Quantifying Uncertainty in Food Security Modeling
Abstract
:1. Introduction
1.1. Uncertainty in Modeling Process
1.2. Food Security Models and Climate Change Impacts
1.2.1. Trends of Food Security Models
1.2.2. Climate Change Impact on Modeling Process
2. Material and Methods—Quantifying Uncertainty in Food Security Modeling
2.1. Data and Study Area
- (i)
- for rainfall variability
- (ii)
- for potential evapotranspiration variability
2.2. Models and Methods
3. Results and Analysis
Uncertainty Due to Model Structure
4. Discussion—Uncertainty in Food Security Modeling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Robinson, S. Contrasting approaches to projecting long-run global food security. Oxf. Rev. Econ. Policy 2015, 31, 26–44. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Takahashi, K.; Masui, T. Scenarios for the risk of hunger in the twenty-first century using Shared Socioeconomic Pathways. Environ. Res. Lett. 2015, 10, 014010. [Google Scholar] [CrossRef]
- Nelson, G.C.; Shively, G.E. Modelling climate change and agriculture: An introduction to the special issue. Agric. Econ. 2013, 45, 1–2. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Shin, Y.; Takahashi, K.; Masui, T.; Tanaka, A. Climate change impact and adaptation assessment on food consumption utilizing a new scenario framework. Environ. Sci. Technol. 2013, 48, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, C.; Jones, J.; Hatfield, J.L.; Ruane, A.C.; Boote, K.; Thorburn, P.J.; Antle, J.M.; Nelson, G.C.; Porter, C.K.; Janssen, S.; et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef] [Green Version]
- Nelson, G.C.; Valin, H.; Willenbockel, D. Assessing uncertainty along the climate-crop-economy modeling chain. Proc. Natl. Acad. Sci. USA 2014, 119, 3274–3290. [Google Scholar] [CrossRef] [Green Version]
- Von Lampe, M.; Willenbockel, D.; Ahammad, H.; Blanc, E.; Cai, Y.; Calvin, K.; Fujimori, S.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; et al. Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. Agric. Econ. 2013, 45, 3–20. [Google Scholar] [CrossRef]
- Wiebe, K.; Lotze-Campen, H.; Sands, R.D.; Tabeau, A.; Van Der Mensbrugghe, D.; Biewald, A.; Bodirsky, B.; Islam, S.; Kavallari, A.; Mason-D’Croz, D.; et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 2015, 10, 85010–85024. [Google Scholar] [CrossRef]
- Nelson, G.; Bogard, J.; Lividini, K.; Arsenault, J.; Riley, M.; Sulser, T.B.; Mason-D’Croz, D.; Power, B.; Gustafson, D.; Herrero, M.; et al. Income growth and climate change effects on global nutrition security to mid-century. Nat. Sustain. 2018, 1, 773–781. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Bodirsky, B.L.; Doelman, J.C.; Fellmann, T.; Kyle, P.; Koopman, J.F.L.; Lotze-Campen, H.; et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Chang. 2018, 8, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Van Meijl, H.; Havlík, P.; Lotze-Campen, H.; Stehfest, E.; Witzke, P.; Domínguez, I.P.; Bodirsky, B.L.; Van Dijk, M.; Doelman, J.; Fellmann, T.; et al. Comparing impacts of climate change and mitigation on global agriculture by 2050. Environ. Res. Lett. 2018, 13, 064021. [Google Scholar] [CrossRef] [Green Version]
- Marshall, L. Creativity, uncertainty, and automated model building. Ground Water 2017, 55, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Huard, D.; Mailhot, A. A Bayesian perspective on input uncertainty in model calibration: Application to hydrological model “abc”. Water Resour. Res. 2006, 42, 07416. [Google Scholar] [CrossRef] [Green Version]
- Kuczera, G.; Kavetski, D.; Franks, S.; Thyer, M. Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters. J. Hydrol. 2006, 331, 161–177. [Google Scholar] [CrossRef]
- McMillan, H.; Jackson, B.; Clark, M.; Kavetski, D.; Woods, R. Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models. J. Hydrol. 2011, 400, 83–94. [Google Scholar] [CrossRef]
