Impact of Cellulase and Lactic Acid Bacteria Inoculant to Modify Ensiling Characteristics and In Vitro Digestibility of Sweet Corn Stover and Cassava Pulp Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Experimental Design and Silage Preparation
2.3. Microbial Counting
2.4. Chemical Composition, and Gross Energy Content Analyses
2.5. Fermentation End Product Analysis of Silage
2.6. In Vitro Rumen Digestibility Analysis of Silage
2.7. Statistical Analysis
3. Results
3.1. Microbial Counts, Chemical Composition, and Gross Energy Content of Ensiling Materials
3.2. Effect on Ensiling Characteristics
3.3. Effect on Microbial Population of Silage
3.4. Effect on Chemical Composition and Gross Energy Content
3.5. Effect on In Vitro Digestibility of Silage
4. Discussion
4.1. Microbial Population and Chemical Composition of Sweet Corn Stover and Cassava Pulp
4.2. Ensiling Characteristics
4.3. Microbial Population of Silage
4.4. Chemical Composition and Gross Energy Content of Silage
4.5. In Vitro Digestibility of Silage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High fiber cakes from Mediterranean multipurpose oilseeds as protein sources for ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Working Committee of Thai Feeding Standard for Ruminant (WTSR). Nutrient Requirement of Beef Cattle in Indochinese Peninsula; Klungnanavitthaya Press: Khon Kaen, Thailand, 2010. [Google Scholar]
- Office of Agricultural Economics (OAE) Database. Available online: http://www.oae.go.th (accessed on 8 December 2020).
- Gao, J.L.; Wang, P.; Zhou, C.H.; Li, P.; Tang, H.Y.; Zhang, J.B.; Cai, Y. Chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with microbial additives. Asian Australas. J. Anim. Sci. 2019, 32, 1854–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosugi, A.; Kondo, A.; Ueda, M.; Murata, Y.; Vaithanomsat, P.; Thanapase, W.; Arai, T.; Mori, Y. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renew. Energy 2009, 34, 1354–1358. [Google Scholar] [CrossRef]
- Keaokliang, O.; Kawashima, T.; Angthong, W.; Suzuki, T.; Narmseelee, R. Chemical composition and nutritive values of cassava pulp for cattle. Anim. Sci. 2018, 89, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- McDonald, P.; Henderson, A.; Heron, S. The Biochemistry of Silage; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Napasirth, V.; Napasirth, P.; Sulinthone, T.; Phommachanh, K.; Cai, Y. Microbial population, chemical composition and silage fermentation of cassava residues. Anim. Sci. J. 2015, 86, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, J.; Ma, J.; Jiang, M.; Wei, P.; Liu, Z.; Ying, H. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber. Bioresour. Technol. 2011, 102, 1704–1708. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, F.; Wilkinson, J.M.; Jiang, Y.; Ogunade, I.; Adesogan, A.T. Silage review: Animal and human health risks from silage. J. Dairy Sci. 2018, 101, 4093–4110. [Google Scholar] [CrossRef]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Comparative analysis of silage fermentation and in vitro digestibility of tropical grass prepared with Acremonium and Tricoderma species producing cellulases. Asian Australas. J. Anim. Sci. 2018, 31, 1913–1922. [Google Scholar] [CrossRef] [Green Version]
