411–415. [Google Scholar] [CrossRef]
- Kiuru, P.; Muriuki, S.J.N.; Wepukhulu, S.B.; Muriuki, S.J.M. Influence of growth media and regulators on vegetative propagation of rosemary (Rosmarinus officinalis L.). East Afr. Agric. For. J. 2015, 81, 105–111. [Google Scholar] [CrossRef]
- Martinetti, L.; Quattrini, E.; Bononi, M.; Tateo, F. Effect of the mineral fertilization on the yield and the oil content of two cultivars of rosemary. Acta Hortic. 2006, 723, 399–404. [Google Scholar] [CrossRef]
- Boyle, T.H.; Craker, L.E.; Simon, J.E. Growing medium and fertilization regime influence growth and essential oil content of rosemary. Hortscience 1991, 26, 33–34. [Google Scholar] [CrossRef] [Green Version]
- Fornes, F.; Liu-Xu, L.; Lidón, A.; Sánchez-García, M.; Cayuela, M.L.; Sánchez-Monedero, M.A.; Belda, R.M. Biochar improves the properties of poultry manure compost as growing media for rosemary production. Agronomy 2020, 10, 261. [Google Scholar] [CrossRef] [Green Version]
- De Lucia, B.; Vecchietti, L.; Rinaldi, S.; Rivera, C.M.; Trinchera, A.; Rea, E. Effect of peat-reduced and peat-free substrates on rosemary growth. J. Plant Nutr. 2013, 36, 863–876. [Google Scholar] [CrossRef]
- Mendoza-Hernández, D.; Fornes, F.; Belda, R.M. Compost and vermicompost of horticultural waste as substrates for cutting rooting and growth of rosemary. Sci. Hortic. 2014, 178, 192–202. [Google Scholar] [CrossRef]
- Rinaldi, S.; De Lucia, B.; Salvati, L.; Rea, E. Understanding complexity in the response of ornamental rosemary to different substrates: A multivariate analysis. Sci. Hortic. 2014, 176, 218–224. [Google Scholar] [CrossRef]
- Kern, J.; Tammeorg, P.; Shanskiy, M.; Sakrabani, R.; Knicker, H.; Kammann, C.; Tuhkanen, E.M.; Smidt, G.; Prasad, M.; Tiilikkala, K.; et al. Synergistic use of peat and charred material in growing media—An option to reduce the pressure on peatlands? J. Environ. Eng. Landsc. Manag. 2017, 25, 160–174. [Google Scholar] [CrossRef]
- Hammond, R.F. The origin, formation and distribution of peatland resources. In Peat in Horticulture, 1st ed.; Robinson, D.W., Lamb, J.G.D., Eds.; Academic Press: London, UK, 1975; pp. 1–22. [Google Scholar]
- Rydin, H.; Jeglum, J.K. The Bology of Peatlands, 2nd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Zulfiqar, F.; Allaire, S.E.; Akram, N.A.; Méndez, A.; Younis, A.; Peerzada, A.M.; Shaukat, N.; Wright, S.R. Challenges in organic component selection and biochar as an opportunity in potting substrates: A review. J. Plant Nutr. 2019, 24, 1–6. [Google Scholar] [CrossRef]
- Sannazaro, F.M. Valutazione di Substrati Alternativi alla Torba: Caratterizzazione Chimica, Fisica ed Agronomica di Lolla di Riso. Ph.D. Thesis, Università degli Studi di Padova, Padova, Italy, 31 January 2008. [Google Scholar]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Fenner, N.; Freeman, C. Woody litter protects peat carbon stocks during drought. Nat. Clim. Chang. 2020, 10, 363–369. [Google Scholar] [CrossRef]
- Lazcano, C.; Arnold, J.; Salgado, A.T.; Zaller, J.G.; Martin, J.D. Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Span. J. Agric. Res. 2009, 7, 944–951. [Google Scholar] [CrossRef] [Green Version]