- Renard, B.; Kavetski, D.; Kuczera, G.; Thyer, M.; Franks, S.W. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res. 2010, 46, 05521. [Google Scholar] [CrossRef]
- Villarini, G.; Krajewski, W.F. Empirically-based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges. Adv. Water Resour. 2008, 31, 1015–1023. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Ter Braak, C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 2008, 44, W00B09. [Google Scholar] [CrossRef] [Green Version]
- Camera, C.; Bruggeman, A.; Hadjinicolaou, P.; Pashiardis, S.; Lange, M.A. Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980–2010. J. Geophys. Res. Atmos. 2014, 119, 693–712. [Google Scholar] [CrossRef]
- Seo, D.-J.; Krajewski, W.F.; Bowles, D.S. Stochastic interpolation of rainfall data from rain gages and radar using cokriging: 1. Design of experiments. Water Resour. Res. 1990, 26, 469–477. [Google Scholar] [CrossRef]
- Troldborg, M.; Nowak, W.; Lange, I.V.; Dos Santos, M.C.P.R.; Binning, P.J.; Bjerg, P.L. Application of Bayesian geostatistics for evaluation of mass discharge uncertainty at contaminated sites. Water Resour. Res. 2012, 48, 09535. [Google Scholar] [CrossRef]
- Bárdossy, A.; Das, T. Influence of rainfall observation network on model calibration and application. Hydrol. Earth Syst. Sci. 2008, 12, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Dawdy, D.R.; Bergmann, J.M. Effect of rainfall variability on streamflow simulation. Water Resour. Res. 1969, 5, 958–966. [Google Scholar] [CrossRef]
- Del Giudice, D.; Albert, C.; Rieckermann, J.; Reichert, P. Describing the catchment-averaged precipitation as a stochastic process improves parameter and input estimation. Water Resour. Res. 2016, 52, 3162–3186. [Google Scholar] [CrossRef] [Green Version]
- Georgakakos, K.; Seo, D.-J.; Gupta, H.; Schaake, J.; Butts, M.B. Towards the characterization of streamflow simulation uncertainty through multimodel ensembles. J. Hydrol. 2004, 298, 222–241. [Google Scholar] [CrossRef]
- Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Andréassian, V.; Anctil, F.; Loumagne, C. Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2-Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol. 2005, 303, 290–306. [Google Scholar] [CrossRef]
- Beven, K. Facets of uncertainty: Epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrol. Sci. J. 2016, 61, 1652–1665. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, T.M.; Georgakakos, K.P. Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model. J. Hydrol. 2004, 298, 202–221. [Google Scholar] [CrossRef]
- Gong, W.; Gupta, H.V.; Yang, D.; Sricharan, K.; Hero, A.O. Estimating epistemic and aleatory uncertainties during hydrologic modeling: An information theoretic approach. Water Resour. Res. 2013, 49, 2253–2273. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Xu, C.-Y.; Zhang, Q.; Singh, V. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. J. Hydrol. 2010, 383, 147–155. [Google Scholar] [CrossRef]
- Montanari, A.; Grossi, G. Estimating the uncertainty of hydrological forecasts: A statistical approach. Water Resour. Res. 2008, 44, W00B08. [Google Scholar] [CrossRef] [Green Version]
- Nearing, G.S.; Gupta, H.V. The quantity and quality of information in hydrologic models. Water Resour. Res. 2015, 51, 524–538. [Google Scholar] [CrossRef]
- Capell, R.; Tetzlaff, D.; Soulsby, C. Can time domain and source area tracers reduce uncertainty in rainfall-runoff models in larger heterogeneous catchments? Water Resour. Res. 2012, 48, W09544. [Google Scholar] [CrossRef]
- Euser, T.; Bouaziz, L.; De Niel, J.; Brauer, C.C.; Dewals, B.; Drogue, G.; Fenicia, F.; Grelier, B.; Nossent, J.; Pereira, F.; et al. Looking beyond general metrics for model comparison-lessons from an international model intercomparison study. Hydrol. Earth Syst. Sci. 2017, 21, 423–440. [Google Scholar] [CrossRef] [Green Version]
- De Moel, H.; Bouwer, L.M.; Aerts, J.C. Uncertainty and sensitivity of flood risk calculations for a dike ring in the south of the Netherlands. Sci. Total Environ. 2014, 224–234. [Google Scholar] [CrossRef]
