Black Oat (Avena strigosa Schreb.) Ontogenesis and Agronomic Performance in Organic Cropping System and Pannonian Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Meteorological Conditions during Vegetation Periods
2.3. Soil Properties
2.4. Statistical Analysis
3. Results
3.1. Ontogenesis/Individual Development
3.2. Productivity Parameters
3.2.1. Plant Height
3.2.2. Aboveground Plant Biomass (Biomass Yield)
3.2.3. Harvest Index
3.2.4. Grain Yield
3.2.5. Hull Index
3.2.6. Protein Content
3.3. Correlation of Tested Parameters
4. Discussion
4.1. Meteorological and Soil Conditions during Vegetation Periods
4.1.1. Ontogenesis/Individual Development
4.2. Productivity Parameters
4.2.1. Plant Height
4.2.2. Aboveground Plant Biomass (Biomass Yield)
4.2.3. Harvest Index
4.2.4. Grain Yield
4.2.5. Hull Index
4.2.6. Protein Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glamočlija, Đ.; Janković, S.; Popović, V.; Kuzevski, J.; Filipović, V.; Ugrenović, V. Alternatively Crop Plants in Conventional and Organic Growing Systems; Monography; Institute for Science Application in Agriculture: Belgrade, Serbia, 2015; pp. 1–355. ISBN 978-86-81689-32-5. [Google Scholar]
- Dial, H.L. Plant Guide for Black Oat (Avena strigosa Schreb.) USDA-Natural Resources Conservation Service; Tucson Plant Materials Center: Tucson, AZ, USA, 2014; p. 85705. [Google Scholar]
- Ashford, D.L.; Reeves, D.W. Use of a mechanical roller-crimper as an alternative kill method for cover crops. Am. J. Altern. Agric. 2003, 18, 37–45. [Google Scholar] [CrossRef]
- Andognini, J.; Albuquerque, J.A.; Warmling, M.I.; Teles, J.S.; Silva, G.B. Soil compaction effect on black oat yield in Santa Catarina, Brazil. Rev. Bras. Ciência Solo 2020, 44, e0190157. [Google Scholar] [CrossRef]
- Vicensi, M.; Lopes, C.; Koszalka, V.; Umburanas, R.C.; Borecki Vidigal, J.C.; de Ávila, F.W.; Lopes Müller, M.M. Soil Fertility, Root and Aboveground Growth of Black Oat Under Gypsum and Urea Rates in No Till. J. Soil Sci. Plant Nutr. 2020, 20, 1271–1286. [Google Scholar] [CrossRef]
- Frey, L. Distribution of Avena strigosa (Poaceae) in Europe. Fragm. Florist. Geobot. 1991, 36, 281–288. [Google Scholar]
- Weibul, J.; Bojesen, L.L.J.; Rasomavièvius, V. Avena strigosa in Denmark and Lithuania: Prospects for in situ conservation. Plant Genet. Resour. Newsl. 2002, 131, 1–6. [Google Scholar]
- Scholten, M.; Spoor, B.; Green, N. Machair corn: Management and conservation of a historical machair component. Glasg. Nat. 2009, 25, 63–71. [Google Scholar]
- Restelatto, R.; Pavinato, P.S.; Sartor, L.R.; Paixão, S.J. Production and nutritional value of sorghum and black oat forages under nitrogen fertilization. Grass Forage Sci. 2013, 69, 693–704. [Google Scholar] [CrossRef]
- Ugrenović, V. Organic Production of Grain; National Association for Organic Production Serbia Organica: Belgrade, Serbia, 2018; pp. 1–63. [Google Scholar]
