Drought Tolerant near Isogenic Lines (NILs) of Pusa 44 Developed through Marker Assisted Introgression of qDTY2.1 and qDTY3.1 Enhances Yield under Reproductive Stage Drought Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Marker-Assisted Selection
2.3. Evaluation of the NILs Under Stressed and Unstressed Conditions
2.4. Drought Tolerance Indices
2.5. Grain and Cooking Quality
2.6. Statistical Analyses
3. Results
3.1. Introgression of the QTLs, qDTY2.1 and qDTY3.1
3.2. Performance of NILs under Stressed vis-à-vis Unstressed Conditions in BC3F4
3.3. Yield under Drought and No Drought Conditions in Large-Scale Screening
3.4. Performance under Stress Conditions
3.5. Performance under Unstressed Conditions
3.6. Comparative Performance in Terms of Drought Indices
3.7. Multilocation Evaluation for Varietal Identification
4. Discussion
4.1. The severity of Drought Stress
4.2. Agronomic Performance of Pusa 44 NILs under Stress and Non-Stress Conditions
4.3. Relative Drought Tolerance of the Improved NILs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
ARBD | Augmented randomized block design |
ASV | Alkali spreading value |
BmP | Biomass per plant |
DP | Donor parent |
DSI | Drought susceptibility index |
DTE | Drought tolerance efficiency |
DtF | Days to 50% flowering |
EgR | Elongation ratio |
FdG | Number of whole grains per panicle |
GGT | Graphical Genotypes |
GrW | Weight of 1000 grains |
GrY | Grain yield |
HgP | Hulling percent |
IARI | Indian Agricultural Research Institute |
ICAR | Indian Council of Agricultural Research |
KLAC | Kernel length after cooking |
KLBC | Kernel length before cooking |
KWAC | Kernel width after cooking |
KWBC | Kernel width before cooking |
LWR | Length/width ratio |
MABB | Marker-assisted backcross breeding |
MAS | Marker-assisted selection |
MgP | Milling percentage |
NIL | Near isogenic lines |
NpT | Number of panicle-bearing tillers |
PDS | Public distribution system |
PnL | Length of panicle |
PnW | Panicle weight |
PtH | Plant height |
QTL | Quantitative trait loci |
RBD | Randomized block design |
RBGRC | Rice Breeding and Genetics Research Centre |
RDY | Relative decrease in yield |
RP | Recurrent parent |
RPG | Recurrent parent genome |
RPP | Recurrent parent phenome |
RSDS | Reproductive stage drought stress |
S | Stressed |
SpF | Spikelet fertility |
SSR | Simple sequence repeat |
US | Unstressed |
YdP | Yield per plant |
References
- Carriger, S.; Vallee, D. More crop per drop. Rice Today 2007, 6, 10–13. [Google Scholar]
- Singh, R.; Singh, Y.; Xalaxo, S.; Verulkar, S.; Yadav, N.; Singh, S.; Singh, N.; Prasad, K.S.N.; Kondayya, K.; Rao, P.V.R.; et al. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci. 2016, 242, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Joshi, K.; Joshi, P.K.; Khan, M.T.; Kishore, A. ‘Sticky Rice’: Variety inertia and groundwater crisis in a technologically progressive state of India. In IFPRI Discuss; Paper 01766; International Food Policy Research Institute: Washington, DC, USA, 2018; Available online: http://ebrary.ifpri.org/cdm/singleitem/collection/p15738coll2/id/132924 (accessed on 13 January 2021).
- Nairizi, S. Drought and Water Scarcity Drought and Water Scarcity; International Commission on Irrigation and Drainage: New Delhi, India, 2017; Available online: https://www.icid.org/drought_pub2017.pdf (accessed on 13 January 2021).