- Clark, M.; Kavetski, D.; Fenicia, F. Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour. Res. 2011, 47, 09301. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Kavetski, D.; Kuczera, G.; Franks, S.W. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour. Res. 2006, 42, 03407. [Google Scholar] [CrossRef]
- Benke, K.; Lowell, K.E.; Hamilton, A.J. Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model. Math. Comput. Model. 2008, 47, 1134–1149. [Google Scholar] [CrossRef]
- Bates, B.C.; Campbell, E.P. A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resour. Res. 2001, 37, 937–947. [Google Scholar] [CrossRef]
- Christiaens, K.; Feyen, J. Constraining soil hydraulic parameter and output uncertainty of the distributed hydrological MIKE SHE model using the GLUE framework. Hydrol. Process. 2002, 16, 373–391. [Google Scholar] [CrossRef]
- Liu, G.; Schwartz, F.W.; Tseng, K.-H.; Shum, C.K. Discharge and water-depth estimates for ungauged rivers: Combining hydrologic, hydraulic, and inverse modeling with stage and water-area measurements from satellites. Water Resour. Res. 2015, 51, 6017–6035. [Google Scholar] [CrossRef]
- Coxon, G.; Freer, J.E.; Westerberg, I.K.; Wagener, T.; Woods, R.; Smith, P.J. A novel framework for discharge uncertainty quantification applied to 500 UK gauging stations. Water Resour. Res. 2015, 51, 5531–5546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, G.; Hizsnyik, E.; Prieler, S.; Shah, M.; van Velthuizen, H.T. Biofuels and Food Security. Final Report; The OPEC Fund for International Development (OFID): Vienna, Austria, 2009. [Google Scholar]
- Robinson, S.; Mason-D’Croz, D.; Sulser, T.; Islam, S.; Robertson, R.; Zhu, T.; Gueneau, A.; Pitois, G.; Rosegrant, M.W. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3. SSRN Electron. J. 2015. [Google Scholar] [CrossRef] [Green Version]
- De Fraiture, C. Integrated water and food analysis at the global and basin level. An application of WATERSIM. Water Resour. Manag. 2006, 21, 185–198. [Google Scholar] [CrossRef]
- McDonald, S.; Thierfelder, K.; Robinson, S. Globe: A SAM Based Global CGE Model. Using GTAP Data (No. 14), USNA Working Paper; US Naval Academy: Annapolis, MD, USA, 2007. [Google Scholar]
- Bouwman, A.F.; Kram, T.; Klein Goldewijk, K. Integrated Modelling of Global Environmental Change: An Overview of IMAGE 2.4; Netherlands Environmental Assessment Agency (PBL): Bilthoven, The Netherlands, 2006.
- Linehan, V.; Thorpe, S.; Andrews, N.; Beaini, F. Food Demand to 2050: Opportunities for Australian Agriculture-Algebraic Description of Agrifood Model. Technical Annex to ABARES Outlook Conference Paper 12.4; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2012.
- Dorin, B.; Le Cotty, T. Agribiom: A tool for scenario-building and hybrid modelling. In Agrimonde-Scenarios and Challenges for Feeding the World in 2050; Paillard, S., Treyer, S., Dorin, B., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 9–35. [Google Scholar]
- Van Vuuren, D.; Riahi, K.; Calvin, K.V.; Dellink, R.B.; Emmerling, J.; Fujimori, S.; Kc, S.; Kriegler, E.; O’Neill, B. The shared socio-economic pathways: Trajectories for human development and global environmental change. Glob. Environ. Chang. 2017, 42, 148–152. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; Van Ruijven, B.J.; Van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.J.; Jongman, B.; Aerts, J.C.J.H.; Bates, P.D.; Botzen, W.J.W.; Loaiza, A.D.; Hallegatte, S.; Kind, J.M.; Kwadijk, J.; Scussolini, P.; et al. A global framework for future costs and benefits of river-flood protection in urban areas. Nat. Clim. Chang. 2017, 7, 642–646. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Aerts, J.C.J.H.; Van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.J.; Ligtvoet, W.; Lucas, P.L.; Van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2016, 6, 381–385. [Google Scholar] [CrossRef]