- Ikanović, J.; Popović, V. Organic Plant Production; National Association Serbia Organica: Belgrade, Serbia, 2017; pp. 1–233. [Google Scholar]
- Ugrenović, V.; Bodroža Solarov, M.; Filipović, V.; Međeeši, B.; Ugrinović, M. Black Oat (Avena strigosa Schreb) - New Species in Production in Serbia. In Proceedings of the 3rd International Conference Agrobiodiversity Organic Agriculture for Agrobiodiversity Preservation, Novi Sad, Serbia, 1–3 June 2017; p. 63. [Google Scholar]
- Dimitrijević, M.; Petrović, S.; Belić, M.; Banjac, B.; Vukosavljev, M.; Mladenov, N.; Hristov, N. The Influence of Solonetz Soil Limited Growth Conditions on Bread Wheat Yield. J. Agric. Sci. Technol. 2011, 5, 194–201. [Google Scholar]
- Jakšić, S. Effect of forage crops, soil type and soil fertility on productivity and and chemical composition of roughage. Ph.D. Thesis, University of Belgrade, Faculty of Agriculture, Belgrade, Serbia, 2014; pp. 1–212. [Google Scholar]
- Hack, H.; Gall, H.; Klemke, T.; Klose, R.; Meier, U.; Stauss, R.; Witzenberger, A. The BBCH scale for phonological growth stages. In U. Meier (Ed.), Growth Stages of Mono- and Dicotyledonous Plants. Bbch Monograph. Ger. 2001, 1–158. [Google Scholar]
- Ugrenović, V.; Bodroža Solarov, M.; Pezo, L.; Đisalov, J.; Popović, V.; Marić, B.; Filipović, V. Analysis of spelt variability (Triticum spelta L.) grown in different conditions of Serbia by organic conditions. Genetics 2018, 50, 635–646. [Google Scholar]
- Ugrenović, V.; Filipović, V.; Popović, V.; Glamočlija, Đ. Hull Index – Indicator of Hulled Wheat Productivity and Quality. Plant. Breed. Seed Prod. 2015, 21, 31–38. [Google Scholar]
- Jones, D.B. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Protein; US Department of Agriculture: Washington, DC, USA, 1941; pp. 1–183. [Google Scholar]
- Živković, B.; Nejgebauer, V.; Tanasijević, Đ.; Miljković, N.; Stojković, L.; Drezgić, P. Soils of Vojvodina. Book N. S. Serb. 1972, 380–403. [Google Scholar]
- Belić, M.; Nešić, L.; Ćirić, V.; Vasin, J.; Milošev, V.; Šeremešić, S. Characteristics and Classification of Gleyic Soils of Banat. Ratar. Povrt. Field Veg. Crop. 2011, 48, 375–382. [Google Scholar] [CrossRef]
- Jelić, M.; Dugalić, G.; Milivojević, J.; Đekić, V. Effect of liming and fertilization on yield and quality of oat (Avena sativa L.) on an acid luvisol soil. Rom. Agric. Res. 2013, 30, 249–258. [Google Scholar]
- Rajičić, V.; Popović, V.; Perišić, V.; Biberdžić, M.; Jovović, Z.; Gudžić, N.; Mihailović, V.; Čolić, V.; Đurić, N.; Terzić, D. Impact of Nitrogen and Phosphorus on Grain Yield in Winter Triticale Grown on Degraded Vertisol. Agronomy 2020, 10, 757. [Google Scholar] [CrossRef]