- Lamaoui, M.; Jemo, M.; Datla, M.; Bekaoui, F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front. Chem. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Courtois, B.; McLaren, G.; Sinha, P.K.; Prasad, K.; Yadav, R.; Shen, L. Mapping QTL associated with drought avoidance in upland rice. Mol. Breed. 2000, 6, 55–66. [Google Scholar] [CrossRef]
- Lafitte, H.R.; Li, Z.K.; Vijayakumar, C.H.M.; Gao, Y.M.; Shi, Y.; Xu, J.L. Improvements of rice drought tolerance through backcross breeding: Evaluation of donors and selection in drought nurseries. Field Crops Res. 2006, 97, 77–86. [Google Scholar] [CrossRef]
- Venuprasad, R.; Lafitte, H.R.; Atlin, G.N. Response to direct selection for grain yield under drought stress in rice. Crop Sci. 2009, 47, 285–293. [Google Scholar] [CrossRef]
- Bernier, J.; Kumar, A.; Venuprasad, R.; Spaner, D.; Verulkar, S.; Mandal, N.P.; Sinha, P.K.; Peeraju, P.; Dongre, P.R.; Mahto, R.N.; et al. Characterization of the effect of rice drought tolerance QTL12.1 over a range of environments in the Philippines and eastern India. Euphytica 2008, 166, 207–217. [Google Scholar] [CrossRef]
- Swamy, M.; Ahmed, H.U.; Henry, A.; Mauleon, R.; Dixit, S.; Vikram, P.; Tilatto, R.; Verulkar, S.B.; Perraju, P.; Mandal, N.P.; et al. Genetic, Physiological, and Gene Expression Analyses Reveal That Multiple QTL Enhance Yield of Rice Mega-Variety IR64 under Drought. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Sandhu, N.; Kumar, A. Bridging the Rice Yield Gaps under Drought: QTLs, Genes, and Their Use in Breeding Programs. Agronomy 2017, 7, 27. [Google Scholar] [CrossRef]
- Sandhu, N.; Singh, A.; Dixit, S.; Cruz, M.T.S.; Maturan, P.C.; Jain, R.K.; Kumar, A. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet. 2014, 15, 63. [Google Scholar] [CrossRef] [Green Version]
- Palanog, A.; Swamy, B.P.M.; Shamsudin, N.A.A.; Dixit, S.; Hernandez, J.E.; Boromeoa, T.H.; Cruza, P.S.; Kumar, A. Grain yield QTLs with consistent effect under reproductive-stage drought stress in rice. Field Crops Res. 2014, 161, 46–54. [Google Scholar] [CrossRef]
- Mishra, K.K.; Vikram, P.; Yadaw, R.B.; Mallikarjuna Swamy, B.G.; Dixit, S.; Cruz, M.T.S.; Maturan, P.; Marker, S.; Kumar, A. qDTY12.1: A locus with a consistent effect on grain yield under drought in rice. BMC Genet. 2013, 14, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghimire, K.H.; Lenie, A.Q.; Vikram, P.; Swamy, B.P.M.; Dixit, S.; Ahmed, H. Identification and mapping of a QTL (qDTY1.1) with a consistent effect on grain yield under drought. Field Crops Res. 2012, 131, 88–96. [Google Scholar] [CrossRef]
- Venuprasad, R.; Dalid, C.O.; Del Valle, M.; Zhao, D.; Espiritu, M.; Cruz, M.T.S.; Amante, M.; Kumar, A.; Atlin, G.N. Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor. Appl. Genet. 2009, 120, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Muthu, V.; Abbai, R.; Nallathambi, J.; Rahman, H.; Ramasamy, S.; Kambale, R.; Thulasinathan, T.; Ayyenar, B.; Muthurajan, R. Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLoS ONE 2020, 15, e0227421. [Google Scholar] [CrossRef] [Green Version]
- Shamsudin, N.A.A.; Mallikarjuna Swamy, B.P.; Ratnam, W.; Cruz, M.T.S.; Sandhu, N.; Raman, A.K.; Kumar, A. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet. 2016, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, N.; Dixit, S.; Swamy, B.P.M.; Vikram, P.; Venkateswaralu, C.; Catolos, M.; Kumar, A. Positive interactions of major-effect QTLs with genetic background that enhances rice yield under drought. Sci. Rep. 2018, 8, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadaw, R.B.; Dixit, S.; Raman, A.; Mishra, K.K.; Vikram, P.; Swamy, B.P.M.; Cruz, M.T.S.; Maturan, P.T.; Pandey, M.; Kumar, A. A QTL for high grain yield under lowland drought in the background of popular rice variety Sabitri from Nepal. Field Crops Res. 2013, 144, 281–287. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, S.; Ram, T.; Yadaw, R.B.; Mishra, K.K.; Mandal, N.P. Breeding high-yielding drought-tolerant rice: Genetic variations and conventional and molecular approaches. J. Exp. Bot. 2014, 65, 6265–6278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, A.H.; Courtois, B. Mapping QTLs associated with drought resistance in rice progress, problems and prospects. Plant Growth Regul. 1999, 29, 123–133. [Google Scholar] [CrossRef]