- Ishak, E.; Rahman, A.; Westra, S.; Sharma, A.; Kuczera, G. Evaluating the non-stationarity of Australian annual maximum flood. J. Hydrol. 2013, 494, 134–145. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ghosh, S.; Pathak, A.; Athulya, R.; Mujumdar, M.; Murtugudde, R.; Terray, P.; Rajeevan, M. A threefold rise in widespread extreme rain events over central India. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Boyd, E.; James, R.; Jones, R.G.; Young, H.R.; Otto, F.E.L. A typology of loss and damage perspectives. Nat. Clim. Chang. 2017, 7, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Huq, S.; Roberts, E.; Fenton, A. Loss and damage. Nat. Clim. Chang. 2013, 3, 947–949. [Google Scholar] [CrossRef]
- James, R.; Otto, F.; Parker, H.; Boyd, E.; Cornforth, R.; Mitchell, D.; Allen, M. Characterizing loss and damage from climate change. Nat. Clim. Chang. 2014, 4, 938–939. [Google Scholar] [CrossRef] [Green Version]
- Mechler, R. Climate policy: Transparency for loss and damage. Nature Clim. Chang. 2017, 7, 687–688. [Google Scholar] [CrossRef]
- Lee, J.-K.; Kim, Y.-O.; Kim, Y. A new uncertainty analysis in the climate change impact assessment. Int. J. Climatol. 2017, 37, 3837–3846. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, C.; Fu, G.; Zhou, H.; Liu, J. Quantifying uncertainties in extreme flood predictions under climate change for a medium-sized basin in Northeastern China. J. Hydrometeorol. 2016, 17, 3099–3112. [Google Scholar] [CrossRef]
- Wu, C.H.; Huang, G.R.; Yu, H.J. Prediction of extreme floods based on CMIP5 climate models: A case study in the Beijiang River basin, South China. Hydrol. Earth Syst. Sci. 2015, 19, 1385–1399. [Google Scholar] [CrossRef] [Green Version]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Wang, G.; Wang, D.; Trenberth, K.E.; Erfanian, A.; Yu, M.; Bosilovich, M.G.; Parr, D.T. The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Clim. Chang. 2017, 7, 268–274. [Google Scholar] [CrossRef]
- Wasko, C.; Sharma, A. Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci. 2015, 8, 527–529. [Google Scholar] [CrossRef]
- Westra, S.; Fowler, H.J.; Evans, J.P.; Alexander, L.V.; Berg, P.; Johnson, F.R.; Kendon, E.J.; Lenderink, G.; Roberts, N.M. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 2014, 52, 522–555. [Google Scholar] [CrossRef]
- Wasko, C.; Sharma, A. Continuous rainfall generation for a warmer climate using observed temperature sensitivities. J. Hydrol. 2017, 544, 575–590. [Google Scholar] [CrossRef]
- Woldemeskel, F.M.; Sharma, A.; Sivakumar, B.S.; Mehrotra, R.C. Quantification of precipitation and temperature uncertainties simulated by CMIP3 and CMIP5 models. J. Geophys. Res. Atmos. 2016, 121, 3–17. [Google Scholar] [CrossRef] [Green Version]
- USACE (U.S. Army Corps of Engineers). Guidelines for Risk and Uncertainty Analysis in Water Resources Planning. IWR Report 92-R-1; Institute for Water Resources: Fort Belvoir, VA, USA, 1992. [Google Scholar]
- Peterman, R.M.; Anderson, J.L. Decision analysis: A method for taking uncertainties into account in risk-based decision making. Human Ecol. Risk Assess. Int. J. 1999, 5, 231–244. [Google Scholar] [CrossRef]
- Jongman, B.; Hochrainer-Stigler, S.; Feyen, L.; Aerts, J.C.J.H.; Mechler, R.; Botzen, W.J.W.; Bouwer, L.M.; Pflug, G.C.; Rojas, R.; Ward, P.J. Increasing stress on disaster-risk finance due to large floods. Nat. Clim. Chang. 2014, 4, 264–268. [Google Scholar] [CrossRef]
- Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A. Review article “Assessment of economic flood damage”. Nat. Hazards Earth Syst. Sci. 2010, 10, 1697–1724. [Google Scholar] [CrossRef]
- Sieg, T.; Vogel, K.; Merz, B.; Kreibich, H. Tree-based flood damage modeling of companies: Damage processes and model performance. Water Resour. Res. 2017, 53, 6050–6068. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Sharma, A. Mitigating parameter bias in hydrological modelling due to uncertainty in covariates. J. Hydrol. 2007, 340, 197–204. [Google Scholar] [CrossRef]
