Suitability of Composting Process for the Disposal and Valorization of Brewer’s Spent Grain
Abstract
:1. Introduction
2. Different Utilization Routes of BSG, an Alternative to Composting—An Overview
3. The Composting Process
3.1. Factors Affecting the Composting Process
- Mesophilic phase (25–40 °C): initially fungi, actinomycetes, and bacteria metabolize energy-rich and easily degradable compounds, such as sugars and proteins, to result in increased temperatures.
- Thermophilic phase (35–65 °C): with increasing temperature the decomposition continues to be rapid up to 62 °C, when the mesophilic flora are completely replaced by the thermophilic flora. These latter include, in particular, heat-tolerant and thermophilic bacteria (e.g., Bacillus spp., Thermus spp.) and actinomycetes (e.g., Thermomonospora spp., Thermoactinomyces vulgaris, Streptomyces spp., Microtetraspora spp.). Thermophilic fungi have optimal growth temperatures between 35 °C and 55 °C, and at higher temperatures their growth is inhibited. The thermophilic phase is important for elimination of pathogenic microorganisms, which is also due to some actinomycetes, such as Streptomyces spp., as known producers of antibiotics (e.g., erythromycin, neomycin, chloramphenicol, streptomycin, tetracycline).
- Cooling phase (or second mesophilic phase): when the activity of the thermophilic microorganisms ceases due to substrate exhaustion, the temperature begins to decrease. Mesophilic bacteria can then re-colonize the substrate, particularly the sporogenic Bacillus spp. and Clostridium spp. [59]. The second mesophilic phase is characterized by increasing numbers of bacteria and fungi that degrade polymers such as starch and cellulose.
3.2. Methods for Identification of Microbial Communities in Composting
3.3. Dynamics of Microbial Species during Composting
4. Characteristic of Brewers’ Spent Grain Related to the Composting Process
5. Ways to Optimize the Composting of BSG
- BSG + wheat straw + pig slurry solid fraction.
- BSG + wheat straw + sheep manure.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Van Dyk, J.; Gama, R.; Morrison, D.; Swart, S.; Pletschke, B. Food processing waste: Problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renew. Sustain. Energy Rev. 2013, 26, 521–531. [Google Scholar] [CrossRef]
- Kusch-Brandt, S.; Mumme, J.; Nashalian, O.; Girotto, F.; Lavagnolo, M.C.; Udenigwe, C. Valorization of Residues From Beverage Production; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128152591. [Google Scholar]
- Siqueiros, E.; Lamidi, R.O.; Pathare, P.B.; Wang, Y.; Roskilly, A.P. Energy recovery from brewery waste: Experimental and modelling perspectives. Energy Procedia 2019, 161, 24–31. [Google Scholar] [CrossRef]
- Nocente, F.; Taddei, F.; Galassi, E.; Gazza, L. Upcycling of brewers’ spent grain by production of dry pasta with higher nutritional potential. LWT Food Sci. Technol. 2019, 114, 108421. [Google Scholar] [CrossRef]
- Barth-Haas Group The Barth Report Hops 2018/2019. Available online: https://www.barthhaas.com/fileadmin/user_upload/news/2019-07-23/barthreport20182019en.pdf (accessed on 13 April 2020).