- Güngör, H.; Dokuyucu, T.; Dumlupinar, Z.; Akkaya, A. Yulafta (Avena spp.) Tane Verimi ile Bazı Tarımsal Özellikler Arasındaki İlişkilerin Korelasyon ve Path Analizleriyle Saptanması. Tekirdağ Ziraat Fakültesi Derg. 2017, 14, 61–68. [Google Scholar]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Anwar, S.; Ashraf, M.Y.; Khaliq, B.; Sun, M.; Hussain, S.; Gao, Z.-Q.; Noor, H.; Alam, S. Mechanisms and Adaptation Strategies to Improve Heat Tolerance in Rice. A Review. Plants 2019, 8, 508. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, K. Genetic diversity of Avena strigosa Schreb. ecotypes on the basis of isoenzyme markers. Biodivers. Res. Conserv. 2009, 15, 23–28. [Google Scholar] [CrossRef]
- Doehlert, D.C.; McMullen, M.S.; Hammond, J.J. Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota. Crop. Sci. 2001, 41, 1066–1072. [Google Scholar] [CrossRef]
- Peterson, D.M.; Westenberg, D.M.; Burrup, D.E.; Erickson, C.A. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop. Sci. 2005, 45, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Calzarano, F.; Stagnari, F.; D’Egidio, S.; Pagnani, G.; Galieni, A.; Di Marco, S.; Metruccio, E.G.; Pisante, M. Durum Wheat Quality, Yield and Sanitary Status under Conservation Agriculture. Agriculture 2018, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Đekić, V.; Jelić, M.; Popović, V.; Terzić, D.; Đurić, N.; Grčak, D.; Grčak, M. Parameters of grain yield and quality of spring oats. Proc. J. Pkb Agroekonomik Inst. 2018, 24, 81–86. [Google Scholar]
- Gonçalves, S.L.; Saraiva, O.F.; Torres, E. Influência de fatores climáticos na decomposição de resíduos culturais de aveia e trigo. Bookempresa Bras. Pesqui. Agropecuária Embrapa Soja 2010, 1–27. [Google Scholar]
- Mantai, R.D.; Silva, J.A.G.; da Marolli, A.; Mamann, Â.T.W.; de Sawicki, S.; Cleusa, A.M.B.K. Simulation of oat development cycle by photoperiod and temperature. Rev. Bras. Eng. Agrícola Ambient. 2017, 21, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Ugrenović, V. Impact of Seeding Date and Crop Density on the Ontogenesis, Yield and Quality of Spelt Grain (Triticum spelta L.). Ph.D. Thesis, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia, 2013; pp. 1–135. [Google Scholar]
- Zečević, V.; Knežević, D.; Mićanović, D.; Pavlović, M.; Urošević, D. The inheritance of plant height in winter wheat. Genetika 2005, 37, 173–179. [Google Scholar]
- Popović, V.; Ljubičić, N.; Kostić, M.; Radulović, M.; Blagojević, D.; Ugrenović, V.; Popović, D.; Ivošević, B. Genotype × Environment Interaction for Wheat Yield Traits Suitable for Selection in Different Seed Priming Conditions. Plants 2020, 9, 1804. [Google Scholar] [CrossRef]
- Molla, E.A.; Wondimagegn, B.A.; Chekol, Y.M. Evaluation of biomass yield and nutritional quality of oats–vetch mixtures at different harvesting stage under residual moisture in Fogera District, Ethiopia. Agric. Food Secur. 2018, 7, 88. [Google Scholar] [CrossRef]
- Patterson, M.J.; Reeves, D.W.; Gamble, B.E. Weed Management with Black Oat (Avena strigosa) in No-Till Cotton. In Proceedings Beltwide Cotton Conferences, Nashville, TN, USA, 9–12 January 2003; National Cotton Council: Memphis, TN, USA, 1996; Volume 2, pp. 1557–1558. [Google Scholar]
