Genetic Markers Associated with Milk Production Traits in Dairy Cattle
Abstract
:1. Introduction
2. Materials and Methods
3. Genome-Wide Association Studies (GWAS) for Screening of Genetic Markers for Milk Production in Dairy Cattle
SNP (Gene) | Production Traits | Breed and Phenotypic Traits and Method Used for Association | Country | Author |
---|---|---|---|---|
rs381714237 (FCGR2B) | MY, PY and PP | Chinese Holstein | China | [21] |
ss2137349053 (CENPE) rs385060942 ss2137349051 rs453960300 rs378415122 | MY, FY and PY | Chinese Holstein | China | [21] |
rs134985825 (RETSAT) | MY, FY, PP, PY | Chinese Holstein | China | [21] |
rs377943075 (ACSBG2) | Milk FY, PP | Chinese Holstein | China | [21] |
rs136639319 (TBC1D1) | Milk FP and PP | Chinese Holstein | China | [21] |
rs379188781 (NLK) rs134444531 | Milk PY and PP | Chinese Holstein | China | [21] |
ss2137349058 (MAP3K1) | MY, FY and PY | Chinese Holstein | China | [21] |
ss2019489562 (UGDH) | MY | Chinese Holstein | China | [21] |
BovineHD2400007916 (CDH2) | Milk FP | Dual-purpose Xinjiang Brown cattle 2410 individuals with 6811 reproductive records and 5441 milk records | China | [31] |
BTB-01731924 (GABRG2) | Milk PY | Dual-purpose Xinjiang Brown cattle | China | [31] |
rs136947640 (exon10) (FASN) | Milk fat traits | Dual-purpose Xinjiang Brown cattle | China | [31] |
rs41919985 (Exon-39) (A2266T) | Milk fat traits | Dual-purpose Xinjiang Brown cattle | China | [31] |
ARS-BFGL-NGS-24998 (SAA3) UA-IFASA-8605 (SAA3) BFGL-NGS-119420 (TRIB3) ARS-BFGL-NGS-69013 (SESN2) BTA-31250-no-rs (SESN2) Hapmap53714-rs29017586 (CHAC1) ARS-BFGL-NGS-5790 (NR4A1) UA-IFASA-8605 (SAA1) UA-IFASA-8605 (M-SAA3.2) BTA-68781-no-rs (HIST1H2AC) BTB-00411816 (THBS4) ARS-BFGL-NGS-85980 (FAM71A) ARS-BFGL-NGS-72191(H4) ARS-BFGL-NGS-29557 (PTHLH) ARS-BFGL-NGS-81082(ARID1B) ARS-BFGL-NGS-72191 (BoLA-DQB) ARS-BFGL-NGS-107749 (CDH16) ARS-BFGL-NGS-29490 (VEGFA) ARS-BFGL-NGS-85980 (ATF3) BTB-01766447 (RPL23A) | Milk FP, PP | U.S. Holstein cows (1654 cows, Thirty one dairy traits, including 13 production, health and reproduction traits and 18 body conformation traits) were selected for this study | U.S | [14] |
ARS-BFGL-NGS-24998 (SAA1) ARS-BFGL-NGS-70836 (SAA1) ARS-BFGL-NGS-100459 (RPL23A) ARS-BFGL-NGS-24998 (M-SAA3.2) Hapmap49309-BTA-78604 (P4HA2) ARS-BFGL-NGS-70836 (ATF3) | Milk PP | U.S. Holstein cows (1654 cows, Thirty one dairy traits, including 13 production, health and reproduction traits and 18 body conformation traits) were selected for this study | U.S | [14] |
ARS-BFGL-NGS-14781 (DDIT3) | Milk FP | U.S. Holstein cows | U.S | [14] |
rs41569048 (PTHLH) | Milk PP | Dutch Holstein | Netherlands | [18] |
rs41590827 (PTHLH) | Milk PP | Dutch Holstein, 1912 first-lactation Holstein-Friesian cows from 398 commercial herds, records of milk protein, Significance threshold used for association | Netherlands | [18] |
rs41640170 (HEATR7B2) | Milk PP | Dutch Holstein | Netherlands | [18] |
Hapmap51303-BTA-74377 (PTHLH) | Milk FP | Chinese Holsteins 2093 daughters as well as their 14 corresponding sires were selected to perform the current study. The numbers of daughters of the 14 sires range from 83 to 358 daughters with an average of 150. Transmission-disequilibrium test (TDT)-based single locus regression analyses and mixed model-based single locus regression analyses were performed for association analysis Milk production traits such as milk yield (MY), milk fat yield (FY), milk protein yield (PY), milk fat percentage (FP) and milk protein percentage (PP) were considered for this study | China | [32] |
ARS-BFGL-BAC-2469 (HEATR7B2) | Milk FP, PP | Chinese Holsteins | China | [32] |
BFGL-NGS-119420 (TRIB3) | Milk FP, PP | Canadian Holstein Data from 462 Canadian Holstein bulls were collected Single locus LD regression model was used to perform association analysis | Canada | [33] |
rs29016156 (VEGFA) | Milk PP | Canadian Holstein | Canada | [33] |
rs41640789 (VEGFA) | Milk FP | Canadian Holstein | Canada | [33] |
rs41590827 (PTHLH) | Milk PP | Canadian Holstein | Canada | [33] |
BTB-00213370 (NUB1) ARS-BFGL-NGS-71395 (SLC24A2) BTB-01052867 (SLC24A2) | Milk production traits | Gir cross Holstein (Girolando) Records of 305-day milk yield of 337 dairy cows a single-marker linear regression model was used for association | Brazil | [34] |
BovineHD2900015534 (SLC22A8) BovineHD1200012381 (KLHL1) BovineHD1200012381 (KLHL1) BTB-00074258 (TBC1D5) | Milk fatty acids lactation persistence | 445 Chinese Holsteins 15 milk production traits were used for this study Fixed-effect linear regression model and a mixed-effect linear model were used for association | China | [35] |
BovineHD2500005573 (EEF2K) BovineHD2500005573 (EEF2K) | MY | Chinese Holsteins | China | [35] |
rs109421300 (DGAT1) rs109528658 (EP400) rs42295213 (EPHA6) rs134480235 (SLCO1A2) | PP FY FP PY | Chinese Holsteins 452,920 test-day records estimated breeding values from 61,600 cows SNP regression was performed for association annalysis | China | [36] |
rs211223469 (DGAT1) | FY, MY | Korean Holstein 2780 Korean Holsteins (926 bulls and 1854 cows) were used in the current study Single marker regression model for association analysis while MY, FY, PY, and SCS traits were used as milk production phenotypic traits | Korea | [37] |
rs41596885 (PDE4B), rs42314807 (PDE4B) | FY, MY | Korean Holstein | Korea | [37] |
rs43454033 (ANO2) | FY, MY | Korean Holstein | Korea | [37] |
ACACA rs110562092 ADRB2 rs132839139 AGPAT6 rs110445169 CARD15 rs43710288 CSN1S1 rs43703010 CSN2 rs43703011 CSN3 rs43703015 FABP4 rs110757796 FGF2 rs110937773 GHR rs109136815 LEP rs11055965 LEP rs29004170 LEPR rs43349286 LPIN1 rs136905033 LPIN1 rs137457402 ORL1 rs135588030 PPARGC1A rs44857081 PRL rs110684599 PRL rs211032652 SCD1 rs41255693 STAT1 rs43705173 STAT1 rs43706906 STAT5A rs109578101 STAT5A rs137182814 TLR2 rs43706433 XDH rs42890834 | MFAs | 1158 Italian Brown Swiss cows and The bayesian linear animal mode was used for association study were considered for current study | Italy | [38] |
MIR2308, LOC104973955, CYHR1, ZNF34, FOXH1, COMMD5,TONSL, PPP1R16A, MFSD3, LRRC24, RPL8, C14H8orf33, KIFC2, RECQL4, ZNF7, ARHGAP39, GPT, LRRC14, C14H8orf82,LOC100141215, MIR2309, MIR1839, LOC101907640,LOC101908059, GRINA, LOC104968841, LOC104973958,LOC104973959, LOC104973960, ARC, SPATC1, LOC786966, LOC104973961, OPLAH, HGH1, LOC509114, JRK, PARP10, MAF1, SHARPIN, CYC1, GPAA1, MROH1, LOC523023, EXOSC4, PSCA, LY6K, GML, LY6D, LOC100848939, LOC101904969, LOC101905222, LYPD2, LOC104973965, LYNX1, LOC104973966, THEM6, SLURP1, LOC78762 | Milk yield traits | In current study the data were records of 21,068 lactations on primiparous (9910) and multiparous (11,158) Holstein cows | Belgium, The Netherlands, Great Britain and Denmark | [24] |
SEMA5B, AGPAT3,DGAT1, BTN1A1 SREBF1,FASN,GHR,PRLR, LIPJ, LIPK, ECHS1, ORBS1, NFKB2, CHUK,SCD1, AGPAT6 | Milk fatty acids | 784 Chinese and 371 Danish Holstein and 16 milk FA traits were selected for current study SNP linear regression models were used for association analysis | China | [39] |
SLC37A1, MGST1, ABCG2, CSN1S1, CSN2, CSN1S2, CSN3, PAEP, DGAT1, AGPAT6, ALPL, ANKH, PICALM | Milk composition traits | Montbéliarde, Normande, Holstein 848,068 test-day milk samples from 156,660 cows in the first three lactations were collected Genotyped in 080 cows (2967 MON, 2737 NOR, and 2306 HOL) | France | [22] |
SLC15A2, PEPT2, SND1, LEP, CLOCK, CASR, LRRC4, DOCK1, STAT1,STAT3, ELF5 | Milk fat traits | 1256 Holstein, 624 Gir, and 477 Girolando cattle Genomic BLUP Model was used for association analysis The database utilized in this study was consisted of 166,628 lactations from 94,124 cows, edited for age at calving (547 to 9095 d), calving season (dry or rainy), breed composition (determined by the proportion of Holstein breed, 1/4, 3/8, 1/2, 5/8, 3/4, or 7/8), and contemporary group (determined by herd-year of calving). | Brazil | [40] |