- Abad, M.; Noguera, P.; Burés, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Abad, M.; Martínez, P.F.; Martínez, M.D.; Martínez, J. Evaluación agronómica de los sustratos de cultivo. Actas Hortic. 1992, 11, 141–154. [Google Scholar]
- Ansorena Miner, J. Sustratos. Propiedades y Caracterización; Ediciones Mundi-Prensa: Madrid, Spain, 1994. [Google Scholar]
- Lemaire, F.; Rivière, L.; Stievenard, S.; Marfa, O.; Gschwander, S.; Giuffrida, F. Consequences of organic matter biodegradability on the physical, chemical parameters of substrates. Acta Hortic. 1998, 469, 129–138. [Google Scholar] [CrossRef]
- Cabrera, F.; Clemente, L.; Díiaz Barrientos, E.; López, R.; Murillo, J.M. Heavy metal pollutions of soils affected by the Guadiamar toxic flood. Sci. Total Environ. 1999, 242, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Mc Connell, D.B.; Robinson, C.A.; Caldwell, R.D.; Huang, Y. Production and interior performances of tropical ornamental foliage plants grown in container substrates amended with composts. Comp. Sci. Util. 2002, 10, 217–225. [Google Scholar] [CrossRef]
- Benito, M.; Masaguer, A.; Moliner, A.; Antonio, R.D. Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresour. Technol. 2006, 97, 2071–2076. [Google Scholar] [CrossRef]
- Tittarelli, F.; Rea, E.; Verrastro, V.; Pascual, J.A.; Canali, S.; Ceglie, F.G.; Trinchera, A.; Rivera, C.M. Compost-based nursery substrates: Effect of peat substitution on organic melon seedlings. Comp. Sci. Util. 2009, 17, 220–228. [Google Scholar] [CrossRef]
- De Lucia, B.; Vecchietti, L.; Leone, A. Italian buckthorn response to compost based substrates. Acta Hortic. 2011, 891, 231–236. [Google Scholar] [CrossRef]
- Stellacci, A.M.; Cristiano, G.; Rubino, P.; De Lucia, B.; Cazzato, E. Nitrogen uptake, nitrogen partitioning and N-use efficiency of container-grown Holm oak (Quercus ilex L.) under different nitrogen levels and fertilizer sources. Int. J. Food Agric. Environ. 2013, 11, 132–137. [Google Scholar]
- European Pharmacopoeia. Determination of Essential Oils in Herbal Drugs, 6th ed.; Council of Europe European, European Directorate for the Quality of Medicines: Strasbourg, France, 2008; pp. 251–252. [Google Scholar]
- Servizio Informativo Agrometeorologico Siciliano. Available online: www.sias.regione.sicilia.it (accessed on 20 July 2020).
- Omer, E.; Hendawy, S.; El Gendy, A.N.; Mannu, A.; Petretto, G.L.; Pintore, G. Effect of irrigation systems and soil conditioners on the growth and essential oil composition of Rosmarinus officinalis L. cultivated in Egypt. Sustainability 2020, 12, 6611. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Virga, G.; Licata, M.; Leto, C.; La Bella, S. Constructed wetlands as sustainable technology for the treatment and reuse of the first-flush stormwater in agriculture—A case study in Sicily (Italy). Water 2020, 12, 2542. [Google Scholar] [CrossRef]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Plant Sci. 2014, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Gomez, A.; Bernal, M.P.; Roig, A. Growth of ornamental plants in two composts prepared from agro-industrial wastes. Bioresour. Technol. 2002, 83, 81–87. [Google Scholar] [CrossRef]
- Raviv, M. Can compost improve sustainability of plant production in growing media? Acta Hortic. 2017, 1168, 119–133. [Google Scholar] [CrossRef]