- Jongdee, B.; Fukai, S.; Cooper, M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res. 2002, 76, 153–163. [Google Scholar] [CrossRef]
- Bernier, J.; Kumar, A.; Venuprasad, R.; Spaner, D.; Atlin, G.N. A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci. 2007, 47, 507–516. [Google Scholar] [CrossRef]
- Dixit, S.; Yadaw, R.B.; Mishra, K.K.; Kumar, A. Marker-assisted breeding to develop the drought-tolerant version of Sabitri, a popular variety from Nepal. Euphytica 2017, 213, 184. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sidhu, J.S.; Huang, N.; Vikal, Y.; Li, Z.K.; Brar, D.S.; Dhaliwal, H.S.; Khush, G.S. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR-106. Theor. Appl. Genet. 2001, 102, 1011–1015. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Sharma, R.K.; Anand, R.K.; Joseph, M.; Singh, V.P.; Singh, A.K.; Bhat, K.V.; Singh, N.K.; Mohapatra, T. Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed. 2008, 127, 131–139. [Google Scholar] [CrossRef]
- Basavaraj, S.H.; Singh, V.K.; Singh, A.; Singh, D.; Nagarajan, M.; Mohapatra, T. Marker aided improvement of Pusa6B, the maintainer parent of hybrid Pusa RH10, for resistance to bacterial blight. Indian J. Genet. 2009, 69, 10–16. [Google Scholar]
- Basavaraj, S.H.; Singh, V.K.; Singh, A.; Singh, A.; Singh, A.; Yadav, S. Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol. Breed. 2010, 26, 293–305. [Google Scholar] [CrossRef]
- Singh, A.K.; Gopalakrishnan, S.; Singh, V.P.; Prabhu, K.V.; Mohapatra, T.; Singh, N.K. Marker assisted selection: A paradigm shift in Basmati breeding. Indian J. Genet. 2011, 71, 120–128. [Google Scholar]
- Singh, A.; Singh, V.K.; Singh, S.P.; Pandian, R.T.P.; Ellur, R.K.; Singh, D. Molecular breeding for the development of multiple disease resistance in Basmati rice. AoB Plants 2012. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, A.; Singh, S.P.; Ellur, R.K.; Singh, D.; Gopalakrishnan, S.G. Marker assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes Piz5 and Pi54 into an elite Basmati rice restorer line “PRR78”. Plant Breed. 2013, 132, 486–495. [Google Scholar] [CrossRef]
- Khanna, A.; Sharma, V.; Ellur, R.K.; Shikari, A.B.; Gopalakrishnan, S.; Singh, U.D. Development and evaluation of near isogenic lines for major blast resistance gene(s) in Basmati rice. Theor. Appl. Genet. 2015, 128, 1243–1259. [Google Scholar] [CrossRef] [PubMed]
- Ellur, R.K.; Khanna, A.; Gopalakrishnan, S.; Bhowmick, P.K.; Vinod, K.K.; Nagarajan, M.; Mondal, K.K.; Singh, N.K.; Singh, K.; Prabhu, K.V.; et al. Marker-aided Incorporation of Xa38, a Novel Bacterial Blight Resistance Gene, in PB1121 and Comparison of its Resistance Spectrum with xa13 + Xa21. Sci. Rep. 2016, 6, 29188. [Google Scholar] [CrossRef] [PubMed]
- Babu, N.N.; Gopalakrishnan, S.; Vinod, K.K.; Krishnamurthy, S.L.; Singh, V.K.; Singh, M.P.; Singh, R.; Ellur, R.K.; Rai, V.; Bollinedi, H.; et al. Marker Aided Incorporation of Saltol, a Major QTL Associated with Seedling Stage Salt Tolerance, into Oryza sativa ‘Pusa Basmati 1121’. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, H.G.; Thompson, W.F. Rapid isolation of high molecular weight DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [Green Version]
- VanBerloo, R. GGT: Software for display of graphical genotypes. J. Hered. 1999, 90, 328–329. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.A.; Maurer, R. Drought resistance in spring wheat cultivars. 1. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- İlker, E.; Tatar, Ö.; Aykut-Tonk, F.; Tosun, M.; Turk, J. Determination of Tolerance Level of Some Wheat Genotypes to Post-Anthesis Drought. Turk. J. Field Crops 2011, 6, 59–63. [Google Scholar]
- Fischer, K.S.; Wood, G. Breeding and selection for drought tolerance in tropical maize. In Proceedings of the Symposium on Principles and Methods in Crop Improvement for Drought Resistance with Emphasis on Rice; International Rice Research Institute: Los Baños, Philippines, 1981. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- IRRI. Statistical Tools for Agricultural Research, STAR, version 2.0.1; Biometrics and Breeding Informatics; International Rice Research Institute: Los Baños, Philippines, 2014. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: www.R-project.org (accessed on 13 January 2021).