rs443751026-GPATCH4 upstream rs210886822 MGST1 intron rs209288972 MGST1 upstream rs208317364 DGAT1 intron rs133931291 HSF1 intron LGALS12 upstream rs383292923 ANK1 intron rs208624037 GPAT4 intron rs467849681 ARHGEF28 intron | Milk fat | Montbéliarde, Normande, Holstein 15 traits (5 linked with milk production, 2 with udder health, and 8 with udder morphology) in Montbéliarde (MON), Normande (NOR), and Holstein (HOL) cattle were selected. The phenotypic data was collected from 2515 MON, 2203 NOR, and 6321 HOL bulls and verified in 23,926 MON, 9400 NOR, and 51,977 HOL cows Illumina Bovine SNP50 BeadChip (50K; Illumina Inc., San Diego, CA, USA) was used for genotyping | France | [20] |
BTB-01603522-ACSL1 BTB-01926888-ACSL1 BTA-111275-no-rs-PRKG1 BTB-01077939-PRKG1 Hapmap26394-BTA-136497-CNTN3 Hapmap26394-BTA-136497-CNTN3 ARS-BFGL-NGS-101978-HTR1B BTA-12468-no-rs-IGF1R BTA-12468-no-rs-IGF1R BTA-76414-no-rs-IGF1R BTA-76414-no-rs-IGF1R ARS-BFGL-NGS-40159-PLIN1 Hapmap49848-BTA-106779-CPM BTB-01556197-HTR1B BTB-01556197-HTR1B ARS-BFGL-BAC-35400-FAM46A ARS-BFGL-BAC-35400-FAM46A ARS-BFGL-NGS-61979-UBE3D ARS-BFGL-NGS-61979-UBE3D ARS-BFGL-NGS-34500-ACACA ARS-BFGL-NGS-39328-FASN Hapmap58547-rs29023020-PRL ARS-BFGL-NGS-111111-AGPAT3 ARS-BFGL-NGS-109493-AGPAT3 BTA-56389-no-rs-AGPAT3 ARS-BFGL-NGS-45691-FABP3 ARS-BFGL-NGS-118924-FABP3 RS-BFGL-NGS-4939-DGAT1 ARS-BFGL-NGS-118998-GHR BTB-01373917-STAT1 ARS-BFGL-NGS-33744-STAT1 BTB-00965197-NRG1 ARS-BFGL-NGS-107403-NFKB2 ARS-BFGL-NGS-23064-SCD1 ARS-BFGL-NGS-77668-SCD1 BTB-00930925-SCD1 ARS-BFGL-NGS-39397-SCD1 BTB-00930720-SCD1 Hapmap31825-BTA-158647-SCD1 Hapmap33073-BTA-162864-SCD1 BTB-00931481-SCD1 ARS-BFGL-NGS-110077-SCD1 ARS-BFGL-NGS-108305-SCD1 BTB-00931586-SCD1 ARS-BFGL-NGS-114149-SCD1 ARS-BFGL-NGS-116481-SCD1 Hapmap24832-BTA-138805-SCD1 ARS-BFGL-NGS-6259-SCD1 BTB-00932332-SCD1 Hapmap46411-BTA-15820-CHUK BTA-61921-no-rs-LIPJ ARS-BFGL-NGS-21794-LIPK ARS-BFGL-NGS-29299-SORBS1 Hapmap41595-BTA-60800-SORBS1 Hapmap58930-rs29010490-SORBS1 Hapmap28763-BTA-162328-ECHS1 Hapmap28763-BTA-162328-ECHS1 ARS-BFGL-NGS-116897-OLR1 Hapmap26001-BTC-038813-PPARGC1A Hapmap31284-BTC-039204-PPARGC1A Hapmap49746-BTA-76106- PPARGC1A ARS-BFGL-NGS-12970-FADS1 ARS-BFGL-NGS-1448-AGPAT6 ARS-BFGL-NGS-85864- CYP26A1 BTB-00927439- CYP2C19 BTB-01423653-PRLR BTB-01423676-PRLR Hapmap30570-BTA-152778-PRLR | Milk fatty acid traits | Chinese Holstein Phenotypic data for 22 milk fatty acids in 784 Chinese Holstein cows was used Significance threshold was considered | China | [30] |
4. Transcriptomic Analysis for Screening of Genetic Markers Associated with Milk Production
Genes | Production Traits | Breed | Country | Author |
---|---|---|---|---|
LRRC73, GPX3, APOA4, HP, MFSD2, CDC42EP5, SLC13A5, SMCT1, PAQR9, SFRP2, ISG15, IFIT1, RSAD2, APOA4, MX1, MX2, USP18, LOC100298356, HERC6, ISG12(B), TLH29, RSAD2, IFIT1, FKBP5, FKBP,RXRG, ITGAD, LYZ2,HBB APOC2, ACADVL, PPP1R3B, GALE, PKLR, ANGPTL4, CDKN1A, ODC1, LPIN1, DUSP1, LMNA, APOA1, ABCG8, Kb, SAA1, PC, SDS, GADD45B, IGF-1R, CYP7A1,GK, SGLT1, FBP2 | MY, FY, PY, FP | Holstein | China | [43] |
C4BPA, SLC25A38,BMX, EIF4G3, ZC3H14, FCAMR, DNER, SAA3, HEATR7B2, TRIB3, SESN2, CHAC1, NR4A1, SAA1, ATF3, RPL23A, CDH16, VEGFA, BoLA-DQB, ARID1B, PTHLH, H4, FAM71A, THBS4, DDIT3, M-SAA3.2, HIST1H2AC, P4HA2, HSPD1, KRT24, CDKN1A | FP, PP | Holstein | China | [10] |
GGT5, CYP2J2, ALOX12, MIF, LPL, CPT1A | MFAs | Holstein | China | [44] |
CSN2, CSN1S1, LGB, CSN3, CSN1S2, LALBA, GLYCAM1, COX1, FASN, CLU, COX3, MT-CYB, XDH, MFGE8, EEF1A1, GPAM, ATP6, MT-ND3, ND1, MT-ND4, NADH, SPP1, SERPINA1, CNTFR, ERBB2, NEDD4L, ANG, GALE, HSPA8, LPAR6, WAP, NARS, MARS, GARS, CDO1,GATM, INSR, IGF1R, IGFBP3, CRIM1, IGFBP3 | Milk protein traits | Holstein | China | [45] |
SLC22A1, MAPK9, PPARGC1A, FOXO1, SOCS1, SOCS2, CREB1, HNF4A, HNF4G, GADD45A, DUSP1, PDGF, SYBU, DDIT4, BAMBI, MTHFR, SLC27A2, PCK1, CPT2, SIRT3, CYP4A11, PLCB2 | Milk protein and fat | Holstein | China | [46] |
SLC27A6, ACADM, ACADs, IDH1, FABP4, CACYBP, KLHL9, UBE2B, RPS, SLC7A8 | Milk protein | Holstein | China | [47] |
LALBA, LGB, CSN1S1, CSN1S2, CSN2, CSN3, GK,GPD1, DHCR24, COQ2, AGPAT6, GPAM, LPIN1, BTN1A1, XDH, PLIN2, SCD5,DGAT1, FADS1, FABP3, SLC22A16, ACSS1, ACSS2, ADIPOQ, HADHB, SLC1A2, SLC1A5, SLC7A4, SLC7A8, SLC38A3, SARS, PAH, ASNS, RPL,ELOVL, EIF4EBP1, INSIG1 | Milk protein and fat | Holstein | China | [47] |
LAP3, ASS1, CYP2J2, ATP6AP1, SDS, DGAT2, AGPAT4, GPAT3, ALOX5, HSD17B12, HACD4, PPT2, ELOVL6, EPHX1, LPL, GUK1, XDH | Milk fat and protein yield | Holstein | China | [2] |
GPC5,TECTB,IARS2,GUK1,HS3ST5, STMN4,CALB1,LALBA,GLYCAM1 GP2, LPL, SLC34A2, TUBA1C, CSN1S1, CSN2, PTHLH, BDA20, BDA20, ALOX15, STATH, BOLA-DQA1, TTC36, PAEP, SPINK4, BTN1A1, TMOD4, SCD, MYBPC1, ASB11, SLC38A3 | MY | Holstein | China | [48] |
IRF6, AGPAT6, STAT5A, XDH, B4GALT1,BCL2L11, PRLR, ALOX5, PRKAA1, NCF1, AGPAT6,STAT5A, CRYL1, GPAM, ALOX12, PGHS-2, CPT1B, SLC27A1, PRKAR2B, FADS6, PPARD, ACACA, PTGES, EHHADH | Milk fat synthesis | Holstein | China | [49] |
5. Whole-Genome Sequencing for Screening of Genetic Marker Associated with Milk Production in Cattle
6. DNA Polymorphisms and Their Association with Milk Production Traits in Dairy Cattle
Gene (Location) | Polymorphism (Location) | Change in Amino Acid Sequence | Production Trait | Breed | Country | Author |
---|---|---|---|---|---|---|
SERPINA1 (BTA21) | rs208607693 (5- flanking region) rs210222822 (Exon-2) | MY, FY, PY, PP | Chinese Holstein | China | [99] | |
SERPINA1 (BTA21) | rs41257068 (Exon-2) rs207601878 (Intron-3) | MY, FY, PY, PP, FP | Chinese Holstein | China | [99] | |
SCD (BTA21) | c.878C/T (Exon5) | p.A293V | MFAs | Holstein Friesian × Jersey dairy cows | Newzealand | [100] |
SCD (BTA21) | c.1783A/G (3-UTR) | MF | Holstein Friesian × Jersey dairy cows | Newzealand | [100] | |
SCD | g.10329C > T | Alanine to valine | MY, FY, PY, PP | Chinese Holstein | China | [101] |
g.10153G > A | ||||||
g.10213T > C | ||||||
SCD | g.10329C > T | Alanine to valine | MFA | Canadian Jersey cows | Canada | [62] |
SCD | g.10329C > T | Alanine to valine | FY, PY, MY | Holstein cows | Belgium | [102] |
SCD | A293V SNP | MFAs | Polish Holstein-Friesian | Poland | [64] | |
SCD | A293V SNP | MFAs | Italian Holsteins | Italy | [59] | |
CD4 (BTA5) | g.13598C > T | MY, FY, PY | Chinese Holstein | China | [103] | |
STAT5B (BTA19) | g.31562T > C; Exon 16 | MY, PY | Chinese Holstein | China | [103] | |
DDIT3 (BTA5) | g.56283814C > T;5-flanking region g.56284880C > T;5-flanking region | FP, FY, PP | Chinese Holstein | China | [15] | |
c.*21A > G (5-UTR) | MY, FY, PY | China | [15] | |||
RPL23A (BTA19) | g.20702088A > G 5-flanking region g.20702122C > G 5-flanking region g.20702782_83insG 5-flanking region | MY, FY, PY | Chinese Holstein | China | [15] | |
SESN2 (BTA19) | g.125716884A > G, 5-flanking region g.125714860_125714872del, 5-flanking region g.125714806delinsCCCC, 5-flanking region g.125714850A > G, 5-flanking region g.125716686A > G, 5-flanking region | MY, FY, PY | Chinese Holstein | China | [15] | |
NR4A1 (BTA5) | g.27994068A > G, 5-flanking region g.27993737A > G, 5-flanking region g.27992897C > T, 5-flanking region c.*138A > G (5-UTR) | MY, FY and PY | Chinese Holstein | China | [15] | |
PTK2 (BTA14) | g.4061098T > G (Exon5) | p.Ile981Met | MY, PY and FP | Chinese Holstein | China | [104] |
g. 3895208T > G (Intron2) | MY, PY and FP | |||||
g. 4059863 A > C (Intron13) | MY, FY, PY and FP | |||||
g.3968605A > G (Intron6) | MY, PY and FP | |||||
g.7012367T > C (Intron16) | MY, FP and PP | |||||
UGDH (BTA6) | rs61000233G/A (Exon1) rs60966191A/T (Exon12) | MY | Chinese Holstein | China | [105] | |
SAA1 (BTA11) | g.-1788C > T (Promoter) g.-963C > A (Promoter) g.-781 A > G (Promoter) | PY, MY | Chinese Holstein | China | [106] | |
c. + 2510A > G (EXON3) | Gly48Asp | MY, FP and PY | ||||
c. + 2535C > T(EXON3) | R56R | PY, MY | ||||
c. + 2565G > A (EXON3) | P66P | PY, MY | ||||
SAA2 (BTA29) | c.-22G > A (Promoter) c.17G > C (Promoter) c.114G > A (Promoter) | MY, FY and PY | Chinese Holstein | China | [107] | |