- Kaewpila, C.; Khota, W.; Gunun, P.; Kesorn, P.; Cherdthong, A. Strategic addition of different additives to improve silage fermentation, aerobic stability and in vitro digestibility of Napier grasses at late maturity stage. Agriculture 2020, 10, 262. [Google Scholar] [CrossRef]
- Silva, V.P.; Pereira, O.G.; Leandro, E.S.; Paula, R.A.; Agarussi, M.C.N.; Ribeiro, K.G. Selection of lactic acid bacteria from alfalfa silage and its effects as inoculant on silage fermentation. Agriculture 2020, 10, 518. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Kim, D.; Soundharrajan, I.; Park, H.S.; Jung, J.S.; Yang, S.H.; Choi, K.C. Low-carbohydrate tolerant LAB strains identified from rumen fluid: Investigation of probiotic activity and legume silage fermentation. Microorganisms 2020, 8, 1044. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Ke, W.; Ding, Z.; Bai, J.; Zhang, Y.; Xu, D.; Li, Z.; Guo, X. Pretreatment of Pennisetum sinese silages with ferulic acid esterase-producing lactic acid bacteria and cellulase at two dry matter contents: Fermentation characteristics, carbohydrates composition and enzymatic saccharification. Bioresour. Technol. 2020, 295, 122261. [Google Scholar] [CrossRef] [PubMed]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. J. Dairy Sci. 2016, 99, 9768–9781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria. Asian Australas. J. Anim. Sci. 2017, 30, 1568–1574. [Google Scholar] [CrossRef]
- Pholsen, S.; Khota, W.; Pang, H.; Higgs, D.; Cai, Y. Characterization and application of lactic acid bacteria for tropical silage preparation. Anim. Sci. J. 2016, 87, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Kung, L.J. Silage Fermentation & Additives; Miller Publishing Co.: Minnetonka, MN, USA, 2001. [Google Scholar]
- Kozaki, M.; Uchimura, T.; Okada, S. Experimental Manual for Lactic Acid Bacteria; Asakurasyoten: Tokyo, Japan, 1992. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Faichney, G.; White, G. Methods for the Analysis of Feeds Eaten by Ruminants; Division of Animal Production, Ian Clunies Ross Animal Research Laboratory, Commonwealth Scientific and Industrial Research Organization: Melbourne, Australia, 1983. [Google Scholar]
- Mertens, D.R. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef]
- Cai, Y.; Benno, Y.; Ogawa, M.; Kumai, S. Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. J. Dairy Sci. 1999, 82, 520–526. [Google Scholar] [CrossRef]
- Porter, M.G.; Murray, R.S. The volatility of components of grass silage on oven drying and the inter-relationship between dry-matter content estimated by different analytical methods. Grass Forage Sci. 2001, 56, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, J.K.; Scott, J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Makkar, H.P.; Blümmel, M.; Becker, K. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 1995, 73, 897–913. [Google Scholar] [CrossRef] [Green Version]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw–Hill Book Co. Inc.: New York, NY, USA, 1980. [Google Scholar]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Agricultural Research Council (ARC). Nutrient Requirements of Ruminant Livestock; Commonwealth Agricultural Bureau: London, UK, 1984. [Google Scholar]