- Reinold, M. Manual pratico de cervejaria. Aden Ed. Comun. 1997, 1, 1–149. [Google Scholar]
- Arranz, J.I.; Miranda, M.T.; Sepúlveda, F.J.; Montero, I.; Rojas, C.V. Analysis of drying of brewers’ spent grain. Proceedings 2018, 2, 1467. [Google Scholar] [CrossRef] [Green Version]
- Devolli, A.; Shahinasi, E.; Stafasani, M.; Feta, D.; Dara, F. Evaluation of brewery waste and its reduction methods. Albanian J. Agric. Sci. 2018, 506–513. [Google Scholar]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Xiros, C.; Christakopoulos, P. Biotechnological potential of brewers spent grain and its recent applications. Waste Biomass Valorization 2012, 3, 213–232. [Google Scholar] [CrossRef]
- Robertson, J.A.; I’Anson, K.J.A.; Treimo, J.; Faulds, C.B.; Brocklehurst, T.F.; Eijsink, V.G.H.; Waldron, K.W. Profiling brewers’ spent grain for composition and microbial ecology at the site of production. LWT Food Sci. Technol. 2010, 43, 890–896. [Google Scholar] [CrossRef]
- Aliyu, S.; Bala, M. Brewer’s spent grain: A review of its potentials and applications. Afr. J. Biotechnol. 2011, 10, 324–331. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Roberto, I.C. Chemical characterization and liberation of pentose sugars from brewer’s spent grain. J. Chem. Technol. Biotechnol. 2006, 81, 268–274. [Google Scholar] [CrossRef]
- Westendorf, M.L.; Wohlt, J.E. Brewing by-products: Their use as animal feeds. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 233–252. [Google Scholar] [CrossRef]
- Fillaudeau, L.; Blanpain-Avet, P.; Daufin, G. Water, wastewater and waste management in brewing industries. J. Clean. Prod. 2006, 14, 463–471. [Google Scholar] [CrossRef]
- Stefanello, F.S.; dos Santos, C.O.; Bochi, V.C.; Fruet, A.P.B.; Soquetta, M.B.; Dörr, A.C.; Nörnberg, J.L. Analysis of polyphenols in brewer’s spent grain and its comparison with corn silage and cereal brans commonly used for animal nutrition. Food Chem. 2018, 239, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Lao, E.J.; Dimoso, N.; Raymond, J.; Mbega, E.R. The prebiotic potential of brewers’ spent grain on livestock’s health: A review. Trop. Anim. Health Prod. 2020, 52, 461–472. [Google Scholar] [CrossRef]
- Kerby, C.; Vriesekoop, F. An overview of the utilisation of brewery by-products as generated by British craft breweries. Beverages 2017, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Stojceska, V.; Ainsworth, P. The effect of different enzymes on the quality of high-fibre enriched brewer’s spent grain breads. Food Chem. 2008, 110, 865–872. [Google Scholar] [CrossRef]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Bolwig, S.; Mark, M.S.; Happel, M.K.; Brekke, A. Beyond animal feed? The valorisation of brewers’ spent grain. In From Waste to Value: Valorisation Pathways for Organic Waste Streams in Circular Bioeconomies; Routledge: Abingdon, UK, 2019; pp. 107–126. ISBN 9780429863257. [Google Scholar]
- Öztürk, S.; Özboy, Ö.; Cavidoǧlu, I.; Köksel, H. Effects of brewer’s spent grain on the quality and dietary fibre content of cookies. J. Inst. Brew. 2002, 108, 23–27. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Ikram, S.; Huang, L.Y.; Zhang, H.; Wang, J.; Yin, M. Composition and nutrient value proposition of brewers spent grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, C.; Zhang, J.; Duan, Y.; Zhang, H.; Ma, H. A mini-review on brewer’s spent grain protein: Isolation, physicochemical properties, application of protein, and functional properties of hydrolysates. J. Food Sci. 2019, 84, 3330–3340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, P.; Paliwal, J.; Cenkowski, S. Issues with utilisation of brewers’ spent grain. Stewart Postharvest Rev. 2010, 6, 1–8. [Google Scholar] [CrossRef]