- Septiningsih, E.M.; Pamplona, A.M.; Sanchez, D.L.; Neeraja, C.N.; Vergara, G.V.; Heuer, S.; Ismail, A.M.; Mackill, D.J. Development of submergence-tolerant rice cultivars: The Sub1 locus and beyond. Ann. Bot. 2009, 103, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Dixit, S.; Swamy, B.P.M.; Vikram, P.; Ahmed, H.U.; Cruz, S.T.A.; Amante, M.; Atri, D.; Leiung, H.; Kumar, A. Fine mapping of QTLs for rice grain yield under drought reveals sub-QTLs conferring a response to variable drought intensities. Theor. Appl. Genet. 2012, 125, 155–169. [Google Scholar] [CrossRef]
- Vikram, P.; Swamy, B.P.M.; Dixit, S.; Trinidad, J.; Cruz, S.T.A.; Maturan, P.C.; Amante, M.; Kumar, A. Linkages and interaction analysis of major effect drought grain yield QTLs in rice. PLoS ONE 2016, 11, e0151532. [Google Scholar] [CrossRef] [Green Version]
- Yambao, E.B.; Ingram, K.T. Drought stress index for rice. Philipp. J. Crop Sci. 1988, 13, 105–111. [Google Scholar]
- Kumar, A.; Bernier, J.; Verulkar, S.; Lafitte, H.R.; Atlin, G.N. Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Res. 2008, 7, 221–231. [Google Scholar] [CrossRef]
- Vikram, P.; Swamy, B.P.M.; Dixit, S.; Ahmad, H.; Cruz, M.T.S.; Singh, A.K. qDTY1.1, a major QTL for rice grain yield under drought with a consistent effect in multiple elite genetic backgrounds. BMC Genet. 2011, 12, 1–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellur, R.K.; Khanna, A.; Yadav, A.; Pathania, S.; Rajashekara, H.; Singh, V.K. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci. 2016, 242, 330–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagar, V.; Gopala Krishnan, S.; Dwivedi, P.; Mondal, K.K.; Prakash, G.; Nagarajan, M.; Singh, A.K. Development of Basmati rice genotypes with resistance to both bacterial blight and blast diseases using marker assisted restricted backcross breeding. Indian J. Genet 2018, 78, 36–47. [Google Scholar] [CrossRef]
- Sagar, V.; Dhawan, G.; Krishnan, S.G.; Vinod, K.K.; Ellur, R.K.; Mondal, K.K.; Rathour, R.; Prakash, G.; Nagarajan, M.; Bhowmick, P.K.; et al. Marker assisted introgression of genes governing resistance to bacterial blight and blast diseases into an elite Basmati rice Variety, ‘Pusa Basmati 1509’. Euphytica 2020, 216, 16. [Google Scholar] [CrossRef]
- Vinod, K.K.; Krishnan, S.G.; Thribhuvan, R.; Singh, A.K. Genetics of Drought Tolerance, Candidate Genes and Their Utilization in Rice Improvement. In Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II, Sustainable Development and Biodiversity 21; Rajpal, V.R., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Ouk, M.; Basnayake, J.; Tsubo, M.; Fukai, S.; Fischer, K.S.; Cooper, M. Use of drought response index for identification of drought tolerant genotypes in rain fed lowland rice. Field Crops Res. 2006, 99, 48–58. [Google Scholar] [CrossRef]