ACACB (BTA17) | g.66218726T > C (Promoter) g.66218117G > A(Promoter) | milk production traits | Chinese Holstein | China | [108] | |
ERBB2 (BTA19) | g.22400A > G (Intron-23) g.22346A > T (Intron-23) g.16431C > G (Intron-14) g.19414A > G (Intron-14) g.11680C > T (Intron-8) g.10727A > G (Intron-7) g.23650T > C (Intron-26) g.22268T > C (Exon 23) g.20982del (Intron-19) | Milk PP | Chinese Holstein | China | [109] | |
ERBB2 | g.873T > C (5-flanking region) g.21561A > G (Exon-21) | MY, FY, FP, PY, PP | Chinese Holstein | China | [109] | |
HSPA8 (BTA15) | rs132976221 g.4218T > G (Intron-3) | MY, PY, FY | Chinese Holstein | China | [109] | |
HSPA8 | rs136632043 g.4218T > G-exon9 | MY, PY, FY | Chinese Holstein | China | [109] | |
ECHS1 (BTA6) | g.25858322C > T-exon 3 | Leucine -phenylalanine | MFAs | Chinese Holstein | China | [110] |
ECHS1 | g.25857784C > T(exon 2) | MFA | Chinese Holstein | China | [110] | |
FADS2 (BTA29) | c. 908 C > T (Exon 7) | 294Ala > Val | MY, PY, FY, FP | Chinese Holstein | China | [111] |
FADS2 | c.1571 G > A (3-UTR) | MY | Chinese Holstein | China | [111] | |
FADS2 | c.1571G > A (3-UTR) | MFA | Chinese Holstein | China | [75] | |
FADS2 | rs209202414 G > A | MFA | HS and Jersey | Romania and Poland | [77] | |
FADS2 | rs211580559 G > A(exon 7) | (294 Ala > Val) | MFA | [76] | ||
rs42187261 G > A (exon 8) | MFA | [76] | ||||
rs109772589 G > A (3-UTR) rs136261927 G > A (3-UTR) rs109772589 G > A (3-UTR) | MFA | Canadian Holstein | Canada | [76] | ||
THRSP (BTA29) | rs42714482 (exon 7) | Ala51Val | MFA | Jersey and Polish Holstein | Poland | [112] |
SCD 1 (BTA26) | rs41912290 G > A (Exon16) | Leu/Pro | MFA | Holstein | US | [113] |
rs41255691 (Exon 5) | Holstein | US | [113] | |||
SCD5 (BTA6) | ss252452201 (exon 3) ss252452202(exon 3) ss252452203(exon 3) rs43687655 (exon 4) | MFA | Holstein | US | [113] | |
INSIG1 (BTA4) | ss252452218 (Exon 1) ss252452220 (exon4) ss252452222 (exon5) | Ser/Gly Leu/Phe | MFA | Holstein | US | [113] |
INSIG2(BTA4) | ss252452227 (5′UTR) ss252452228 (5′UTR) ss252452229 (5′UTR) | MFA | Holstein | US | [113] | |
MBTPS1 (BTA18) | ss252452238 (Exon 1) | MFA | Holstein | US | [113] | |
MBTPS2 (BTA18) | ss252452240 (5′UTR) | MFA | Holstein | US | [113] | |
SCAP (BTA12) | ss252452209 (5′UTR) ss252452210 (5′UTR) ss252452212 (exon 3) ss252452215 (exon 7) ss252452217 (exon 7) rs41255691 (exon5) | MFA | Holstein | US | [113] | |
SCAP (BTA12) | ss252452215 (exon 7) | Pro/Ser | MFA | Holstein | US | [113] |
MAP4K4 (BTA11) | c.2061T > G (exon 18) | PP, MY | Chinese Holstein | China | [114] | |
IGF2R | g.72479 G > A (exon 24) | MY, PY, LC | Polish Holstein | Poland | [115] | |
Sirtuins (BTA28) | g.-274C > G (Promoter) | MY, FY, FP, LL | Chinese Red Steppe Agerolese, Qinchuan Nanyang, Jiaxian, Luxi | Italy | [116] | |
SCD | SCD1-A293V | A293V | MFA | Holstein | Netherlands | [65] |
FASN (BTA19) | rs41919999 (Intron 12) rs41919992 (Exon-27) rs133498277 (Intron 28) rs41919984 (Exon 37) rs41919986 (Exon-42) | MCFAs | Chinese Holstein | China | [117] | |
FASN | rs41919985 (Exon-39) | alanine 2266threonine | MCFAs | Chinese Holstein | China | [117] |
PPARGC1A (BTA6) | rs109579682-Intron-9 | MCFAs | Chinese Holstein | China | [117] | |
ABCG2 (BTA6) | rs137757790-Intron-7 | MCFAs | Chinese Holstein | China | [117] | |
IGF1 (BTA5) | rs109763947-5′-UTR | MCFAs | Chinese Holstein | China | [117] | |
ABCG2 | ABCG2-Y581S | MY, FP, PP | Iranian Holstein | Iran | [118] | |
LEPR (BTA3) | LEPR-T945M | MY, FP, PP | Iranian Holstein | Iran | [118] | |
SCD1 | SCD1-A293V | MY, FP, PP | Iranian Holstein | Iran | [118] | |
DGAT1 (BTA14) | DGAT1 K232A | MFA | Modicana cows | Italy | [119] | |
PRLR (BTA14) | g.38948871C > T (5′ flanking region) g.38949011G > A (5′ flanking region) g.39115345 T > C(Exon4) | MFA | [120] | |||
PRLR | g.39115344G > A (Exon4) | Serine- asparagine | MFA | [120] | ||
CHUK (BTA26) | g.21008688G > T (5′ flanking region) g.20966385C > G (3′ UTR) g.20966354C > T(3′ UTR) | MFA | Chinese Holstein | China | [120] | |
MOGAT1 (BTA2) | g.111599360A > G T (5′ flanking region) g.111601747 T > A T (5′ flanking region) | MFA | Chinese Holstein | China | [120] | |
MINPP1 (BTA26) | g.9206582C > T (3′ UTR) g.9207070A > G (intron 5) | MFA | Chinese Holstein | China | [120] | |
CPM (BTA5) | g.45079507A > G-5′ flanking region rs208252716 g.45080228C > A-5′ flanking region rs109638242 g.45080335C > G-5′ flanking region rs136799678 g.45162113G > A 3-UTR rs134841257 g.45163633G > T 3- flanking region rs110822514 g.45164215A > G-3- flanking region rs462818932 g.45164996A > G-3- flanking region rs382501675 | MFA | Chinese Holstein | China | [121] | |
CPM | apmap49848-BTA-106779 (Intron 2) | MFA | Chinese Holstein | China | [30] | |
LIPK (BTA26) | g.10428101G > A rs110322221 (5-UTR) g.10449831C > A rs42774527 (Exon 11) g.10214117A > C rs41606812 (5′ flanking region) g.10217380C > A rs211373799 (5-UTR) g.10247997T > C rs42107056 (3′ UTR) | MFAs | Chinese Holstein | China | [122] | |
LIPJ (BTA26) | g.10250098C > T (3- flanking region) rs42107122 g.10250120A > G ss158213049726 (3- flanking region) g.10251075G > T rs209219656 (3- flanking region) g.10251111T > C rs42107114 (3- flanking region) | MFAs | Chinese Holstein | China | [122] | |
DGAT1 (BTA14) | DGAT1 (K232A) | MFY | Dutch Holstein | Israel | [123] | |
DGAT1 | DGAT1 (K232A) | MPTs | Holstein | USA | [124] | |
DGAT1 | DGAT1 (K232A) | MPTs | Irish Holstein | Ireland | [125] | |
DGAT1 | rs109663724 | PY, FY, MY | USA | [126] | ||
DGAT1 | rs132699547 rs135423283 rs135576599 rs13675432 | PY, FY | Holstein | USA | [126] | |
DGAT1 | DGAT1 (K232A) | MPTs + milk coagulation properties | Italian Holstein | Italy | [127] | |
DGAT1 | DGAT1 (K232A) | MFY, MPY, MFAs | Holstein | Netherlands | [128] | |
DGAT1 | DGAT1 (K232A) | MPTs, LC | Holstein | Netherlands | [68] | |
DGAT1 | DGAT1 (K232A) | MFAs | Holstein–Friesian, Jersey, Frisón Negro, Montbeliarde, and Overo Colorado | Chile | [67] | |
DGAT1 | DGAT1 (K232A) | MPTs | Holstein | Netherlands | [65] | |
DGAT1 | DGAT1 (K232A) | MPTs | Borgou and White Fulani cattle | Benin | [66] | |
DGAT1 | DGAT1 (K232A) | MPTs | Holstein | Czech Republic | [129] | |
DGAT1 | DGAT1 (K232A) | MFAs | Polish Holstein | Poland | [64] | |
DGAT1 | DGAT1 (K232A) | MPTs | Polish Holstein | Poland | [130] | |
DGAT1 | DGAT1 (K232A) | Milk metabolome and proteome | Holstein | Netherlands | [131] | |
DGAT1 | DGAT1 (K232A) | MFAs | Holstein | Netherlands | [132] | |
DGAT1 | DGAT1 (K232A) | FY, PY | Holstein | Germany | [133] | |
DGAT1 | DGAT1 (K232A) | MPTs | Polish Holstein | Poland | [134] | |
DGAT1 | DGAT1 (K232A) | FP, MFAs | Romanian Holstein | Romania | [135] | |
DGAT1 | DGAT1 (K232A) | MFAs | Holstein | Netherlands | [69] | |
DGAT1 | DGAT1 (K232A) | MFAs | Holstein | Netherlands | [136] | |
DGAT1 | DGAT1 (K232A) | FY, PY, MY | Holstein | Netherlands | [71] | |
DGAT1 | DGAT1 (K232A) | MFAs | Holstein | Netherlands | [137] | |
DGAT1 | DGAT1 (K232A) | MPTs | Holstein cross Normande | France | [70] | |
DGAT1 | DGAT1 K232A | FC, PC | indigenous Ongole cattle, Indian Jersey, Holstein | India | [138] | |
DGAT1 | rs109421300 G > A (5′flanking region) | FP | Holstein | China | [1] | |
JAK2 (BTA8) | rs210148032 C > T(exon 16) | PP | Holstein | China | [1] | |
JAK2 | JAK2/RsaI (rs110298451) | PY | Polish Holstein, Montbeliarde, Simmental, Jersey | Poland | [139] | |
ELOVL6 (BTA6) | g16379651A > G ELOVL6-Intron 3 g16458976A > G ELOVL6-Intron 3 | MY | Holstein | China | [3] | |
g16511290A > G ELOVL6-3′ UTR | MY, MFC (%) | Holstein | China | [3] | ||
ACSL1 (BTA27) | 5′UTR-ACSL1-g.20523C > G ACSL1-g.35651G > A- Intron 2 | PC (%) | Holstein | China | [140] | |
ACSL1 | ACSL1-g.35446C > T- Intron 2 ACSL1-g.35651G > A- Intron 2 g.51472C > T- ACSL1-Intron 11 | TDMY (kg), FC (%), PC (%) | Holstein | China | [140] | |
AGPAT6 (BTA27) | BovineHD2700010331 g.36175805C.T (Intron 1) ARS-BFGL-NGS-57448 g.36155097C.T (5-UTR exons) | MFY | New Zealand Holstein-Friesian cross Jersey | Newzealand | [95] | |