- Peltonen–Sainio, P.; Muurinen, S.; Rajala, A.; Jauhiainen, L. Variation in harvest index of modern spring barley, oat and wheat cultivars adapted to northern growing conditions. J. Agric. Sci. 2008, 146, 35–47. [Google Scholar] [CrossRef]
- Ma, B.L.; Kumar Biswas, D.; Zhou, Q.P.; Ren, C.Z. Comparisons among cultivars of wheat, hulled and hulless oats: Effects of N fertilization on growth and yield. Can. J. Plant. Sci. 2012, 92, 1213–1222. [Google Scholar] [CrossRef]
- Mut, Z.; Akay, H.; Köse, O. Grain yield, quality traits and grain yield stability of local oat cultivars. J. Soil Sci. Plant. Nutr. 2018, 18, 269–281. [Google Scholar]
- Sembiring, H.A.; Subekti, N.; Erythrina Nugraha, D.; Priatmojo, B.; Stuart, A.M. Yield Gap Management under Seawater Intrusion Areas of Indonesia to Improve Rice Productivity and Resilience to Climate Change. Agriculture. 2020, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Pandino, G.; Mattiolo, E.; Lombardo, S.; Lombardo, G.M.; Mauromicale, G. Organic Cropping System Affects Grain Chemical Composition, Rheological and Agronomic Performance of Durum Wheat. Agriculture. 2020, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.M.; Struik, P.C.; Lammerts van Bueren, E.T. Perspectives to breed for improved baking quality wheat varieties adapted to organic growing conditions. J. Sci. Food Agric. 2011, 92, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Keres, I.; Alaru, M.; Talgre, L.; Luik, A.; Eremeev, V.; Sats, A.; Jõudu, I.; Riisalu, A.; Loit, E. Impact of Weather Conditions and Farming Systems on Size Distribution of Starch Granules and Flour Yield of Winter Wheat. Agriculture 2020, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Łuczka, W.; Kalinowski, S. Barriers to the Development of Organic Farming: A Polish Case Study. Agriculture 2020, 10, 536. [Google Scholar] [CrossRef]
- Rajičić, V.; Popović, V.; Terzić, D.; Grčak, D.; Dugalić, M.; Mihailović, A.; Grčak, M.; Ugrenović, V. Impact of lime and NPK fertilizers on yield and quality of oats on pseudogley soil and their valorisation. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 2134–2152. [Google Scholar] [CrossRef]
- Souissi, A.; Bahri, H.; Cheikh M’hamed, H.; Chakroun, M.; Benyoussef, S.; Frija, A.; Annabi, M. Effect of Tillage, Previous Crop, and N Fertilization on Agronomic and Economic Performances of Durum Wheat (Triticum durum Desf.) under Rainfed Semi-Arid Environment. Agronomy 2020, 10, 1161. [Google Scholar] [CrossRef]
Location/Soil Type | pH | CaCO3 | Humus | Total N | Available, mg/100 g | ||
---|---|---|---|---|---|---|---|
nKCl | H2O | % | % | % | P2O5 | K2O | |
Pancevo-chernozem | 7.4 | 8.0 | 12.1 | 3.43 | 0.23 | 19.7 | 16.4 |
Pancevo-humogley | 5.4 | 6.4 | 1.3 | 2.31 | 0.18 | 3.6 | 36.2 |
Year | 2017 | 2018 | 2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
Growth Stages | AD ** | PD | DAS | AD | PD | DAS | AD | PD | DAS |