- Zhao, X.; Qin, Y.; Sohn, J.K. Identification of main effects, epistatic effects and their environmental interactions of QTLs for yield traits in rice. Genes Genom. 2010, 32, 37–45. [Google Scholar] [CrossRef]
- Blum, A. Plant Water Relations, Plant Stress and Plant Production. In Plant Breeding for Water-Limited Environments; Blum, A., Ed.; Springer: New York, NY, USA, 2011; pp. 11–52. [Google Scholar] [CrossRef]
QTL | Marker | Chromosome | Physical Location | Type | Reference |
---|---|---|---|---|---|
qDTY3.1 | RM520 | 3 | 30.71 Mb | FS | [16] |
RM15791 | 28.56 Mb | RS | |||
RM16033 | 32.56 Mb | RS | |||
qDTY2.1 | RM521 | 2 | 10.8 Mb | FS | [16] |
RM5791 | 10.74 Mb | RS | |||
RM324 | 11.4 Mb | RS |
Generation | No. of Plants Raised | QTL Positive Progenies ¶ | Plants Selected | RPG Recovery (%) |
---|---|---|---|---|
F1 | 11 | 9 | 2 | * |
BC1F1 | 48 | 8 | 2 | 73.1–82.9 |
BC2F1 | 32 | 3 | 2 | 86.1–95.9 |
BC3F1 | 18 | 1 | 1 | 98.6 |
BC3F2 | 400 | 54 | 54 | 98.6–99.0 |
BC3F3 | 9488 (54 families) | 242 | 108 | 98.8–99.4 |
BC3F4 | 108 NILs | 108 NILs | 31 NILs | >99.6 |
Trait | Variance under Stress (Vs) | Variance under Unstress (Vus) | (Vs/Vus)NIL | ||||
---|---|---|---|---|---|---|---|
NILs | Checks | NIL × Check | NILs | Checks | NIL × Check | ||
DtF | 2.40 * | 906.89 * | 41.08 * | 2.20 * | 844.15 * | 91.01 * | 1.09 |
PtH | 6.90 ns | 1315.62 * | 1487.98 * | 8.64 * | 1861.47 * | 2818.28 * | 0.80 |
NpT | 2.56 * | 22.72 * | 1.61 * | 1.92 * | 11.60 * | 0.96 ns | 1.33 |
PnL | 1.07 ns | 16.57 * | 41.66 * | 0.97 ns | 25.06 * | 3.39 * | 1.10 |
BmP | 110.34 * | 611.94 * | 1998.34 * | 69.36 * | 181.41 * | 3.34 ns | 1.59 |
PnW | 29.92 ns | 156.80 * | 65.03 ns | 30.68 * | 158.37 * | 811.58 * | 0.98 |
FdG | 668.29 * | 1610.25 * | 28,600.08 * | 535.97 * | 9693.43 * | 1771.72 * | 1.25 |
SpF | 55.60 * | 248.72 * | 241.68 * | 37.45 * | 43.02 * | 1059.19 * | 1.48 |
GrY | 9.79 * | 11.00 * | 511.57 * | 11.22 * | 63.72 * | 364.31 * | 0.87 |
GrW | 1.50 * | 45.37 * | 27.56 * | 2.66 * | 14.54 * | 31.54 * | 0.56 |
HgP | 84.27 * | 12.87 * | 75.44 * | 0.73 * | 7.92 * | 0.09 ns | 115.44 |
MgP | 60.58 * | 42.97 * | 242.92 * | 1.31 * | 6.58 * | 11.06 * | 46.24 |
KLBC | 0.04 * | 9.01 * | 0.00 ns | 0.03 * | 9.36 * | 0.85 * | 1.33 |
KWBC | 0.01 * | 0.15 * | 0.02 * | 0.15 * | 0.17 * | 0.16 * | 0.07 |