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Han, S.; Kim, K. Effects of growth retardans on growth, flowering, and germination of harvested seed in Clinopodium chinense var. parviflorum. J. Korean Soc. Hortic. Sci. 1999, 40, 765–768. [Google Scholar]
- Lì, Z.; Wu, N.; Liu, T.; Chen, H.; Tang, M. Sex-related responses of Populus cathayana shoots and roots to AM fungi and drought stress. PLoS ONE 2015, 10, e0142356. [Google Scholar] [CrossRef] [Green Version]
- Llorens-Molina, J.A.; Vacas, S. Effect of drought stress on essential oil composition of Thymus vulgaris L. (Chemotype 1, 8-cineole) from wild populations of Eastern Iberian Peninsula. J. Essent. Oil Res. 2017, 29, 144–155. [Google Scholar] [CrossRef]
- An, Y.Y.; Liang, Z.S. Drought tolerance of Periploca sepium during seed germination: Antioxidant defense and compatible solutes accumulation. Acta Physiol. Plant. 2013, 35, 959–967. [Google Scholar] [CrossRef]
- Mathobo, R.; Marais, D.; Steyn, J.M. The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agric. Water Manag. 2017, 180, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Rioba, N.B.; Itulya, F.M.; Saidi, M.; Dudai, N.; Bernstein, N. Effects of nitrogen, phosphorus and irrigation frequency on essential oil content and composition of sage (Salvia officinalis L.). J. Appl. Res. Med. Aromat. Plants 2015, 2, 21–29. [Google Scholar] [CrossRef]
- Pereira, S.I.; Santos, P.A.G.; Barroso, J.G.; Figueiredo, A.C.; Pedro, L.G.; Salgueiro, L.R.; Deans, S.G.; Scheffer, J.J.C. Chemical polymorphism of the essential oils from populations of Thymus caespititius grown on the island S. Jorge (Azores). Phytochemistry 2000, 55, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Burdina, I.; Priss, O. Effect of the substrate composition on yield and quality of basil (Ocimum basilicum L.). J. Hortic. Res. 2016, 24, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Sadeh, D.; Nitzan, N.; Chaimovitsh, D.; Shachter, A.; Ghanim, M.; Dudai, N. Interactive effects of genotype, seasonality and extraction method on chemical compositions and yield of essential oil from rosemary (Rosmarinus officinalis L.). Ind. Crop Prod. 2019, 138, 1–7. [Google Scholar] [CrossRef]
- La Bella, S.; Tuttolomondo, T.; Dugo, G.; Ruberto, G.; Leto, C.; Napoli, E.M.; Potortì, A.G.; Fede, M.R.; Virga, G.; Leone, R.; et al. Composition and variability of the essential oil of the flowers of Lavandula stoechas from various geographical sources. Nat. Prod. Commun. 2015, 10, 2001–2004. [Google Scholar] [CrossRef] [Green Version]
- Tuttolomondo, T.; Dugo, G.; Ruberto, G.; Leto, C.; Napoli, E.M.; Potortì, A.G.; Fede, M.R.; Virga, G.; Leone, R.; D’Anna, E.; et al. Agronomical evaluation of Sicilian biotypes of Lavandula stoechas L. spp. stoechas and analysis of the essential oils. J. Essent. Oil Res. 2015, 27, 115–124. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Dugo, G.; Leto, C.; Cicero, N.; Tropea, A.; Virga, G.; Leone, R.; Licata, M.; La Bella, S. Agronomical and chemical characterisation of Thymbra capitata (L.) Cav. biotypes from Sicily, Italy. Nat. Prod. Res. 2015, 29, 1289–1299. [Google Scholar] [CrossRef]