(Days) | (Days) | (Days) | |||||||
BBCH 10 * | 05.03–14.03. | 9 | 9 | 05.03–30.03. | 25 | 25 | 05.03–15.03. | 10 | 10 |
BBCH 30 | 28.03–20.04. | 23 | 46 | 14.04–27.04. | 13 | 53 | 30.03–18.04. | 19 | 45 |
BBCH 59 | 20.04–25.05. | 35 | 81 | 27.04–23.05. | 26 | 79 | 18.04–25.05. | 37 | 81 |
BBCH 85 | 25.05–26.06. | 32 | 113 | 23.05–27.06. | 35 | 114 | 25.05–04.07. | 40 | 121 |
BBCH 89 | 26.06–29.06. | 3 | 118 | 27.06–02.07. | 5 | 119 | 04.07–09.07. | 5 | 126 |
*** Vegetation period (total) | 107 | 95 | 116 |
Soil Type * | Year | PH (cm) | BY (t ha−1) | GY (t ha−1) | HI (%) | HUI (%) | PC (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L1-Ch | 2017 | 107.75 ± 3.30 | 12.77 ± 0.06 | 1.41 ± 0.03 | 10.99 ± 0.23 | 22.06 ± 0.20 | 18.39 ± 0.44 | ||||||
2018 | 104.00 ± 3.56 | 12.18 ± 0.03 | 1.19 ± 0.03 | 9.77 ± 0.23 | 21.61 ± 0.08 | 16.84 ± 0.38 | |||||||
2019 | 112.25 ± 2.75 | 14.11 ± 0.11 | 2.08 ± 0.02 | 14.78 ± 0.08 | 21.35 ± 0.44 | 17.89 ± 0.84 | |||||||
Average | 108.00 ± 4.57 | 13.02 ± 0.85 | 1.56 ± 0.38 | 11.85 ± 2.23 | 21.67 ± 0.40 | 17.71 ± 0.86 | |||||||
L2-Hu | 2017 | 106.00 ± 2.16 | 10.67 ± 0.09 | 1.09 ± 0.02 | 10.22 ± 0.14 | 22.09 ± 0.14 | 16.12 ± 0.16 | ||||||
2018 | 101.75 ± 2.75 | 10.25 ± 0.27 | 0.99 ± 0.05 | 9.68 ± 0.23 | 21,97 ± 0.27 | 15.17 ± 0.20 | |||||||
2019 | 111.75 ± 2.50 | 12.94 ± 0.04 | 1.81 ± 0.04 | 13.99 ± 0.07 | 21.66 ± 0.17 | 15.95 ± 0.28 | |||||||
Average | 106.50 ± 4.83 | 11.29 ± 1.24 | 1.29 ± 0.38 | 11.29 ± 2.02 | 20.90 ± 0.26 | 16.73 ± 1.21 | |||||||
Average 2017 | 106.88 ± 4.57 | 11.72 ± 1.05 | 1.24 ± 0.17 | 10.61 ± 0.46 | 22.07 ± 0.16 | 17.26 ± 1.25 | |||||||
Average 2018 | 102.88 ± 3.18 | 11.22 ± 1.04 | 1.11 ± 0.04 | 9.73 ± 0.24 | 21.79 ± 0.27 | 16.01 ± 0.94 | |||||||
Average 2019 | 112.00 ± 2.45 | 13.53 ± 0.63 | 1.95 ± 0.15 | 14.38 ± 0.48 | 21.51 ± 0.35 | 16.92 ± 1.19 | |||||||
Average L1 + L2 | 107.25 ± 4.66 | 12.16 ± 1.35 | 1.43 ± 0.41 | 11.57 ± 2.10 | 21.78 ± 0.35 | 16.72 ± 1.21 | |||||||
Parameter | PH (cm) | BY (t ha−1) | GY (t ha−1) | HI (%) | HUI (%) | PC (%) | |||||||
SD | 0.5 | 0.1 | 0.5 | 0.1 | 0.5 | 0.1 | 0.5 | 0.1 | 0.5 | 0.1 | 0.5 | 0.1 | |
L | 2.492 | 3.039 | 0.113 | 0.138 | 0.032 | 0.244 | 0.200 | 0.244 | 0.259 | 0.356 | 0.316 | 0.525 | |
Year | 3.051 | 3.722 | 0.139 | 0.169 | 0.039 | 0.048 | 0.245 | 0.299 | 0.212 | 0.291 | 0.387 | 0.643 | |
L × Y | 4.315 | 5.264 | 0.196 | 0.239 | 0.055 | 0.068 | 0.346 | 0.423 | 0.367 | 0.503 | 0.547 | 0.909 |
Effect | SS | DF | MS | F | p |
---|---|---|---|---|---|
Plant height | |||||
Intercept | 276061.50 | 1 | 276061.50 | 33349.72 | 0.00000 |
Year | 334.80 | 2 | 167.40 | 20.22 * | 0.00002 |
Soil type | 13.50 | 1 | 13.51 | 1.63 | 0.21781 |
Y × L | 3.30 | 2 | 1.60 | 0.20 | 0.82349 |
Error | 149.00 | 18 | 8.30 | ||
Biomass yield | |||||
Intercept | 3546.29 | 1 | 3546.29 | 207581.20 | 0.00000 |
Year | 23.632 | 2 | 11.82 | 691.70 * | 0.00000 |
Soil type | 17.98 | 1 | 17.99 | 1052.91 * | 0.00000 |