- Saba, S.; Zara, G.; Bianco, A.; Garau, M.; Bononi, M.; Deroma, M.; Pais, A.; Budroni, M. Comparative analysis of vermicompost quality produced from brewers’ spent grain and cow manure by the red earthworm Eisenia fetida. Bioresour. Technol. 2019, 293, 122019. [Google Scholar] [CrossRef]
- Weger, A.; Binder, S.; Franke, M.; Hornung, A.; Ru, W.; Mayer, W. Solid biofuel production by mechanical pre-treatment of brewers’ spent grain. Chem. Eng. Trans. 2014, 37, 661–666. [Google Scholar] [CrossRef]
- Rojas-Chamorro, J.A.; Romero, I.; López-Linares, J.C.; Castro, E. Brewer’s spent grain as a source of renewable fuel through optimized dilute acid pretreatment. Renew. Energy 2020, 148, 81–90. [Google Scholar] [CrossRef]
- Panjičko, M.; Zupančič, G.D.; Fanedl, L.; Logar, R.M.; Tišma, M.; Zelić, B. Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. J. Clean. Prod. 2017, 166, 519–529. [Google Scholar] [CrossRef]
- Ortiz, I.; Torreiro, Y.; Molina, G.; Maroño, M.; Sánchez, J.M. A feasible application of circular economy: Spent grain energy recovery in the beer industry. Waste Biomass Valorization 2019, 10, 3809–3819. [Google Scholar] [CrossRef]
- Weber, B.; Stadlbauer, E.A. Sustainable paths for managing solid and liquid waste from distilleries and breweries. J. Clean. Prod. 2017, 149, 38–48. [Google Scholar] [CrossRef]
- Bianco, A.; Budroni, M.; Zara, S.; Mannazzu, I.; Fancello, F.; Zara, G. The role of microorganisms on biotransformation of brewers’ spent grain. Appl. Microbiol. Biotechnol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siva Shangari, G.; Agamuthu, P. Enhancing methane oxidation in landfill cover using brewery spent srain as biocover. Malays. J. Sci. 2012, 31, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Chanzu, H.A.; Onyari, J.M.; Shiundu, P.M. Brewers’ spent grain in adsorption of aqueous Congo red and malachite green dyes: Batch and continuous flow systems. J. Hazard. Mater. 2019, 380, 120897. [Google Scholar] [CrossRef]
- Pampuro, N.; Busato, P.; Cavallo, E. Effect of densification conditions on specific energy requirements and physical properties of compacts made from hop cone. Energies 2018, 11, 2389. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.P.; Mandal, R.; Shojaei, M.; Singh, A.; Kowalczewski, P.L.; Ligaj, M.; Pawlicz, J.; Jarzebski, M. Novel drying methods for sustainable upcycling of brewers’ spent grains as a plant protein source. Sustainability 2020, 12, 3660. [Google Scholar] [CrossRef]
- Jackowski, M.; Niedzwiecki, L.; Lech, M.; Wnukowski, M.; Arora, A.; Tkaczuk-Serafin, M.; Baranowski, M.; Krochmalny, K.; Veetil, V.K.; Seruga, P.; et al. HTC of wet residues of the brewing process: Comprehensive characterization of produced beer, spent grain and valorized residues. Energies 2020, 13, 2058. [Google Scholar] [CrossRef] [Green Version]
- Olszewski, M.P.; Arauzo, P.J.; Wądrzyk, M.; Kruse, A. Py-GC-MS of hydrochars produced from brewer’s spent grains. J. Anal. Appl. Pyrolysis 2019, 140, 255–263. [Google Scholar] [CrossRef]
- Mbagwu, J.S.C.; Ekwealor, G.C. Agronomic potential of brewers’ spent grains. Biol. Wastes 1990, 34, 335–347. [Google Scholar] [CrossRef]
- Aboukila, E.F.; Nassar, I.N.; Rashad, M.; Hafez, M.; Norton, J.B. Reclamation of calcareous soil and improvement of squash growth using brewers’ spent grain and compost. J. Saudi Soc. Agric. Sci. 2018, 17, 390–397. [Google Scholar] [CrossRef] [Green Version]
- Budroni, M.; Mannazzu, I.; Zara, S.; Saba, S.; Pais, A.; Zara, G. Composition and functional profiling of the microbiota in the casts of Eisenia fetida during vermicomposting of brewers’ spent grains. Biotechnol. Rep. 2020, 25, e00439. [Google Scholar] [CrossRef] [PubMed]
- Pampuro, N.; Dinuccio, E.; Balsari, P.; Cavallo, E. Evaluation of two composting strategies for making pig slurry solid fraction suitable for pelletizing. Atmos. Pollut. Res. 2016, 7, 288–293. [Google Scholar] [CrossRef]
- Zucconi, F.; Forte, M.; Monaco, A.; de Bertoldi, M. Biological evaluation of compost maturity. Biocycle 1981, 22, 27–29. [Google Scholar]