- Saija, A.; Speciale, A.; Trombetta, D.; Leto, C.; Tuttolomondo, T.; La Bella, S.; Licata, M.; Virga, G.; Bonsangue, G.; Gennaro, M.C.; et al. Phytochemical, ecological and antioxidant evaluation of wild Sicilian thyme: Thymbra capitata (L.) Cav. Chem. Biodivers. 2016, 13, 1641–1655. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Iapichino, G.; Licata, M.; Virga, G.; Leto, C.; La Bella, S. Agronomic evaluation and chemical characterization of Sicilian Salvia sclarea L. accessions. Agronomy 2020, 10, 1114. [Google Scholar] [CrossRef]
- Nunziata, A.; De Benedetti, L.; Marchioni, I.; Cervelli, C. High resolution melting profiles of 364 genotypes of Salvia rosmarinus in 16 microsatellite loci. Ecol. Evol. 2019, 9, 3728–3739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flamini, G.; Najar, B.; Leonardi, M.; Ambryszewska, K.E.; Cioni, P.G.; Parri, F.; Melai, B.; Pistelli, L. Essential oil composition of Salvia rosmarinus spenn. wild samples collected from six sites and different seasonal periods in Elba Island (Tuscan Archipelago, Italy). Nat. Prod. Res. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bolechowski, A.; Moral, M.A.; Bustamante, M.A.; Bartual, J.; Paredes, C.; Pérez-Murcia, M.A.; Carbonell-Barrachina, A.A. Winery–distillery composts as partial substitutes of traditional growing media: Effect on the volatile composition of thyme essential oils. Sci. Hortic. 2015, 193, 69–76. [Google Scholar] [CrossRef]
- Bolechowski, A.; Moral, R.; Bustamante, M.A.; Paredes, C.; Agulló, E.; Bartual, J.; Carbonell-Barrachina, A.A. Composition of oregano essential oil (Origanum vulgare) as affected by the use of winery-distillery composts. J. Essent. Oil Res. 2011, 23, 32–38. [Google Scholar] [CrossRef]
Parameter | Growing Substrate | |||
---|---|---|---|---|
S1 | S2 | S3 | S4 | |
Bulk density (g cm−3) | 0.23 | 0.25 | 0.33 | 0.17 |
Total porosity (%) | 89.59 | 88.88 | 86.07 | 91.86 |
Air capacity at pF1 (%) | 41.16 | 43.42 | 32.22 | 46.44 |
Available water (%) | 20.65 | 19.81 | 24.33 | 18.32 |
Treatment | Plant Height (cm) | Plant Diameter (cm) | Height-to-Diameter Ratio | No. Primary Branches (per Plant) | No. Secondary Branches (per Plant) | Plant Branch Length (cm) | Plant Branch Width (cm) | No. Leaves cm Branch−1 | General Appearance of Plant | Flowering |
---|---|---|---|---|---|---|---|---|---|---|
Year (Y) | ||||||||||
Y1 | 26.18 a | 39.60 a | 0.73 a | 14.51 a | 14.22 a | 29.01 a | 3.43 a | 8.55 a | 5.40 a | 0.95 a |
Y2 | 25.27 b | 38.66 b | 0.74 a | 14.25 a | 14.01 a | 28.53 a | 3.32 b | 8.67 b | 5.26 a | 0.94 a |
Irrigation (I) | ||||||||||
IW1 | 24.10 b | 36.68 b | 0.71 b | 15.39 a | 10.61 b | 27.96 b | 3.29 b | 8.89 a | 5.17 b | 1.58 a |
IW2 | 27.83 a | 41.58 a | 0.76 a | 15.37 b | 17.63 a | 29.58 a | 3.46 a | 8.33 b | 5.50 a | 0.31 b |
Substrate (S) | ||||||||||
S1 | 25.35 b | 37.92 b | 0.72 a | 13.36 b | 12.92 b | 28.70 b | 3.32 b | 9.07 a | 5.21 b | 0.83 a |
S2 | 24.59 b | 34.78 b | 0.77 a | 15.51 a | 12.43 b | 29.67 b | 3.47 ab | 8.81 ab | 4.99 b | 0.91 a |
S3 | 24.46 b | 35.09 b | 0.74 a | 13.37 b | 11.71 b | 31.18 a | 3.63 a | 8.54 ab | 5.05 b | 1.11 a |
S4 | 29.46 a | 48.71 a | 0.70 a | 15.29 a | 19.41 a | 26.54 c | 3.08 c | 8.02 b | 6.10 a | 0.94 a |
Plant habitus (H) | ||||||||||