AGPAT3 (BTA1) | g. 146702957G > A rs210638665 (5′ flanking region) g. 146704373A > G rs209442459 (5′ flanking region) g. 146704618A > G rs110551271 (5′ flanking region) g. 146704699G > A rs110278717 (5′ flanking region) | MFAs | Holstein | China | [94] | |
AGPAT3 | g.28731 A > G g.12264 C > T | PP (%), FP (%), MY | Holstein | China | [93] | |
ATPase 6 (BTA20) | m.8308A > G (Exon 2) | MFY | Holstein | China | [141] | |
BoLA (BTA23) | BoLA-DRB3.2 (exon 2) | Milk microbiota | Holstein | Canada | [142] | |
CSN3 (BTA6) | g.10993T > A (exon 4) g.10888T > C (exon 4) g.10924C > A (exon 4) g.10985G > A (exon 4) | Iso-Thr Ala-Asp Ala-Ala | PP (%), FP (%) | Holstein | China | [63] |
CSN3 | g.10944A > G(exon 4) | Serine > Glycine | MY, FY, FP (%), PY | Holstein | China | [63] |
CSN3 | g.12703T > G | MY, FY, PY, PP(%) | Holstein | China | [63] | |
GHR (BBTA20) | GHR-F279Y polymorphism | phenylalanine to tyrosine | MY, PC (%), FC (%), LC (%) | Holstein | Germany | [143] |
HSP90AB1 (BBTA23) | SNP g.4338T > C | MY | Frieswal, Sahiwal | India | [144] | |
HTR1B (BTA9) | rs207969357 g.17303383G > T (Exon 1) | Alanine to Serine | MFAs | Holstein | China | [145] |
HTR1B | rs207969357 g.17307103A > T (Promoter) rs476055046 g.17305206 T > G (Promoter) rs476055046 g.17303761C > T (Promoter) rs208945882 g.17303042C > G (Exon-1) | MFAs | Holstein | China | [145] | |
IGF2 (BTA29) | g.8656C > T-Exon 2 g.24507G > T-Exon 10 | FY, PY, PC | Polish Holstein | Poland | [146] | |
IGF2 | rs42196909 IGF2.g-3815A > G rs42196901 | MY, PY | Irish Holstein | Ireland | [147] | |
IGFBP2 (BTA9) | rs133488718-Intron 3 rs133235938- Intron 5 | MY | Holstein | UK | [148] | |
PDE9A (BTA2) | c.-2012 T > C (rs42140305) c.-2005 A > G (rs381951806) | MY, PY | Holstein | China | [149] | |
LAP3 (BTA6) | g.24564G > A (ss196003366) g.24794T > G g.24803T > C g.24846T > C g.25415T > C | MFP (%), PP (%) | Holstein | China | [150] | |
Lipin 1 (BTA11) | g.86129263C > G rs211527179-5-flanking region | FY, FP (%), PY | Holstein | China | [151] | |
Lipin 1 | c.637T > C rs110871255-exon 5 | Methionine-thr | MY, FP (%),PY | Holstein | China | [151] |
Lipin 1 | c.708A > G rs110161110-exon 5 | Thr-Ala | MY, PY | Holstein | China | [151] |
Lipin 1 | c.1521C > T rs207681322-exon 8 | Proline-Serine | MY, FY, FP (%), PY | Holstein | China | [151] |
Lipin 1 | c.1555A > C rs137642654-exon 8 | Histidine-Proline | MY, FP (%),PY | Holstein | China | [151] |
Lipin 1 | g.86049523C > T rs135886289-3-flanking region g.86049389C > T rs109039955-3-flanking region | MY, FY, PY, PP (%) | Holstein | China | [151] | |
Leptin (BTA4) | accession number MN119554 SNP | p.Ala80Val | MFAs | Holstein Friesian × Jersey dairy cows | Newzealand | [152] |
MBL (BTA26) | g. 2686T > C-Exon 2 g.2651G > A-Exon 2 | FC (%), PC (%) | Bohai Black Chinese Holstein Luxi Yellow | China | [153] | |
MBL | g.1164 G > A (Exon 3) | Proline-Glutamine | FC (%), PC (%) | Chinese Holstein | China | [154] |
OLR 1 (BTA5) | SNP10497 A > C (3′ UTR) | PC (%) | Israeli-Holstein | Israel | [155] | |
PRKG1 (BTA26) | g.8344262A > T rs109571301-5′ flanking region g.6904047G > T rs478962267-3′ UTR g.6903810G > A rs444193880-3′ UTR g.6903365C > A rs42630538-3′ UTR g.6902878 T > G rs136888798-3′ UTR g.6901713 T > G rs381717383-3′ flanking region | MFAs | Chinese Holstein | China | [156] | |
Prolactin (BTA23) | -1043A > G (Promoter) -402A > G (Promoter) + 8398G > A (Exon 4) | MY, MFC (%) | Chinese Holstein | China | [96] | |
Prolactin | g.7545G > A(Intron 4) | MY | Chinese Holstein | China | [97] | |
SCAP (BTA23) | ss526061914 (5-UTR/Exon 1) | MY, MFAs | Holstein | US | [157] | |
INSIG1 (BTA4) | ss526061846 (Exon 4) | L852P | MY, MFAs | Holstein | US | [157] |
SREBF1 (BTA19) | ss526061830 (Exon 14) | MFAs | Holstein | US | [157] | |
SLC27A1(BTA1) | SNP-112T > C | MY | Chinese Holstein | China | [158] | |
SLC27A6 (BTA1) | g.390C > T ss672469900-Exon1 g.15975T > C ss672469898-Exon2 | MFAs | Holstein | US | [159] | |
SLC27A6 | g.242A > T ss672469901-Exon1 | Lysine81methionine | MFAs | Holstein | US | [159] |
FABP4 (BTA14) | g.3711G > C ss672469893-Exon3 g.3691G > A ss672469894-Exon3 | Valine110Methionine | MFAs | Holstein | US | [159] |
TLR4 (BTA8) | c.-226 G > C rs 29017188 c.2021 C > T rs 8193069 | MY, FC (%), PC (%), LCA (%) | Chinese Holstein | China | [160] | |
TLR4 | c.2021 C > T | Threonine-isoleucine | MY, FC | Chinese Holstein | China | [161] |
Lactoferrin (BTA22) | SNPs -270 T > C SNP-156 A > G | FC (%), PC (%), LCA (%) | Chinese Holstein | China | [162] | |
Transferrin (BTA1) | g.-1748 G > A ss250608649-5-Flanking region g.14037A > G ss250608651-Exon 8 | MY, PC (%) | China Holstein Luxi Yellow Bohai Black | China | [163] | |
SCL2A12 (BTA1) | g.72224078C > G--5-Flanking region | MY, FC (%), PY, LY, LC (%) | Polish Holstein | Poland | [164] | |
SCL5A1 (BTA1) | g.70571253A > G (Promoter) | MY, FC (%), PY, LY, LC (%) | Polish Holstein | Poland | [164] | |
Leptin (BTA4) | rs29004509-exon 3 | MY | indicine and taurine crossbred (Karan Fries) | [165] | ||
LALBA (BTA5) | g.31183170T > C-promoter region | LY, MY | Polish Holstein | Poland | [166] | |
PIK3R1 (BTA20) | g.4453141 T > G-5′flanking region rs207593520 c.1505G > A-3′UTR rs208460068 g.4448024C > T-3′flanking region rs209154772 g.4447105C > G-3′flanking region rs210000760 | MY, FC (%), PY, FY, PC (%) | Chinese Holstein | China | [6] | |
PIK3R1 (BTA20) | c.208G > A-5′UTR rs42590258 GG 0.41 c.2776 T > C-3′UTR rs210389799 c.2962 T > C-3′UTR rs208819656 c.6275 T > A-3′UTR rs41255622 g.11323546C > T-3′flanking region rs133655926 g.11323118G > A rs211408208-3′flanking region | MY, FC (%), PY, FY, PC (%) | [6] | |||
GH (BTA19) | GHp.L127V (Exon 5) | MFAs, MY | Modicana cows | Italy | [167] | |
TMEM232 (BTA7) HCN4 (BTA9) ATP8A2 (BTA12) LOC524642 (BTA29) LOC524642 | rs43708473 rs110025880 rs109784719 rs42169108 rs43099931 | MY | Holstein | Germany | [168] | |
HAL (BTA5) | ss974768522 (Promoter) ss974768523 (Exon 1) ss974768527 (Exon8) ss974768525 (Exon5) | N42N I156I Gly228Glu | Milk production traits | Chinese Holstein | China | [169] |
GALE (BTA2) | g.2114A > G-5′-UTR ss1996900612 g.2037G > A-5′-UTR ss1996900613 g.3836 G > C-Introm 9 rs211659075 | MY, FY, PY, PP | Chinese Holstein | China | [170] |
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.Z.; Wang, D.; Liu, L.; Usman, T.; Wen, H.; Zhang, R.; Liu, S.; Shi, L.; Mi, S.; Xiao, W.; et al. Significant genetic effects of JAK2 and DGAT1 mutations on milk fat content and mastitis resistance in Holsteins. J. Dairy Res. 2019, 86, 388–393. [Google Scholar] [CrossRef]
- Khan, M.Z.; Liu, L.; Zhang, Z.; Khan, A.; Wang, D.; Mi, S.; Usman, T.; Liu, G.; Guo, G.; Li, X.; et al. Folic acid supplementation regulates milk production variables, metabolic associated genes and pathways in perinatal Holsteins. J. Anim. Physiol. Anim. Nutr. 2020, 104, 483–492. [Google Scholar] [CrossRef]
- Chen, S.; Menglin, C.; Chen, T.; Yuzhuang, L.; Tian, D.; Hui, W.; Xiaolin, L. Genetic variants of fatty acid elongase 6 in Chinese Holstein cow. Gene 2017, 670, 123–129. [Google Scholar] [CrossRef]
- Qian, L.; Zhao, A.; Zhang, Y.; Chen, T.; Zeisel, S.H.; Jia, W.; Cai, W. Metabolomic Approaches to Explore Chemical Di-versity of Human Breast-Milk, Formula Milk and Bovine Milk. Int. J. Mol. Sci. 2016, 17, 2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibeagha-Awemu, E.M.; Kgwatalala, P.; Zhao, X. A critical analysis of production-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mamm. Genome 2008, 19, 591–617. [Google Scholar] [CrossRef]
- Han, B.; Yuan, Y.; Shi, L.; Li, Y.; Liu, L.; Sun, D. Identification of single nucleotide polymorphisms of PIK3R1 and DUSP1 genes and their genetic associations with milk production traits in dairy cows. J. Anim. Sci. Biotechnol. 2019, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Laodim, T.; Elzo, M.A.; Koonawootrittriron, S.; Suwanasopee, T.; Jattawa, D. Genomic-polygenic and polygenic predictions for milk yield, fat yield, and age at first calving in Thai multibreed dairy population using genic and functional sets of genotypes. Livest. Sci. 2019, 219, 17–24. [Google Scholar] [CrossRef]