- Pampuro, N.; Bisaglia, C.; Romano, E.; Brambilla, M.; Pedretti, E.F.; Cavallo, E. Phytotoxicity and chemical characterization of compost derived from pig slurry solid fraction for organic pellet production. Agriculture 2017, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Larney, F.J.; Hao, X. A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta, Canada. Bioresour. Technol. 2007, 98, 3221–3227. [Google Scholar] [CrossRef] [PubMed]
- Pampuro, N.; Bertora, C.; Sacco, D.; Dinuccio, E.; Grignani, C.; Balsari, P.; Cavallo, E.; Bernal, M.P. Fertilizer value and greenhouse gas emissions from solid fraction pig slurry compost pellets. J. Agric. Sci. 2017, 155, 1646–1658. [Google Scholar] [CrossRef]
- Agnew, J.M.; Leonard, J.J. The physical properties of compost. Compost Sci. Util. 2003, 11, 238–264. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- de Bertoldi, M.; Vallini, G.; Pera, A. The biology of composting: A review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar] [CrossRef]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Thami Alami, I. Composting parameters and compost quality: A literature review. Org. Agric. 2018, 8, 141–158. [Google Scholar] [CrossRef]
- Miller, F.C. Composting as a process based on the control of ecologically selective factors. Soil Microb. Ecol. 1992, 18, 515–543. [Google Scholar]
- Vallini, G.; Di Gregorio, S.; Pera, A.; Cristina, A.; Cunha Queda, F. Exploitation of composting management for either reclamation of organic wastes or solid-phase treatment of contaminated environmental matrices. Environ. Rev. 2002, 10, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, J.; Gibbs, R.A.; Ho, G.E.; Unkovich, I. Selection of Salmonella typhimurium as an indicator for pathogen regrowth potential in composted biosolids. Lett. Appl. Microbiol. 1999, 29, 303–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, E.; Brambilla, M.; Bisaglia, C.; Pampuro, N.; Pedretti, E.F.; Cavallo, E. Pelletization of composted swine manure solid fraction with different organic co-formulates: Effect of pellet physical properties on rotating spreader distribution patterns. Int. J. Recycl. Org. Waste Agric. 2014, 3, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Pampuro, N.; Preti, C.; Cavallo, E. Recycling pig slurry solid fraction compost as a sound absorber. Sustainability 2018, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Partanen, P.; Hultman, J.; Paulin, L.; Auvinen, P.; Romantschuk, M. Bacterial diversity at different stages of the composting process. BMC Microbiol. 2010, 10. [Google Scholar] [CrossRef] [Green Version]
- Insam, H.; de Bertoldi, M. Chapter 3 Microbiology of the composting process. Waste Manag. Ser. 2007, 8, 25–48. [Google Scholar] [CrossRef]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M.; et al. Advances in chemical and biological methods to identify microorganisms—From past to present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, P.; Møller, J.; Magid, J. Determination of a relationship between chitinase activity and microbial diversity in chitin amended compost. Bioresour. Technol. 2008, 99, 4355–4359. [Google Scholar] [CrossRef]
- He, Y.; Xie, K.; Xu, P.; Huang, X.; Gu, W.; Zhang, F.; Tang, S. Evolution of microbial community diversity and enzymatic activity during composting. Res. Microbiol. 2013, 164, 189–198. [Google Scholar] [CrossRef]
- Wang, X.; Cui, H.; Shi, J.; Zhao, X.; Zhao, Y.; Wei, Z. Relationship between bacterial diversity and environmental parameters during composting of different raw materials. Bioresour. Technol. 2015, 198, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Nain, L. Microorganisms in the conversion of agricultural wastes to compost. Proc. Indian Natl. Sci. Acad. 2014, 80, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Khidzir, K.M.; Abdullah, N.; Agamuthu, P. Brewery spent grain: Chemical characteristics and utilization as an enzyme substrate. Malays. J. Sci. 2010, 29, 41–51. [Google Scholar] [CrossRef]