LWR | 0.03 * | 1.87 * | 0.02 * | 0.06 * | 1.78 * | 0.01 ns | 0.50 |
KLAC | 0.12 * | 21.37 * | 0.19 * | 0.94 * | 23.48 * | 0.09 ns | 0.13 |
KWAC | 0.04 * | 0.54 * | 1.19 * | 0.13 * | 0.84 * | 1.50 * | 0.31 |
ER | 0.01 * | 0.02 * | 0.00 ns | 0.03 * | 0.01 * | 0.09 * | 0.33 |
Trait | Env | RP (P1) | DP (P2) | NILs | RUs | CV | LSD | |
---|---|---|---|---|---|---|---|---|
Mean | Range | |||||||
DtF | US | 108.5 | 120.3 | 110.5 | 106.2–114.2 | −2.44 | 0.6 | 1.7 |
S | 111.6 | 122.6 | 113.2 | 108.7–115.2 | - | 0.5 | 1.3 | |
PtH | US | 97.8 | 136.6 | 102.6 | 92.7–109.9 | 4.29 | 1.2 | 3.2 |
S | 93.3 | 126.7 | 98.2 | 88.4–102.4 | - | 2.5 | 6.1 | |
NpT | US | 13.7 | 11.4 | 11.7 | 8.2–14.6 | 15.38 | 7.3 | 2.1 |
S | 9.0 | 8.0 | 9.9 | 7.2–13.4 | - | 4.6 | 1.1 | |
PnL | US | 28.2 | 28.3 | 26.5 | 24.3–29.1 | −0.38 | 2.6 | 1.7 |
S | 26.3 | 27.0 | 26.6 | 23.7–30.1 | - | 3.2 | 2.1 | |
GrY | US | 25.1 | 19.9 | 24.6 | 15.2–32.9 | 32.93 | 6.8 | 4.2 |
S | 10.2 | 13.4 | 16.5 | 7.7–26.6 | - | 4.0 | 1.7 | |
FdG | US | 202.6 | 168.5 | 145.4 | 75.6–194.5 | −7.69 | 7.2 | 36.0 |
S | 128.6 | 123.2 | 156.6 | 88.9–215.3 | 4.7 | 24.0 | ||
SpF | US | 89.6 | 88.1 | 81.7 | 64.3–92.7 | 2.94 | 3.7 | 7.6 |
S | 67.9 | 73.5 | 79.3 | 54.1–93.8 | - | 2.6 | 5.2 | |
GrW | US | 22.4 | 20.5 | 22.2 | 17.4–25.2 | 16.67 | 3.4 | 1.9 |
S | 18.2 | 16.5 | 18.5 | 15.0–21.2 | - | 4.3 | 2.0 | |
HgP | US | 79.7 | 78.3 | 78.5 | 75.9–81.4 | 2.55 | 0.3 | 0.6 |
S | 76.7 | 79.9 | 76.5 | 71.4–81.6 | - | 0.4 | 0.8 | |
MgP | US | 72.8 | 71.7 | 72.2 | 67.1–75.1 | 6.23 | 0.5 | 0.9 |
S | 67.0 | 72.8 | 67.7 | 62.4–72.4 | - | 1.8 | 3.0 | |
KLBC | US | 6.3 | 6.9 | 5.9 | 5.5–6.3 | 5.08 | 1.1 | 0.2 |
S | 6.2 | 6.7 | 5.6 | 5.1–6.3 | - | 2.1 | 0.3 | |
LWR | US | 3.4 | 3.5 | 3.0 | 2.8–3.4 | −3.33 | 1.9 | 0.1 |
S | 3.5 | 3.7 | 3.1 | 2.7–3.4 | - | 1.6 | 0.1 | |
KLAC | US | 10.7 | 11.2 | 9.5 | 9.0–10.6 | 3.16 | 2.1 | 0.5 |
S | 10.1 | 10.6 | 9.2 | 8.3–9.8 | - | 1.1 | 0.3 | |
ER | US | 1.7 | 1.6 | 1.6 | 1.4–1.8 | −6.25 | 2.2 | 0.1 |
S | 1.6 | 1.6 | 1.7 | 1.5–1.9 | - | 2.1 | 0.1 |
Trait | Env | RP (P1) | DP (P2) | CH1 | CH2 | NILs | Range | CV | (RUs)NIL | Pr |
---|---|---|---|---|---|---|---|---|---|---|
YdP | US | 6186.1 | 4581.2 | 5427.4 | 4014.2 | 5747.0 * | 4235.0–6543.0 | 8.6 | 88.0 | 0.45 ** |
S | 466.7 | 766.7 | 1050.0 | 416.7 | 690.8 ** | 410.0–1200.0 | 18.9 | - | 0.34 ** | |
GrY | US | 21.4 | 14.4 | 14.0 | 15.7 | 18.3 * | 15.1–23.4 | 12.3 | 79.2 | 0.54 ** |
S | 2.9 | 5.0 | 6.2 | 3.4 | 3.8 ** | 1.7–5.9 | 23.7 | - | 0.46 ** | |
DtF | US | 113.5 | 120.0 | 119.0 | 100.5 | 113.9 ** | 111.0–116.0 | 0.5 | −4.0 | 0.85 ** |