H1 | 39.29 a | 30.29 c | 1.29 a | 18.69 a | 6.45 b | 27.96 b | 3.58 b | 8.90 a | 5.77 a | 1.20 a |
H2 | 22.47 b | 50.73 a | 0.44 b | 10.83 c | 5.37 b | 33.12 a | 3.80 a | 8.54 a | 5.38 b | 0.79 b |
H3 | 16.15 c | 36.37 b | 0.46 b | 13.62 b | 30.18 a | 25.23 c | 2.74 c | 8.39 a | 4.85 c | 0.85 b |
Interactions (significance) | ||||||||||
Y × I | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Y × S | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Y × H | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
I × S | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
I × H | n.s. | * | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. | n.s. |
S × H | n.s. | * | n.s. | n.s. | * | * | * | n.s. | n.s. | n.s. |
Y × I × S | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Y × I × H | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Y × S × H | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
I × S × H | * | n.s. | * | n.s. | * | n.s. | n.s. | n.s. | n.s. | n.s. |
Y × I × S × H | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Treatment | Fresh Weight (g plant−1) | Dry Weight (g plant−1) | EO Content (%) |
---|---|---|---|
Year | |||
Y1 | 98.35 a | 28.25 a | 0.67 a |
Y2 | 96.66 a | 27.61 a | 0.67 a |
Irrigation | |||
I1 | 76.31 b | 21.38 b | 0.72 a |
I2 | 118.76 a | 34.49 a | 0.62 b |
Substrate | |||
S1 | 89.78 b | 26.01 b | 0.68 a |
S2 | 82.83 b | 22.99 b | 0.66 b |
S3 | 84.63 b | 22.89 b | 0.68 a |
S4 | 133.28 a | 39.74 a | 0.66 b |
Plant habitus | |||
H1 | 100.08 a | 35.05 a | 0.68 a |
H2 | 92.43 b | 27.01 b | 0.67 ab |
H3 | 94.01 b | 21.75 c | 0.65 b |
Interactions (significance) | |||
Y × I | n.s. | n.s. | n.s. |
Y × S | n.s. | n.s. | n.s. |
Y × H | n.s. | n.s. | n.s. |
I × S | n.s. | n.s. | n.s. |
I × H | n.s. | n.s. | n.s. |
S × H | * | * | * |
Y × I × S | n.s. | n.s. | n.s. |
Y × I × H | n.s. | n.s. | n.s. |
Y × S × H | n.s. | n.s. | n.s. |
I × S × H | * | n.s. | n.s. |
Y × I × S × H | n.s. | n.s. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Bella, S.; Virga, G.; Iacuzzi, N.; Licata, M.; Sabatino, L.; Consentino, B.B.; Leto, C.; Tuttolomondo, T. Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary (Rosmarinus officinalis L.) Biotypes Grown in Pot. Agriculture 2021, 11, 13. https://doi.org/10.3390/agriculture11010013
La Bella S, Virga G, Iacuzzi N, Licata M, Sabatino L, Consentino BB, Leto C, Tuttolomondo T. Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary (Rosmarinus officinalis L.) Biotypes Grown in Pot. Agriculture. 2021; 11(1):13. https://doi.org/10.3390/agriculture11010013
Chicago/Turabian StyleLa Bella, Salvatore, Giuseppe Virga, Nicolò Iacuzzi, Mario Licata, Leo Sabatino, Beppe Benedetto Consentino, Claudio Leto, and Teresa Tuttolomondo. 2021. "Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary (Rosmarinus officinalis L.) Biotypes Grown in Pot" Agriculture 11, no. 1: 13. https://doi.org/10.3390/agriculture11010013
APA StyleLa Bella, S., Virga, G., Iacuzzi, N., Licata, M., Sabatino, L., Consentino, B. B., Leto, C., & Tuttolomondo, T. (2021). Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary (Rosmarinus officinalis L.) Biotypes Grown in Pot. Agriculture, 11(1), 13. https://doi.org/10.3390/agriculture11010013