- Grisart, B.; Coppieters, W.; Farnir, F.; Karim, L.; Ford, C.; Berzi, P.; Cambisano, N.; Mni, M.; Reid, S.; Simon, P.; et al. Positional Candidate Cloning of a QTL in Dairy Cattle: Identification of a Missense Mutation in the Bovine DGAT1 Gene with Major Effect on Milk Yield and Composition. Genome Res. 2002, 12, 222–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grisart, B.; Farnir, F.; Karim, L.; Cambisano, N.; Kim, J.-J.; Kvasz, A.; Mni, M.; Simon, P.; Frere, J.-M.; Coppieters, W.; et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc. Natl. Acad. Sci. USA 2004, 101, 2398–2403. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Yali, H.; Shaohua, Y.; Yan, X.; Shengli, Z.; Yuan, Z.; Qin, Z.; Xuemei, L.; George, E.L.; Dongxiao, S. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing. BMC Genom. 2014, 15, 226. [Google Scholar] [CrossRef] [Green Version]
- Boutinaud, M.; Galio, L.; Lollivier, V.; Finot, L.; Wiart, S.; Esquerre, D.; Devinoy, E. Unilateral once daily milking locally induces differential gene expression in both mammary tissue and milk epithelial cells revealing mammary remodeling. Physiol. Genom. 2013, 45, 973–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayeri, S.; Sargolzaei, M.; Abo-Ismail, M.K.; May, N.; Miller, S.P.; Schenkel, F.; Moore, S.; Stothard, P. Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle. BMC Genet. 2016, 17, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, H.G.; Hayes, B.J.; Kent, M.P.; Nome, T.; Svendsen, M.; Larsgard, A.G.; Lien, S. Genome-wide association mapping in Norwegian Red cattle identifies quantitative trait loci for fertility and milk production on BTA12. Anim. Genet. 2011, 42, 466–474. [Google Scholar] [CrossRef]
- Cole, J.B.; Wiggans, G.R.; Ma, L.; Sonstegard, T.S.; Lawlor, T.J., Jr.; Crooker, B.A.; Van Tassell, C.P.; Yang, J.; Wang, S.; Matukumalli, L.K.; et al. Genome-wide association analysis of thirty one production, health, reproduction and body confor-mation traits in contemporary U.S. Holstein cows. BMC Genom. 2011, 12, 408. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Han, B.; Liu, L.; Zhao, F.; Liang, W.; Jiang, J.; Yang, Y.; Ma, Z.; Sun, D. Genetic association of DDIT3, RPL23A, SESN2 and NR4A1 genes with milk yield and composition in dairy cattle. Anim. Genet. 2018, 50, 123–135. [Google Scholar] [CrossRef]
- Chamberlain, A.J.; Hayes, B.J.; Savin, K.; Bolormaa, S.; McPartlan, H.C.; Bowman, P.J.; Van Der Jagt, C.; MacEachern, S.; Goddard, M.E. Validation of single nucleotide polymorphisms associated with milk production traits in dairy cattle. J. Dairy sci. 2012, 95, 864–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouwman, A.C.; Bovenhuis, H.; Visker, M.H.; Van Arendonk, J.A. Genome-wide association of milk fatty acids in Dutch dairy cattle. BMC Genet. 2011, 12, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schopen, G.; Visker, M.; Koks, P.; Mullaart, E.; van Arendonk, J.; Bovenhuis, H. Whole-genome association study for milk protein composition in dairy cattle. J. Dairy Sci. 2011, 94, 3148–3158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meredith, B.K.; Kearney, J.F.; Finlay, K.E.; Bradley, G.D.; Fahey, G.A.; Berry, P.D.; Lynn, J.D. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genet. 2013, 13, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tribout, T.; Croiseau, P.; Lefebvre, R.; Barbat, A.; Boussaha, M.; Fritz, S.; Boichard, D.; Hoze, C.; Sanchez, M.-P. Confirmed effects of candidate variants for milk production, udder health, and udder morphology in dairy cattle. Genet. Sel. Evol. 2020, 52, 55. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, L.; Gao, Y.; Shi, L.; Li, Y.; Liang, W.; Sun, D. Determination of genetic associations between indels in 11 candidate genes and milk composition traits in Chinese Holstein population. BMC Genet. 2019, 20, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, M.; Armelle, G.; Pascal, C.; Sébastien, F.; Chris, H.; Guy, M.; Marton, P.; Barbet-Leterrier, S.; Letaief, R.; Rocha, D.; et al. Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle. Genet. Sel. Evol. 2017, 49, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iung, L.H.S.; Petrini, J.; Ramírez-Díaz, J.; Salvian, M.; Rovadoscki, G.A.; Pilonetto, F.; Dauria, B.D.; Machado, P.F.; Coutinho, L.L.; Wiggans, G.R.; et al. Genome-wide association study for milk production traits in a Brazilian Holstein popula-tion. J. Dairy Sci. 2019, 102, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Atashi, H.; Salavati, M.; De Koster, J.; Ehrlich, J.; Crowe, M.; Opsomer, G.; McLoughlin, N.; Hostens, M.; Fahey, A.; Matthews, E.; et al. Genome-wide association for milk production and lactation curve parameters in Holstein dairy cows. J. Anim. Breed. Genet. 2019, 137, 292–304. [Google Scholar] [CrossRef]
- Buitenhuis, B.; Janss, L.L.G.; Poulsen, N.A.; Larsen, L.B.; Larsen, M.K.; Sørensen, P. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle. BMC Genom. 2014, 15, 1112. [Google Scholar] [CrossRef] [Green Version]
- Ning, C.; Wang, D.; Zheng, X.; Zhang, Q.; Zhang, S.; Mrode, R.; Liu, J.-F. Eigen decomposition expedites longitudinal ge-nome-wide association studies for milk production traits in Chinese Holstein. Genet. Sel. Evol. 2018, 50, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Ning, C.; Liu, J.-F.; Zhang, Q.; Jiang, L. Replication of genome-wide association studies for milk production traits in Chinese Holstein by an efficient rotated linear mixed model. J. Dairy Sci. 2019, 102, 2378–2383. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, N.A.; Robinson, R.C.; Barile, D.; Larsen, L.B.; Buitenhuis, B. A genome-wide association study reveals specific transferases as candidate loci for bovine milk oligosaccharides synthesis. BMC Genom. 2019, 20, 404. [Google Scholar] [CrossRef]
- Ariyarathne, H.; Correa-Luna, M.; Blair, H.; Garrick, D.; Lopez-Villalobos, N. Identification of Genomic Regions Associated with Concentrations of Milk Fat, Protein, Urea and Efficiency of Crude Protein Utilization in Grazing Dairy Cows. Genes 2021, 12, 456. [Google Scholar] [CrossRef]
- Li, C.; Sun, D.; Zhang, S.; Wang, S.; Wu, X.; Zhang, Q.; Liu, L.; Li, Y.; Qiao, L. Genome Wide Association Study Identifies 20 Novel Promising Genes Associated with Milk Fatty Acid Traits in Chinese Holstein. PLoS ONE 2014, 9, e96186. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liyuan, L.; Chunpeng, C.; Menghua, Z.; Xin, L.; Zhiwu, Z.; Xixia, H.; Yuangang, S. Genome-wide association study of milk and reproductive traits in dual-purpose Xinjiang Brown cattle. BMC Genom. 2019, 20, 827. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Liu, J.-F.; Sun, D.; Ma, P.; Ding, X.; Yu, Y.; Zhang, Q. Genome Wide Association Studies for Milk Production Traits in Chinese Holstein Population. PLoS ONE 2010, 5, e13661. [Google Scholar] [CrossRef] [Green Version]
- Kolbehdari, D.; Wang, Z.; Grant, J.R.; Murdoch, B.; Prasad, A.; Xiu, Z.; Marques, E.; Stothard, P.; Moore, S.S. A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. J. Anim. Breed. Genet. 2009, 126, 216–227. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, A.S.; Silva, D.C.; Minasi, L.B.; Teixeira, L.K.d.F.; Rodrigues, F.M.; da Silva, C.C.; Carmo, A.S.D.; da Silva, M.V.G.B.; Utsunomiya, Y.T.; Garcia, J.F.; et al. Single-Nucleotide Polymorphism Variations Associated with Specific Genes Putatively Identified Enhanced Genetic Predisposition for 305-Day Milk Yield in the Girolando Crossbreed. Front. Genet. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.J.; Zhao, Y.Q.; Gu, X.R.; Yin, B.; Jiang, Y.L.; Wang, Z.H.; Shi, K.R. A genome-wide association study suggests new candidate genes for milk production traits in Chinese Holstein cattle. Anim. Genet. 2017, 48, 677–681. [Google Scholar] [CrossRef]