S | 119.5 | 123.5 | 121.5 | 108.0 | 118.4 ** | 117.0–120.5 | 0.5 | - | 0.82 ** | |
SpF | US | 84.0 | 79.3 | 81.6 | 78.8 | 79.5 ** | 66.7–88.1 | 2.2 | 29.9 | 0.81 ** |
S | 48.7 | 61.2 | 59.5 | 43.0 | 55.7 ** | 43.8–79.3 | 11.3 | - | 0.81 ** | |
YdR | S | 86.7 | 65.7 | 56.1 | 78.4 | 78.9 | - | - | - | - |
ENTRIES | GrY ¶ | YdP ¶ | DTE | RDY | DSI | ||
---|---|---|---|---|---|---|---|
US | S | US | S | ||||
P1823-12-1 | 16.84 d–i | 4.80 a–f | 6176.00 a–d | 816.66 b–e | 28.50 | 71.50 | 0.71 |
P1823-12-10 | 18.81 b–h | 5.65 abc | 6330.65 ab | 766.66 c–f | 30.04 | 69.96 | 0.70 |
P1823-12-12 | 19.18 a–g | 2.20 ij | 6235.99 abc | 700.00 d–h | 11.47 | 88.53 | 0.89 |
P1823-12-14 | 18.40 b–i | 4.85 a–f | 6539.12 a | 733.33 c–g | 26.36 | 73.64 | 0.74 |
P1823-12-19 | 17.39 c–i | 4.35 a–g | 5851.04 a–e | 616.66 e–i | 25.01 | 74.99 | 0.75 |
P1823-12-30 | 18.56 b–i | 4.00 c–i | 6064.90 a–d | 666.66 d–i | 21.55 | 78.45 | 0.78 |
P1823-12-33 | 23.45 a | 3.00 f–j | 6543.06 a | 750.00 c–f | 12.79 | 87.21 | 0.87 |
P1823-12-35 | 17.73 c–i | 3.50 d–j | 6090.25 a–d | 733.33 c–g | 19.74 | 80.26 | 0.80 |
P1823-12-38 | 16.86 d–i | 2.45 hij | 5324.64 c–f | 716.66 d–h | 14.53 | 85.47 | 0.85 |
P1823-12-42 | 15.11 ghi | 3.20 e–j | 5442.00 b–f | 716.66 d–h | 21.18 | 78.82 | 0.79 |
P1823-12-45 | 19.20 a–g | 3.15 e–j | 5850.59 a–e | 750.00 c–f | 16.41 | 83.59 | 0.84 |
P1823-12-50 | 19.25 a–g | 4.25 b–h | 6335.81 ab | 816.66 b–e | 22.08 | 77.92 | 0.78 |
P1823-12-53 | 20.94 a–d | 3.75 d–i | 5959.70 a–e | 733.33 c–g | 17.91 | 82.09 | 0.82 |
P1823-12-55 | 18.05 b–i | 4.00 c–i | 6153.59 a–d | 666.67 d–i | 22.16 | 77.84 | 0.78 |
P1823-12-62 | 15.42 ghi | 3.25 e–j | 5279.02 c–f | 816.66 b–e | 21.08 | 78.92 | 0.79 |
P1823-12-63 | 20.68 a–d | 3.95 c–i | 5979.95 a–e | 616.66 e–i | 19.10 | 80.90 | 0.81 |
P1823-12-64 | 20.48 a–e | 4.00 c–i | 5594.44 a–e | 650.00 d–i | 19.53 | 80.47 | 0.80 |
P1823-12-66 | 20.31 a–e | 3.15 e–j | 5971.05 a–e | 700.00 d–h | 15.51 | 84.49 | 0.84 |
P1823-12-68 | 22.30 ab | 3.90 c–i | 6272.35 abc | 600.00 e–i | 17.49 | 82.51 | 0.83 |
P1823-12-69 | 16.76 d–i | 1.70 j | 6202.13 a–d | 433.33 i | 10.14 | 89.86 | 0.90 |
P1823-12-72 | 20.61 a–e | 4.00 c–i | 6059.02 a–d | 483.33 ghi | 19.41 | 80.59 | 0.81 |
P1823-12-76 | 20.05 a–f | 3.17 e–j | 6222.65 abc | 533.33 f–i | 15.81 | 84.19 | 0.84 |
P1823-12-77 | 18.23 b–i | 5.35 a–d | 5492.99 b–f | 883.33 bcd | 29.35 | 70.65 | 0.71 |
P1823-12-80 | 17.23 c–i | 2.40 hij | 5917.69 a–e | 410.00 i | 13.93 | 86.07 | 0.86 |
P1823-12-81 | 20.02 a–f | 3.15 e–j | 5605.51 a–e | 433.33 i | 15.73 | 84.27 | 0.84 |
P1823-12-82 | 19.44 a–g | 5.90 ab | 5454.75 b–f | 1200.00 a | 30.35 | 69.65 | 0.70 |