- Santos, M.; Jiménez, J.; Bartolomé, B.; Gómez-Cordovés, C.; del Nozal, M. Variability of brewer’s spent grain within a brewery. Food Chem. 2003, 80, 17–21. [Google Scholar] [CrossRef]
- Muthusamy, N. Chemical composition of brewers spent grain—A review. Int. J. Sci. Environ. Technol. 2014, 3, 2019–2112. [Google Scholar]
- Babatunde, A.A.; Mufutau, B.K.; Olu, O. Studies on the physico-chemical and microbiological parameters associated with composting of brewer’s spent grain using different activators. Afr. J. Microbiol. Res. 2015, 9, 6–16. [Google Scholar] [CrossRef]
- Bougrier, C.; Dognin, D.; Laroche, C.; Cacho Rivero, J.A. Use of trace elements addition for anaerobic digestion of brewer’s spent grains. J. Environ. Manag. 2018, 223, 101–107. [Google Scholar] [CrossRef]
- Buffington, J. The economic potential of brewer’s spent grain (BSG) as a biomass feedstock. Adv. Chem. Eng. Sci. 2014, 4, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.; Monteiro, E.; Brito, P.; Castro, C.; Calado, L.; Vilarinho, C. Experimental analysis of brewers’ spent grains steam gasification in an allothermal batch reactor. Energies 2019, 12, 912. [Google Scholar] [CrossRef] [Green Version]
- Mainardis, M.; Flaibani, S.; Mazzolini, F.; Peressotti, A.; Goi, D. Techno-economic analysis of anaerobic digestion implementation in small Italian breweries and evaluation of biochar and granular activated carbon addition effect on methane yield. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Manolikaki, I.; Diamadopoulos, E. Agronomic potential of biochar prepared from brewery byproducts. J. Environ. Manag. 2020, 255. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.V.; Alves, M.M.; Costa, J.C. Biochemical methane potential of brewery by-products. Clean Technol. Environ. Policy 2018, 20, 435–440. [Google Scholar] [CrossRef]
- Pérez, V.; Murillo, J.M.; Bados, R.; Esteban, L.S.; Ramos, R.; Sánchez, J.M. Preparation and gasification of brewers’ spent grains. In Proceedings of the 5th International Conference on Sustainable Solid Waste Management, Athens, Greece, 17 March 2017; pp. 1–12. [Google Scholar]
- Phyllis2 Database for the Physico-Chemical Composition of (Treated) Lignocellulosic Biomass, Micro- and Macroalgae, Various Feedstocks for Biogas Production and Biochar. Available online: https://phyllis.nl/ (accessed on 22 April 2020).
- Sperandio, G.; Amoriello, T.; Carbone, K.; Fedrizzi, M.; Monteleone, A.; Tarangioli, S.; Pagano, M. Increasing the value of spent grain from craft microbreweries for energy purposes. Chem. Eng. Trans. 2017, 58, 487–492. [Google Scholar] [CrossRef]
- Stocks, C.; Barker, A.J.; Guy, S. The composting of brewery sludge. J. Inst. Brew. 2002, 108, 452–458. [Google Scholar] [CrossRef]
- Thomas, K.; Rahman, P. Brewery wastes. Strategies for sustainability. A review. Asp. Appl. Biol. 2006, 80. [Google Scholar]
- Vitanza, R.; Cortesi, A.; Gallo, V.; Colussi, I.; De Arana-Sarabia, M.E. Biovalorization of brewery waste by applying anaerobic digestion. Chem. Biochem. Eng. Q. 2016, 30, 351–357. [Google Scholar] [CrossRef]
- ANPA. Il Recupero Di Sostanza Organica Dai Rifiuti Per La Produzione Di Ammendanti Di Qualità; ANPA: Rome, Italy, 2002; Volume 7, ISBN 8844800527.
- Chrysargyris, A.; Saridakis, C.; Tzortzakis, N. Use of municipal solid waste compost as growing medium component for melon seedlings production. J. Plant Biol. Soil Health 2013, 1, 1–5. [Google Scholar] [CrossRef]
- Papamichalaki, M.; Papadaki, A.; Tzortzakis, N. Substitution of peat with municipal solid waste compost in watermelon seedling production combined with fertigation. Chil. J. Agric. Res. 2014, 74, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, N.J.; Bosker, T.; Lantinga, E.A. Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L.). Agric. Ecosyst. Environ. 2002, 93, 189–196. [Google Scholar] [CrossRef]