- Kaewpila, C.; Sommart, K. Development of methane conversion factor models for Zebu beef cattle fed low-quality crop residues and by-products in tropical regions. Ecol. Evol. 2016, 6, 7422–7432. [Google Scholar] [CrossRef] [PubMed]
- Higginbotham, G.E.; Depeters, E.J.; Mueller, S.C. Effect of propionic acid producing bacteria on corn silage fermentation. Prof. Anim. Sci. 1996, 12, 176–180. [Google Scholar] [CrossRef]
- Chen, L.; Guo, G.; Yuan, X.; Shimojo, M.; Yu, C.; Shao, T. Effect of applying molasses and propionic acid on fermentation quality and aerobic stability of total mixed ration silage prepared with whole-plant corn in Tibet. Asian Australas. J. Anim. Sci. 2014, 27, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Rinne, M.; Winquist, E.; Pihlajaniemi, V.; Niemi, P.; Seppälä, A.; Siika-aho, M. Fibrolytic enzyme treatment prior to ensiling increased press-juice and crude protein yield from grass silage. Bioresour. Technol. 2020, 299, 122572. [Google Scholar] [CrossRef]
Item 1 | SCS | CSVP |
---|---|---|
Microbial counts (cfu g−1 FM) | ||
LAB | 4.55 × 105 | 2.88 × 104 |
Coliform bacteria | 3.74 × 104 | ND |
Aerobic bacteria | 2.60 × 105 | 3.20 × 104 |
Yeasts | ND | ND |
Molds | ND | ND |
Chemical composition (g kg−1 DM) | ||
DM (g kg−1) | 236.5 | 187.4 |
OM | 922.1 | 976.7 |
CP | 92.1 | 19.6 |
EE | 14.6 | 3.7 |
NDF | 688.6 | 352.9 |
ADF | 395.4 | 200.7 |
ADL | 51.0 | 32.9 |
NFC | 126.9 | 600.5 |
GE content (MJ kg−1 DM) | 17.25 | 15.94 |
Item 1 | Additives | pH | Lactic Acid | Acetic Acid | Propionic Acid | Butyric Acid | NH3-N |
---|---|---|---|---|---|---|---|
(g kg−1 DM) | |||||||
SCS silage | Control | 3.87 a | 91.8 c | 25.2 b | 2.14 x | 1.20 y | 1.41 a |
AC | 3.81 b | 98.1 bc | 28.0 ab | 1.26 y | 0.13 z | 1.03 b | |
TH14 | 3.79 b | 114 a | 23.3 b | 0.01 z | 0.19 z | 1.45 a | |
AC+TH14 | 3.85 ab | 103 b | 31.8 a | 0.50 yz | 0.27 z | 1.39 a | |
SEM | 0.017 | 2.79 | 1.83 | 0.542 | 0.289 | 0.058 | |
p | 0.002 | 0.003 | 0.050 | 0.093 | 0.096 | 0.003 | |
CSVP silage | Control | 3.60 a | 87.8 b | 92.2 ab | 2.64 | 0.64 | 0.28 a |
AC | 3.42 b | 143 a | 80.7 bc | 0.41 | 0.07 | 0.13 b | |
TH14 | 3.49 b | 150 a | 98.7 a | 1.30 | 0.31 | 0.16 b | |
AC+TH14 | 3.42 b | 150 a | 72.8 c | 0.34 | 0.04 | 0.12 b | |
SEM | 0.027 | 7.67 | 4.14 | 0.962 | 0.174 | 0.025 | |
p | 0.005 | 0.001 | 0.009 | 0.357 | 0.114 | 0.008 |
Item 1 | Additives | LAB | Coliform Bacteria | Aerobic Bacteria | Yeasts | Molds |
---|---|---|---|---|---|---|
(cfu g−1 FM) | ||||||
SCS silage | Control | 1.4 × 107 | ND | 1.5 × 103 b | ND | ND |
AC | 3.9 × 107 | ND | 1.8 × 103 b | ND | ND | |
TH14 | 4.8 × 107 | ND | 1.2 × 103 b | ND | ND | |
AC+TH14 | 3.2 × 107 | ND | 3.5 × 103 a | ND | ND | |
SEM | 89.15 | – | 34.10 | – | – | |
p | 0.130 | – | 0.007 | – | – | |
CSVP silage | Control | 9.8 × 106 ab | ND | 1.1 × 103 | ND | ND |
AC | 6.8 × 106 bc | ND | 7.1 × 102 | ND | ND | |
TH14 | 1.4 × 107 a | ND | 1.8 × 103 | ND | ND | |
AC+TH14 | 4.8 × 106 c | ND | 1.2 × 103 | ND | ND | |
SEM | 13.17 | – | 37.11 | – | – | |
p | 0.008 | – | 0.297 | – | – |