P1823-12-83 | 16.77 d–i | 3.15 e–j | 5208.29 d–g | 600.00 e–i | 18.78 | 81.22 | 0.81 |
P1823-12-122 | 15.24 ghi | 4.55 a–g | 4235.52 gh | 983.33 abc | 29.86 | 70.14 | 0.70 |
P1823-12-133 | 15.24 ghi | 4.25 b–h | 5573.36 a–f | 666.67 d–i | 27.89 | 72.11 | 0.72 |
P1823-12-137 | 16.06 e–i | 3.40 e–j | 5028.36 efg | 733.33 c–g | 21.17 | 78.83 | 0.79 |
P1823-12-140 | 19.14 a–h | 4.85 a–e | 5943.33 a–e | 550.00 f–i | 25.34 | 74.66 | 0.75 |
PUSA 44 | 21.43 abc | 2.85 g–j | 6186.13 a–d | 466.67 hi | 13.30 | 86.70 | 0.87 |
IR81896-B-B-142 | 14.41 hi | 4.95 a–e | 4581.15 fgh | 766.66 c–f | 34.35 | 65.65 | 0.66 |
IR81896-B-B-195 | 14.00 i | 6.15 a | 5427.44 b–f | 1050.00 ab | 43.93 | 56.07 | 0.56 |
IR64 | 15.71 f–i | 3.40 ef | 4014.19 h | 416.67 i | 21.64 | 78.36 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dwivedi, P.; Ramawat, N.; Dhawan, G.; Gopala Krishnan, S.; Vinod, K.K.; Singh, M.P.; Nagarajan, M.; Bhowmick, P.K.; Mandal, N.P.; Perraju, P.; et al. Drought Tolerant near Isogenic Lines (NILs) of Pusa 44 Developed through Marker Assisted Introgression of qDTY2.1 and qDTY3.1 Enhances Yield under Reproductive Stage Drought Stress. Agriculture 2021, 11, 64. https://doi.org/10.3390/agriculture11010064
Dwivedi P, Ramawat N, Dhawan G, Gopala Krishnan S, Vinod KK, Singh MP, Nagarajan M, Bhowmick PK, Mandal NP, Perraju P, et al. Drought Tolerant near Isogenic Lines (NILs) of Pusa 44 Developed through Marker Assisted Introgression of qDTY2.1 and qDTY3.1 Enhances Yield under Reproductive Stage Drought Stress. Agriculture. 2021; 11(1):64. https://doi.org/10.3390/agriculture11010064
Chicago/Turabian StyleDwivedi, Priyanka, Naleeni Ramawat, Gaurav Dhawan, Subbaiyan Gopala Krishnan, Kunnummal Kurungara Vinod, Madan Pal Singh, Mariappan Nagarajan, Prolay Kumar Bhowmick, Nimai Prasad Mandal, Puvvada Perraju, and et al. 2021. "Drought Tolerant near Isogenic Lines (NILs) of Pusa 44 Developed through Marker Assisted Introgression of qDTY2.1 and qDTY3.1 Enhances Yield under Reproductive Stage Drought Stress" Agriculture 11, no. 1: 64. https://doi.org/10.3390/agriculture11010064
APA StyleDwivedi, P., Ramawat, N., Dhawan, G., Gopala Krishnan, S., Vinod, K. K., Singh, M. P., Nagarajan, M., Bhowmick, P. K., Mandal, N. P., Perraju, P., Bollinedi, H., Ellur, R. K., & Singh, A. K. (2021). Drought Tolerant near Isogenic Lines (NILs) of Pusa 44 Developed through Marker Assisted Introgression of qDTY2.1 and qDTY3.1 Enhances Yield under Reproductive Stage Drought Stress. Agriculture, 11(1), 64. https://doi.org/10.3390/agriculture11010064