- Liu, L.; Jinghang, Z.; Chunpeng, C.; Juan, Z.; Wan, W.; Jia, T.; Zhiwu, Z.; Yaling, G. GWAS-Based Identification of New Loci for Milk Yield, Fat, and Protein in Holstein Cattle. Animals 2020, 10, 2048. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lim, B.; Cho, J.; Lee, S.; Dang, C.-G.; Jeon, J.-H.; Kim, J.-M.; Lee, J. Genome-Wide Identification of Candidate Genes for Milk Production Traits in Korean Holstein Cattle. Animals 2021, 11, 1392. [Google Scholar] [CrossRef]
- Pegolo, S.; Cecchinato, A.; Mele, M.; Conte, G.; Schiavon, S.; Bittante, G. Effects of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk. J. Dairy Sci. 2016, 99, 4558–4573. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Buitenhuis, A.; Lund, M.; Li, C.; Sun, D.; Zhang, Q.; Poulsen, N.; Su, G. Joint genome-wide association study for milk fatty acid traits in Chinese and Danish Holstein populations. J. Dairy Sci. 2015, 98, 8152–8163. [Google Scholar] [CrossRef] [Green Version]
- Otto, I.P.; Simone, E.F.; Guimarães, M.P.L.; Calus, J.V.; Marco, A.; Machado, J.C.; Panetto, C.; da Silva Marcos Vinícius, G.B. Single-step genome-wide association studies (GWAS) and post-GWAS analyses to identify genomic regions and candidate genes for milk yield in Brazilian Girolando cattle. J. Dairy Sci. 2020, 103, 10347–10360. [Google Scholar] [CrossRef]
- Bagnato, A.; Schiavini, F.; Rossoni, A.; Maltecca, C.; Dolezal, M.; Medugorac, I.; Sölkner, J.; Russo, V.; Fontanesi, L.; Friedmann, A.; et al. Quantitative Trait Loci Affecting Milk Yield and Protein Percentage in a Three-Country Brown Swiss Population. J. Dairy Sci. 2008, 91, 767–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouattara, B.; Bissonnette, N.; Duplessis, M.; Girard, C.L. Supplements of vitamins B9 and B12 affect hepatic and mammary gland gene expression profiles in lactating dairy cows. BMC Genom. 2016, 17, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Ruobing, L.; Yan, L.; Yanxia, G.; Qiufeng, L.; Dongxiao, S.; Jianguo, L. Identification of candidate genes for milk pro-duction traits by RNA sequencing on bovine liver at different lactation stages. BMC Genet. 2020, 21, 72. [Google Scholar] [CrossRef]
- Bai, X.; Zhuqing, Z.; Bin, L.; Xiaoyang, J.; Yongsheng, B.; Wenguang, Z. Whole blood transcriptional profiling comparison between different milk yield of Chinese Holstein cows using RNA-seq data. BMC Genom. 2016, 17, 512. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wentao, C.; Chenghao, Z.; Hongwei, Y.; Ziqi, Z.; Juan, J.L.; Dongxiao, S.; Qin, Z.; Jianfeng, L.; Shengli, Z. RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population. Sci. Rep. 2016, 6, 26813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Shen, D.; Li, C.; Cai, W.; Liu, S.; Yin, H.; Shi, S.; Cao, M.; Zhang, S. Comparative Transcriptomic and Proteomic Analyses Identify Key Genes Associated with Milk Fat Traits in Chinese Holstein Cows. Front. Genet. 2019, 10, 672. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.; Wang, Q.; Zhao, F.; Liu, J.; Liu, H. Understanding the regulatory mechanisms of milk production using integrative transcriptomic and proteomic analyses: Improving inefficient utilization of crop by-products as forage in dairy industry. BMC Genom. 2018, 19, 403. [Google Scholar] [CrossRef]
- Lin, Y.; Lv, H.; Jiang, M.; Zhou, J.; Song, S.; Hou, X. Functional analysis of the dairy cow mammary transcriptome between early lactation and mid-dry period. J. Dairy Res. 2019, 86, 63–67. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, J.; Liu, X.; Wang, H.; Guo, G.; Zhang, Q.; Jiang, L. Differential expression of genes in milk of dairy cattle during lactation. Anim. Genet. 2015, 47, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.K.; Weber, J.; Kay, E.H.; Fisher, H.S.; Hoekstra, H. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [Green Version]
- Weldenegodguad, M.; Popov, R.; Pokharel, K.; Ammosov, I.; Ming, Y.; Ivanova, Z.; Kantanen, J. Whole-Genome Sequencing of Three Native Cattle Breeds Originating from the Northernmost Cattle Farming Regions. Front. Genet. 2019, 9, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosse, I.C.; Assis, J.G.; Oliveira, F.S.; Leite, L.R.; Araujo, F.; Zerlotini, A.; Volpini, A.; Dominitini, A.J.; Lopes, B.C.; Arbex, W.A.; et al. Whole genome sequencing of Guzerá cattle reveals genetic variants in candidate genes for production, disease resistance, and heat tolerance. Mamm. Genome 2017, 28, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Sigdel, A.; Abdollahi-Arpanahi, R.; Aguilar, I.; Peñagaricano, F. Whole Genome Mapping Reveals Novel Genes and Pathways Involved in Milk Production Under Heat Stress in US Holstein Cows. Front. Genet. 2019, 10. [Google Scholar] [CrossRef]
- Nanaei, H.A.; Qanatqestani, M.D.; Esmailizadeh, A. Whole-genome resequencing reveals selection signatures associated with milk production traits in African Kenana dairy zebu cattle. Genomics 2019, 112, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Xu, M.; Lu, M.; Zhou, B.; El-Kader, H.A.; Alam, S.S.; Mahrous, K.F. Identification of candidate genes associated with milk yield trait in buffaloes (Bubalus bubalis) by restriction-site-associated DNA sequencing. Rev. Bras. Zootec. 2020, 49. [Google Scholar] [CrossRef]
- Iso-Touru, T.; Sahana, G.; Guldbrandtsen, B.; Lund, M.S.; Vilkki, J. Genome-wide association analysis of milk yield traits in Nordic Red Cattle using imputed whole genome sequence variants. BMC Genet. 2016, 17, 55. [Google Scholar] [CrossRef] [Green Version]
- Schennink, A.; Heck, J.M.; Bovenhuis, H.; Visker, M.H.P.W.; Van Valenberg, H.J.F.; Van Arendonk, J.A.M. Milk fatty acid unsaturation: Genetic parameters and effects of Stearoyl-CoA Desaturase (SCD1) and Acyl-CoA: Diacylglicerol Acylotrans-ferase (DGAT1). J. Dairy Sci. 2008, 91, 2135–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conte, G.; Mele, M.; Chessa, S.; Castiglioni, B.; Serra, A.; Pagnacco, G.; Secchiari, P. Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle. J. Dairy Sci. 2010, 93, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Mele, M.; Conte, G.; Castiglioni, B.; Chessa, S.; Macciotta, N.P.P.; Serra, A.; Buccioni, A.; Pagnacco, G.; Secchiari, P. Stea-royl-Coenzyme A Desaturase Gene Polymorphism and Milk Fatty Acid Composition in Italian Holsteins. J. Dairy Sci. 2007, 90, 4458–4465. [Google Scholar] [CrossRef]
- Taniguchi, M.; Utsugi, T.; Oyama, K.; Mannen, H.; Kobayashi, M.; Tanabe, Y.; Ogino, A.; Tsuji, S. Genotype of stearoyl-CoA desaturase is associated with fatty acids composition in Japanese Black cattle. Mamm. Genom. 2004, 14, 142–148. [Google Scholar] [CrossRef]
- Macciotta, N.P.P.; Mele, M.; Conte, G.; Serra, A.; Cassandro, M.; Dal Zotto, R.; Borlino, A.C.; Pagnacco, G.; Secchiari, P. As-sociation between a polymorphism at the stearoyl CoA desaturase locus and milk production traits in Italian Holsteins. J. Dairy Sci. 2008, 91, 3184–3189. [Google Scholar] [CrossRef] [Green Version]
- Kgwatala, P.M.; Ibeagha-Awemu, M.E.; Hayes, F.J.; Zhao, X. Stearoyl-CoA desaturase 1 3′UTR SNPs and their influence on milk fatty acid composition of Canadian Holstein cows. J. Anim. Breed. Genet. 2009, 126, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Alim, A.M.; Dong, T.; Xie, Y.; Wu, X.P.; Zhang, Y.; Shengli, Z.; Sun, X.D. Effect of polymorphisms in the CSN3 (j-casein) gene on milk production traits in Chinese Holstein Cattle. Mol. Biol. Rep. 2014, 41, 7585–7593. [Google Scholar] [CrossRef] [PubMed]
- Kęsek-Woźniak, M.M.; Wojtas, E.; Zielak-Steciwko, A.E. Impact of SNPs in ACACA, SCD1, and DGAT1 Genes on Fatty Acid Profile in Bovine Milk with Regard to Lactation Phases. Animals 2020, 10, 997. [Google Scholar] [CrossRef]
- Duchemin, S.; Bovenhuis, H.; Stoop, W.; Bouwman, A.; Van Arendonk, J.; Visker, M. Genetic correlation between composition of bovine milk fat in winter and summer, and DGAT1 and SCD1 by season interactions. J. Dairy Sci. 2013, 96, 592–604. [Google Scholar] [CrossRef] [Green Version]