- Eghdamirad, S.; Johnson, F.; Sharma, A. Using second-order approximation to incorporate GCM uncertainty in climate change impact assessments. Clim. Chang. 2017, 142, 37–52. [Google Scholar] [CrossRef]
- Khan, M.Z.K.; Sharma, A.; Mehrotra, R. Global seasonal precipitation forecasts using improved sea surface temperature predictions. J. Geophys. Res. Atmos. 2017, 122, 4773–4785. [Google Scholar] [CrossRef]
- Jones, D.; Wang, W.; Fawcett, R. High-quality spatial climate data-sets for Australia. J. South. Hemisphere Earth Syst. Sci. 2009, 58, 233–248. [Google Scholar] [CrossRef]
- Khan, M.Z.K.; Sharma, A.; Mehrotra, R.; Schepen, A.; Wang, Q.J. Does improved SSTA prediction ensure better seasonal rainfall forecasts? Water Resour. Res. 2015, 51, 3370–3383. [Google Scholar] [CrossRef]
- Shoaib, S.A.; Marshall, L.; Sharma, A. A metric for attributing variability in modelled streamflows. J. Hydrol. 2016, 541, 1475–1487. [Google Scholar] [CrossRef]
- Shoaib, S.A.; Marshall, L.; Sharma, A. Attributing input uncertainty in streamflow simulations via the Quantile Flow Deviation metric. Adv. Water Res. 2018, 116, 40–55. [Google Scholar] [CrossRef]
- Barrett, C.B. Measuring Food Insecurity. Science 2010, 327, 825–828. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Committee on World Food Security. Final Report. Thirty-Seventh Session; FAO: Rome, Italy, 2011. [Google Scholar]
Model | World Food System Model | Watersim | IMPACT | GLOBE | IMAGE | ABARES | Agrobiom |
---|---|---|---|---|---|---|---|
Type | CGE | PE | PE | CGE | IA | PE | Biomass |
Economy coverage | Total economy | Agriculture and water | Agriculture | Total economy | Agriculture | Agriculture | Agriculture |
Spatial scale | 34 Regions | 282 Sub-basins | 115 Regions | 19 Regions | 24 Regions, 0.51_0.51 grid | 37 Regions | 149 Regions |
Sectoral scale | 10 Sectors | 32 Commodities | 32 Commodities | 12 Sectors | 12 Commodities | 33 Commodities | 5 Biomass categories |
Institution | IIASA, Austria | IWMI-IFPRI, USA | IFPRI, USA | Oxford Brookes University, UK | PBL, The Netherlands | ABARES, Australia | INRA/CIRAD, France |
Documentation | [44] | [46] | [45] | [47] | [48] | [49] | [50] |
Food prices | Equilibrium prices | Equilibrium prices | Equilibrium prices | Equilibrium prices | n.a. | Computation and estimation of food security indicators. | |
Calorie availability | No information on calculation | No information on calculation. | Post calculation using equilibrium food supply from model combined with calorie conversion factors | n.a. | n.a. | Equilibrium prices | n.a. |
Undernourishment | Post estimation using the ratio of average national calorie availability, relative to aggregate national food requirements from FAO as inputs | n.a. | Post estimation using the ratio of average national calorie availability, relative to aggregate national food requirements from FAO as inputs | n.a. | Post calculation using calorie availability and FAO data on food intake. | n.a. | Post calculation using equilibrium food supply from model combined with calorie conversion factors |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoaib, S.A.; Khan, M.Z.K.; Sultana, N.; Mahmood, T.H. Quantifying Uncertainty in Food Security Modeling. Agriculture 2021, 11, 33. https://doi.org/10.3390/agriculture11010033
Shoaib SA, Khan MZK, Sultana N, Mahmood TH. Quantifying Uncertainty in Food Security Modeling. Agriculture. 2021; 11(1):33. https://doi.org/10.3390/agriculture11010033
Chicago/Turabian StyleShoaib, Syed Abu, Mohammad Zaved Kaiser Khan, Nahid Sultana, and Taufique H. Mahmood. 2021. "Quantifying Uncertainty in Food Security Modeling" Agriculture 11, no. 1: 33. https://doi.org/10.3390/agriculture11010033
APA StyleShoaib, S. A., Khan, M. Z. K., Sultana, N., & Mahmood, T. H. (2021). Quantifying Uncertainty in Food Security Modeling. Agriculture, 11(1), 33. https://doi.org/10.3390/agriculture11010033