Item 1 | Additives | DM | OM | CP | EE | NDF | ADF | ADL | GE (MJ kg−1 DM) |
---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (g kg−1 DM) | ||||||||
SCS silage | Control | 219 y | 923 z | 90.5 b | 17.7 a | 687 a | 416 a | 51.4 | 17.4 a |
AC | 203 z | 922 z | 95.9 a | 17.4 ab | 640 c | 397 b | 50.7 | 17.3 b | |
TH14 | 202 z | 925 y | 96.3 a | 14.7 b | 655 b | 399 b | 51.0 | 17.1 c | |
AC+TH14 | 201 z | 923 z | 95.4 a | 19.5 a | 640 c | 391 b | 50.3 | 17.5 a | |
SEM | 4.3 | 0.9 | 1.21 | 0.90 | 4.0 | 3.7 | 0.60 | 0.02 | |
p | 0.057 | 0.067 | 0.030 | 0.032 | 0.001 | 0.007 | 0.603 | 0.001 | |
CSVP silage | Control | 118 | 970 a | 24.4 b | 2.70 c | 356 a | 228 a | 37.0 a | 16.1 |
AC | 105 | 963 b | 29.4 a | 4.70 ab | 185 b | 116 c | 40.0 a | 16.2 | |
TH14 | 115 | 971 a | 25.2 b | 3.85 bc | 357 a | 213 b | 31.9 b | 16.2 | |
AC+TH14 | 111 | 966 b | 28.4 a | 5.56 a | 185 b | 116 c | 39.7 a | 16.2 | |
SEM | 4.7 | 1.4 | 0.40 | 0.490 | 4.8 | 4.4 | 1.42 | 0.01 | |
p | 0.325 | 0.012 | <0.001 | 0.017 | <0.001 | <0.001 | 0.013 | 0.892 |
Item 1 | Additives | 24 h Incubation | 48 h Incubation | ||||
---|---|---|---|---|---|---|---|
IVDMD (g kg−1) | IVNDFD (g kg−1) | IVADFD (g kg−1) | IVDMD (g kg−1) | IVNDFD (g kg−1) | IVADFD (g kg−1) | ||
SCS silage | Control | 465 | 323 a | 277 a | 598 b | 538 a | 519 a |
AC | 509 | 278 ab | 229 a | 630 a | 473 b | 452 b | |
TH14 | 469 | 306 a | 263 a | 610 b | 542 a | 516 a | |
AC+TH14 | 494 | 221 b | 166 b | 626 a | 450 b | 399 c | |
SEM | 14.7 | 20.9 | 21.4 | 4.6 | 7.2 | 8.5 | |
p | 0.181 | 0.038 | 0.010 | 0.004 | <0.001 | <0.001 | |
CSVP silage | Control | 847 b | 635 a | 555 a | 905 | 762 a | 676 a |
AC | 892 a | 116 b | 140 b | 917 | 511 b | 271 b | |
TH14 | 845 b | 620 a | 522 a | 913 | 771 a | 663 a | |
AC+TH14 | 875 a | 155 b | 187 b | 904 | 485 b | 268 b | |
SEM | 6.3 | 26.6 | 18.4 | 9.7 | 30.6 | 18.7 | |
p | 0.002 | <0.001 | <0.001 | 0.742 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaewpila, C.; Thip-uten, S.; Cherdthong, A.; Khota, W. Impact of Cellulase and Lactic Acid Bacteria Inoculant to Modify Ensiling Characteristics and In Vitro Digestibility of Sweet Corn Stover and Cassava Pulp Silage. Agriculture 2021, 11, 66. https://doi.org/10.3390/agriculture11010066
Kaewpila C, Thip-uten S, Cherdthong A, Khota W. Impact of Cellulase and Lactic Acid Bacteria Inoculant to Modify Ensiling Characteristics and In Vitro Digestibility of Sweet Corn Stover and Cassava Pulp Silage. Agriculture. 2021; 11(1):66. https://doi.org/10.3390/agriculture11010066
Chicago/Turabian StyleKaewpila, Chatchai, Suwit Thip-uten, Anusorn Cherdthong, and Waroon Khota. 2021. "Impact of Cellulase and Lactic Acid Bacteria Inoculant to Modify Ensiling Characteristics and In Vitro Digestibility of Sweet Corn Stover and Cassava Pulp Silage" Agriculture 11, no. 1: 66. https://doi.org/10.3390/agriculture11010066
APA StyleKaewpila, C., Thip-uten, S., Cherdthong, A., & Khota, W. (2021). Impact of Cellulase and Lactic Acid Bacteria Inoculant to Modify Ensiling Characteristics and In Vitro Digestibility of Sweet Corn Stover and Cassava Pulp Silage. Agriculture, 11(1), 66. https://doi.org/10.3390/agriculture11010066