- Houaga, I.; Muigai, A.W.T.; Ng’Ang’A, F.M.; Ibeagha-Awemu, E.M.; Kyallo, M.; Youssao, I.A.K.; Stomeo, F. Milk fatty acid variability and association with polymorphisms in SCD1 and DGAT1 genes in White Fulani and Borgou cattle breeds. Mol. Biol. Rep. 2018, 45, 1849–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvajal, A.; Huircan, P.; Dezamour, J.; Subiabre, I.; Kerr, B.; Morales, R.; Ungerfeld, E. Milk fatty acid profile is modulated by DGAT1 and SCD1 genotypes in dairy cattle on pasture and strategic supplementation. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Bovenhuis, H.; Visker, M.; Poulsen, N.; Sehested, J.; Van Valenberg, H.; van Arendonk, J.; Larsen, L.B.; Buitenhuis, A. Effects of the diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism on fatty acid, protein, and mineral composition of dairy cattle milk. J. Dairy Sci. 2016, 99, 3113–3123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzompa-Sosa, D.A.; van Aken, G.A.; van Hooijdonk, A.C.M.; van Valenberg, H.J.F. Influence of C16:0 and long-chain sat-urated fatty acids on normal variation of bovine milk fat triacylglycerol structure. J. Dairy Sci. 2014, 97, 4542–4551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanbergue, E.; Peyraud, J.; Guinard-Flament, J.; Charton, C.; Barbey, S.; Lefebvre, R.; Gallard, Y.; Hurtaud, C. Effects of DGAT1 K232A polymorphism and milking frequency on milk composition and spontaneous lipolysis in dairy cows. J. Dairy Sci. 2016, 99, 5739–5749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Gastelen, S.; Visker, M.; Edwards, J.; Antunes-Fernandes, E.; Hettinga, K.; Alferink, S.; Hendriks, W.; Bovenhuis, H.; Smidt, H.; Dijkstra, J. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows. J. Dairy Sci. 2017, 100, 8939–8957. [Google Scholar] [CrossRef]
- Mach, N.; Blum, Y.; Bannink, A.; Causeur, D.; Houee-Bigot, M.; Lagarrigue, S.; Smits, M.A. Pleiotropic effects of polymorphism of the gene diacylglycerol-O-transferase 1 (DGAT1) in the mammary gland tissue of dairy cows. J. Dairy Sci. 2012, 95, 4989–5000. [Google Scholar] [CrossRef] [Green Version]
- Raschia, A.M.; Juan, P.N.; Daniel, O.M.; María, J.B.; Ariel, A. Single nucleotide polymorphisms in candidate genes associated with milk yield in Argentinean Holstein and Holstein × Jersey cows. J. Anim. Sci. Technol. 2018, 60, 31. [Google Scholar] [CrossRef] [Green Version]
- Magotra, A.; Gupta, I.D.; Tavsief, A.; Rani, A. Polymorphism in DNA repair gene BRCA1 associated with clinical mastitis and production traits in indigenous dairy cattle. Res. Vet. Sci. 2020, 133, 194–201. [Google Scholar] [CrossRef]
- Li, M.; Lu, X.; Gao, Q.; Wang, M.; Arbab, A.A.I.; Sun, Y.; Chen, Z.; Zhang, H.; Karrow, N.A.; Yang, Z.; et al. A Functional 3′ UTR Polymorphism of FADS2 Affects Cow Milk Composition through Modifying Mir-744 Binding. Animals 2019, 9, 1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibeagha-Awemu, E.M.; Akwanji, K.A.; Beaudoin, F.; Zhao, X. Associations between variants of FADS genes and omega-3 and omega-6 milk fatty acids of Canadian Holstein cows. BMC Genet. 2014, 15, 25. [Google Scholar] [CrossRef] [Green Version]
- Proskura, W.S.; Liput, M.; Zaborski, D.; Sobek, Z.; Yu, Y.-H.; Cheng, Y.-H.; Dybus, A. The effect of polymorphism in the FADS2 gene on the fatty acid composition of bovine milk. Arch. Anim. Breed. 2019, 62, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Rahmatalla, S.R.; Bortfeldt, D.; Arends, M.; Reissmann, G.A. Milk protein polymorphisms and casein haplotypes in Butana cattle. J. Appl. Genet. 2017, 58, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Gallinat, J.L.; Qanbari, S.; Drögemüller, C.; Pimentel, E.C.; Thaller, G.; Tetens, J. DNA-based identification of novel bovine casein gene variants. J. Dairy Sci. 2013, 96, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Tetens, J.L.; Qanbari, S.; Drögemüller, C.; Pimentel, E.C.; Bennewitz, J.; Thaller, G.; Tetens, J. Bos indicus introgression into (peri-)alpine cattle breeds—Evidence from the analysis of bovine whey protein variants. Anim. Genet. 2014, 45, 585–588. [Google Scholar] [CrossRef]
- Miluchová, M.; Michal, G.; Juraj, C.; Anna, T.; Kristína, C. Association of HindIII-polymorphism in kappa-casein gene with milk, fat and protein yield in Holstein cattle. Acta Biochim. Pol. 2018, 65, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Haruna, I.; Yunhai, L.; Ugonna, J.; Hamed, A.; Huitong, Z.; Jon, G. Associations between the Bovine Myostatin Gene and Milk Fatty Acid Composition in New Zealand Holstein-Friesian × Jersey-Cross Cows. Animal 2020, 10, 1447. [Google Scholar] [CrossRef]
- Zhou, H.; Cheng, P.; Azimu, W.; Hodge, S.; Edwards, G.; Hickford, J.G.H. Variation in the bovine FABP4 gene affects milk yield and milk protein content in dairy cows. Sci. Rep. 2015, 5, 10023. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Liu, X.; Yang, J.; Wang, H.; Jiang, J.; Liu, L.; He, S.; Ding, X.; Liu, J.; Zhang, Q. Targeted resequencing of GWAS loci reveals novel genetic variants for milk production traits. BMC Genom. 2014, 15, 1105. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, X.; Wang, D.; Ning, C.; Wang, H.; Zhang, Q.; Jiang, L. Functional validation of GPIHBP1 and identification of a functional mutation in GPIHBP1 for milk fat traits in dairy cattle. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Jie, Y.; Qin, Z.; Li, J. Role of GPIHBP1 in regulating milk protein traits in dairy cattle. Anim. Biotechnol. 2018, 31, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Bionaz, M.; Loor, J.J. ACSL1, AGPAT6, FABP3, LPINI, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 2008, 138, 1019–1024. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene Networks Driving Bovine Mammary Protein Synthesis during the Lactation cycle. Bioinform. Biol. Insights 2011, 5, 83–98. [Google Scholar] [CrossRef]
- Zhao, Z.D.; Tian, H.S.; Jiang, Y.Y.; Shi, B.G.; Liu, X.; Li, X.P.; Wang, D.Z.; Chen, J.L.; Hu, J. Association analysis of ACSL1 gene promoter polymorphism and dairy quality traits in yak. J. Agric. Biol. 2019, 27, 1596–1630. [Google Scholar]
- Fan, Y.; Han, Z.; Lu, X.; Zhang, H.; Idriss Arbab, A.A.; Loor, J.J.; Yang, Y.; Yang, Z. Identification of Milk Fat Metabolism-Related Pathways of the Bovine Mammary Gland during Mid and Late Lactation and Functional Verification of the ACSL4 Gene. Genes 2020, 11, 1357. [Google Scholar] [CrossRef]
- Olsen, H.G.; Knutsen, T.M.; Kohler, A.; Svendsen, M.; Gidskehaug, L.; Grove, H.; Nome, T.; Sodeland, M.; Sundsaasen, K.K.; Kent, M.P.; et al. Genome-wide association mapping for milk fat composition and fine mapping of a QTL for de novo synthesis of milk fatty acids on bovine chromosome 13. Genet. Sel. Evol. 2017, 49, 20. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wurmser, C.; Pausch, H.; Jung, S.; Reinhardt, F.; Tetens, J.; Thaller, G.; Fries, R. Identification and Dissection of Four Major QTL Affecting Milk Fat Content in the German Holstein-Friesian Population. PLoS ONE 2012, 7, e40711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Liang, Y.; Gao, Q.; Guo, J.; Tang, C.; Shi, K.; Yang, Z.; Mao, Y. AGPAT3 Gene polymorphisms are associated with milk production traits in Chinese Holstein cows. J. Dairy Res. 2021, 88, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wu, X.; Yang, Y.; Ma, Z.; Lv, X.; Liu, L.; Li, Y.; Zhao, F.; Han, B.; Sun, D. A post-GWAS confirming the genetic effects and functional polymorphisms of AGPAT3 gene on milk fatty acids in dairy cattle. J. Anim. Sci. Biotechnol. 2021, 12, 24. [Google Scholar] [CrossRef]
- Littlejohn, M.D.; Tiplady, K.; Lopdell, T.; Law, T.A.; Scott, A.; Harland, C.; Sherlock, R.; Henty, K.; Obolonkin, V. Expression Variants of the Lipogenic AGPAT6 Gene Affect Diverse Milk Composition Phenotypes in Bos taurus. PLoS ONE 2014, 9, e85757. [Google Scholar] [CrossRef]