Y × L | 0.96 | 2 | 0.48 | 28.21 * | 0.00000 |
Error | 0.31 | 18 | 0.02 | ||
Grain yield | |||||
Intercept | 49.03 | 1 | 49.03 | 35969.23 | 0.00000 |
Year | 3.33 | 2 | 1.67 | 1222.26 * | 0.00000 |
Soil type | 0.41 | 1 | 0.41 | 303.78 * | 0.00000 |
Y × L | 0.01 | 2 | 0.01 | 5.05 * | 0.01814 |
Error | 0.02 | 18 | 0.0014 | ||
Harvest index | |||||
Intercept | 3214.91 | 1 | 3214.91 | 60260.03 | 0.00000 |
Year | 98.06 | 2 | 49.03 | 918.97 ** | 0.00172 |
Soil type | 1.87 | 1 | 1.87 | 35.13 * | 0.00001 |
Y × L | 0.62 | 2 | 0.310 | 5.82 * | 0.01125 |
Error | 0.96 | 18 | 0.05 | ||
Hull index | |||||
Intercept | 11394.80 | 1 | 11394.80 | 187026.80 | 0.00000 |
Year | 1.29 | 2 | 0.65 | 9.60 * | 0.00190 |
Soil type | 0.32 | 1 | 0.32 | 5.33 * | 0.03313 |
Y × L | 0.13 | 2 | 0,06 | 1.10 * | 0.36870 |
Error | 1.10 | 18 | 0.06 | ||
Protein content | |||||
Intercept | 6716.09 | 1 | 6716.09 | 33864.14 | 0.00000 |
Year | 6.75 | 2 | 3.38 | 17.02 ** | 0.00007 |
Soil type | 23.05 | 1 | 23.05 | 116.24 ** | 0.00000 |
Y × L | 0.37 | 2 | 0.18 | 0.93 ** | 0.41344 |
Error | 3.57 | 18 | 0.19 |
Variable | PH | BY | GY | HI | HUI | PC | Precipitation | Temperature |
---|---|---|---|---|---|---|---|---|
Plant height | 1.00 | 0.72 * | 0.79 * | 0.78 * | −0.48 * | 0.39 ns | 0.43 ns | −0.40 ns |
Biomass yield | 1.00 | 0.92 ** | 0.82 * | −0.60 * | 0.69 * | 0.53 * | −0.19 ns | |
Grain yield | 1.00 | 0.98 ** | −0.61 * | 0.46 * | 0.70 * | −0.21 ns | ||
Harvest index | 1.00 | −0.56 | 0.30 ns | 0.73 * | −0.23 ns | |||
Hull index | 1.00 | −0.15 ns | −0.67 * | −0.31 ns | ||||
Protein content | 1.00 | −0.13 ns | −0.32 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugrenović, V.; Popović, V.; Ugrinović, M.; Filipović, V.; Mačkić, K.; Ljubičić, N.; Popović, S.; Lakić, Ž. Black Oat (Avena strigosa Schreb.) Ontogenesis and Agronomic Performance in Organic Cropping System and Pannonian Environments. Agriculture 2021, 11, 55. https://doi.org/10.3390/agriculture11010055
Ugrenović V, Popović V, Ugrinović M, Filipović V, Mačkić K, Ljubičić N, Popović S, Lakić Ž. Black Oat (Avena strigosa Schreb.) Ontogenesis and Agronomic Performance in Organic Cropping System and Pannonian Environments. Agriculture. 2021; 11(1):55. https://doi.org/10.3390/agriculture11010055
Chicago/Turabian StyleUgrenović, Vladan, Vera Popović, Milan Ugrinović, Vladimir Filipović, Ksenija Mačkić, Nataša Ljubičić, Slobodan Popović, and Željko Lakić. 2021. "Black Oat (Avena strigosa Schreb.) Ontogenesis and Agronomic Performance in Organic Cropping System and Pannonian Environments" Agriculture 11, no. 1: 55. https://doi.org/10.3390/agriculture11010055
APA StyleUgrenović, V., Popović, V., Ugrinović, M., Filipović, V., Mačkić, K., Ljubičić, N., Popović, S., & Lakić, Ž. (2021). Black Oat (Avena strigosa Schreb.) Ontogenesis and Agronomic Performance in Organic Cropping System and Pannonian Environments. Agriculture, 11(1), 55. https://doi.org/10.3390/agriculture11010055