- Wong, M.H.; Cheung, Y.H.; Cheung, C.L. The effects of ammonia and ethylene oxide in animal manure and sewage sludge on the seed germination and root elongation of Brassica parachinensis. Environ. Pollut. Ser. A Ecol. Biol. 1983, 30, 109–123. [Google Scholar] [CrossRef]
- Iglesias, J.; Pérez, G. Determination of maturity indices for city refuse composts. Agric. Ecosyst. Environ. 1992, 38, 331–343. [Google Scholar] [CrossRef]
- Cooperband, L.; Stone, A.; Fryda, M.; Ravet, J. Relating compost measures of stability and maturity to plant growth. Compost Sci. Util. 2013, 11, 113–124. [Google Scholar] [CrossRef]
Source | Total Nitrogen (%) | Total Carbon (%) | C/N Ratio | pH | Moisture (%) |
---|---|---|---|---|---|
Aboukila et al., 2018 [43] | 6.1 | 43.5 | 7.1 | 4.2 | 75.0 |
Babatunde et al., 2015 [69] | - | 46.4 | - | - | - |
Bougrier et al., 2018 [70] | 4.4 * | - | - | - | 75.3 |
Buffington 2014 [71] | - | 49.1 | - | - | - |
Ferreira et al., 2019 [72] | 5.5 | 48.3 | 8.8 | - | 78.8 |
Khidzir et al., 2010 [66] | 3.8 * | 35.6 | 9.5 * | 72.6 | |
Mainardis et al., 2019 [73] | 2.7 | 46.6 | 17.6 | 5.8 | 77.0 |
Manolikaki and Diamadopoulos 2020 [74] | 4.8 | 45.0 | 9.4 * | 4.8 | - |
Mbagwu and Ekwealor 1990 [42] | 5.1 | - | - | 4.4 | - |
Oliveira et al., 2018 [75] | 4.6 * | - | - | 6.9 | 78.1 |
Ortiz et al., 2019 [32] | 3.5 | 48.7 | 13.9 * | - | 76.0 |
Panjičko et al., 2017 [31] | 5.1 | 58.0 * | 11.4 * | - | 76.3 |
Pérez et al., 2017 [76] | 4.4 | 50.4 | 11.5 * | - | 81.3 |
Phyllis2 Database [77] | 3.7 | 48.9 | 13.2 * | - | 78.9 |
Saba et al., 2019 [28] | 3.6 | 37.6 * | 10.3 | 3.8 | - |
Siva Shangari and Agamuthu 2012 [36] | 3.6 * | 40.1 | 11.0 | 4.4 | 70.6 |
Sperandio et al., 2017 [78] | 4.2 | 45.7 | 10.9 * | - | 72.9 |
Stocks et al., 2002 [79] | 2.0 | 50.9 | 25.5 | - | 76.0 |
Thomas and Rahman 2006 [80] | 2.0 | 53.0 | 26.5 * | - | 73.7 |
Vitanza et al., 2016 [81] | 4.1 * | 50.8 * | 12.4 | - | 81.3 |
Composting Mixture | Parameter | |||||
---|---|---|---|---|---|---|
Weight (kg) | Moisture (%) | Total Carbon (%) | Total Nitrogen (%) | C/N Ratio | Weight Percent (%) | |
Brewers’ spent grain | 20.2 | 76.3 | 47.0 | 4.1 | 13.3 | 40.2 |
Wheat straw | 10 | 8.0 | 55.4 | 0.3 | 205.2 | 19.9 |
Pig slurry solid fraction | 20 | 66.3 | 46.3 | 1.9 | 24.4 | 39.9 |
Total | 50.2 | - | - | - | - | 100.0 |
Composting Mixture | Parameter | |||||
---|---|---|---|---|---|---|
Weight (kg) | Moisture (%) | Total Carbon (%) | Total Nitrogen (%) | C/N Ratio | Weight Percent (%) | |
Brewers’ spent grain | 16.5 | 76.3 | 47.0 | 4.1 | 13.3 | 31.5 |
Wheat straw | 16 | 8.0 | 55.4 | 0.3 | 205.2 | 30.4 |
Sheep manure | 20 | 62.7 | 45.8 | 3.3 | 13.9 | 38.1 |
Total | 52.5 | - | - | - | - | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assandri, D.; Pampuro, N.; Zara, G.; Cavallo, E.; Budroni, M. Suitability of Composting Process for the Disposal and Valorization of Brewer’s Spent Grain. Agriculture 2021, 11, 2. https://doi.org/10.3390/agriculture11010002
Assandri D, Pampuro N, Zara G, Cavallo E, Budroni M. Suitability of Composting Process for the Disposal and Valorization of Brewer’s Spent Grain. Agriculture. 2021; 11(1):2. https://doi.org/10.3390/agriculture11010002
Chicago/Turabian StyleAssandri, Davide, Niccolò Pampuro, Giacomo Zara, Eugenio Cavallo, and Marilena Budroni. 2021. "Suitability of Composting Process for the Disposal and Valorization of Brewer’s Spent Grain" Agriculture 11, no. 1: 2. https://doi.org/10.3390/agriculture11010002
APA StyleAssandri, D., Pampuro, N., Zara, G., Cavallo, E., & Budroni, M. (2021). Suitability of Composting Process for the Disposal and Valorization of Brewer’s Spent Grain. Agriculture, 11(1), 2. https://doi.org/10.3390/agriculture11010002