- Lu, A.; Xiucai, H.; Hong, C.; Jihong, J.; Chunlei, Z.; Haixia, X.; Xueyuan, G. Single nucleotide polymorphisms in bovine PRL gene and their associations with milk production traits in Chinese Holsteins. Mol. Biol. Rep. 2010, 37, 547–551. [Google Scholar] [CrossRef]
- Dong, H.C.; Song, X.M.; Zhang, L.; Jiang, J.F.; Zhou, J.P.; Jiang, Y.Q. New insights into the prolactin-RsaI (PRL-RsaI) locus in Chinese Holstein cows and its effect on milk performance traits. Genet. Mol. Res. 2013, 12, 5766–5773. [Google Scholar] [CrossRef]
- Pegolo, S.; Dadousis, C.; Mach, N.; Ramayo-Caldas, Y.; Mele, M.; Conte, G.; Schiavon, S.; Bittante, G.; Cecchinato, A. SNP co-association and network analyses identify E2F3, KDM5A and BACH2 as key regulators of the bovine milk fatty acid profile. Sci. Rep. 2017, 7, 17317. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wentao, C.; Shuli, L.; Chenghao, Z.; Hongwei, Y.; Dongxiao, S.; Shengli, Z. SERPINA1 gene identified in RNA-Seq showed strong association with milk protein concentration in Chinese Holstein cows. PeerJ 2020, 8, e8460. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huitong, Z.; Long, C.; Jenny, Z.; Jonathan, H. Variation in the stearoyl-CoA desaturase gene (SCD) and its influence on milk fatty acid composition in late-lactation dairy cattle grazed on pasture. Arch. Anim. Breed 2020, 63, 355–366. [Google Scholar]
- Alim, A.M.; Dong, T.; Xie, Y.; Zhang, S.L.; Zhang, D.X.; Sun, Q.; Zhang, L.; Liu, L.; Guo, G. Genetic effects of stearoyl-CoA desaturase 1 (SCD1) polymorphism on milk production traits in the Chinese dairy population. Mol. Biol. Rep. 2012, 39, 8733–8740. [Google Scholar] [CrossRef]
- Soyeurt, H.; Gillon, A.; Vanderick, S.; Mayeres, P.; Bertozzi, C.; Gengler, N. Estimation of Heritability and Genetic Correlations for the Major Fatty Acids in Bovine Milk. J. Dairy Sci. 2007, 90, 4435–4442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Chu, Q.; Ma, P.; Wang, Y.; Zhang, Q.; Sun, D.; Zhang, Y.; Yu, Y.; Zhang, Y. Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk production traits in Chinese Holsteins. J. Dairy Res. 2011, 78, 242–249. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, L.; Liu, X.; Yang, J.; Wei, J. A Post-GWAS Replication Study Confirming the PTK2 Gene Associated with Milk Production Traits in Chinese Holstein. PLoS ONE 2013, 8, e83625. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Gui, M.; Sun, D.; Qin, Z.; Yuan, Z.; Yin, C.; Chen, H.; Ding, X.; Liu, J. Detection of genetic association and functional polymorphisms of UGDH affecting milk production trait in Chinese Holstein cattle. BMC Genom. 2012, 13, 590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Gao, Y.; Zhang, S.; Zhang, Q.; Sun, D. Identification of Genetic Associations and Functional Polymorphisms of SAA1 Gene Affecting Milk Production Traits in Dairy Cattle. PLoS ONE 2016, 11, e0162195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Li, C.; Xie, Y.; Cui, X.; Li, X.; Wei, J.; Zhang, Y.; Yu, Y.; Wang, Y.; Zhang, S.; et al. Detection of functional polymorphisms influencing the promoter activity of theSAA2gene and their association with milk production traits in Chinese Holstein cows. Anim. Genet. 2015, 46, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Liang, W.; Liu, L.; Li, Y.; Sun, D. Genetic association of the ACACB gene with milk yield and composition traits in dairy cattle. Anim. Genet. 2018, 49, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Miao, W.; Wentao, C.; Shuli, L.; Chenghao, Z.; Hongwei, Y.; Dongxiao, S.; Shengli, Z. Genetic Analyses Confirm SNPs in HSPA8 and ERBB2 are Associated with Milk Protein Concentration in Chinese Holstein Cattle. Genes 2019, 10, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Liu, L.; Ma, Z.; Lv, X.; Li, C.; Xu, L.; Han, B.; Li, Y.; Zhao, F.; Yang, Y.; et al. Identification of genetic associations of ECHS 1 gene with milk fatty acid traits in dairy cattle. Anim. Genet. 2019, 50, 430–438. [Google Scholar] [CrossRef]
- Li, M.; Qisong, G.; Mengqi, W.; Yan, L.; Yujia, S.; Zhi, C.; Huimin, Z.; Niel, A.K.; Zhangping, Y.; Yongjiang, M. Polymorphisms in Fatty Acid Desaturase 2 Gene Are Associated with Milk Production Traits in Chinese Holstein Cows. Animals 2020, 10, 671. [Google Scholar] [CrossRef] [Green Version]
- Polasik, D.; Goli’nczak, J.; Proskura, W.; Terman, A.; Dybus, A. Association between THRSP Gene Polymorphism and Fatty Acid Composition in Milk of Dairy Cows. Animals 2021, 11, 1144. [Google Scholar] [CrossRef]
- Rincón, G.; Islas-Trejo, A.; Castillo, A.R.; Bauman, D.E.; German, B.J.; Medrano, J.F. Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. J. Dairy Res. 2012, 79, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattarai, D.; Chen, X.; Rehman, Z.U.; Hao, X.; Ullah, F.; Dad, R.; Talpur, H.S.; Kadariya, I.; Cui, L.; Fan, M.; et al. Association of MAP4K4 gene single nucleotide polymorphism with mastitis and milk traits in Chinese Holstein cattle. J. Dairy Res. 2017, 84, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Dux, M.; Magdalena, M.; Eulalia, S.; Dagmara, R.; Krzysztof, F.; Emilia, B.; Lech, Z. Association of SNP and STR polymor-phisms of insulin-like growth factor 2 receptor (IGF2R) gene with milk traits in Holstein-Friesian cows. J. Dairy Res. 2018, 85, 138–141. [Google Scholar] [CrossRef]
- Selvaggi, M.; Claudia, C.; Francesca, C.; Sara, A.; Giulio, A.; Tufarelli, V.; Dario, C. Determination of a possible relationship between a single nucleotide polymorphism (SNP) in the promoter region of the SIRT1 gene and production and reproduction traits in the Ag-erolese cattle breed. Arch. Anim. Breed. 2019, 62, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, D.; Zhang, S.; Yang, S.; Alim, M.A.; Zhang, Q.; Li, Y.; Liu, L. Genetic effects of FASN, PPARGC1A, ABCG2 and IGF1 revealing the association with milk fatty acids in a Chinese Holstein cattle population based on a post genome-wide association study. BMC Genet. 2016, 17, 110. [Google Scholar] [CrossRef] [Green Version]
- Soltani-Ghombavani, M.; Ansari-Mahyari, S.; Rostami, M.; Ghanbari-Baghenoei, S.; Edriss, M. Effect of polymorphisms in the ABCG2, LEPR and SCD1 genes on milk production traits in Holstein cows. S. Afr. J. Anim. Sci. 2016, 46, 196. [Google Scholar] [CrossRef] [Green Version]
- Tumino, S.; Criscione, A.; Moltisanti, V.; Marletta, D.; Bordonaro, S.; Avondo, M.; Valenti, B. Feeding System Resizes the Effects of DGAT1 Polymorphism on Milk Traits and Fatty Acids Composition in Modicana Cows. Animals 2021, 11, 1616. [Google Scholar] [CrossRef]
- Shi, L.; Lin, L.; Xiaoqing, L.; Zhu, M.; Yuze, Y.; Yanhua, L.; Feng, Z.; Sun, D.; Han, B. Polymorphisms and genetic effects of PRLR, MOGAT1, MINPP1 and CHUK genes on milk fatty acid traits in Chinese Holstein. BMC Genet. 2019, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Liu, L.; Lv, X.; Ma, Z.; Li, C.; Li, Y.; Zhao, F.; Sun, D.; Han, B. Identification of genetic effects and potential causal polymorphisms of CPM gene impacting milk fatty acid traits in Chinese Holstein. Anim. Genet. 2020, 51, 491–501. [Google Scholar] [CrossRef]
- Shi, L.; Han, B.; Lin, L.; Xiaoqing, L.; Zhu, M.; Li, C.; Lingna, X.; Li, Y.; Zhao, F.; Yang, Y.; et al. Determination of Genetic Effects of LIPK and LIPJ Genes on Milk Fatty Acids in Dairy Cattle. Genes 2019, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Argov-Argaman, N.; Mida, K.; Cohen, B.-C.; Visker, M.; Hettinga, K. Milk Fat Content and DGAT1 Genotype Determine Lipid Composition of the Milk Fat Globule Membrane. PLoS ONE 2013, 8, e68707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, D.S.; Sonstegars, M.; Thallman, S.; Connor, R.; Schnabel, E.; Van Tassell, C.P. Characterization of DGAT1 allelic effects in a sample of North American Holstein cattle. Anim. Biotechnol. 2010, 21, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.P.; Howard, D.; O’Boyle, P.; Waters, S.; Kearney, J.; McCabe, M. Associations between the K232A polymorphism in the diacylglycerol-O-transferase 1 (DGAT1) gene and performance in Irish Holstein-Friesian dairy cattle. Ir. J. Agric. Food Res. 2010, 49, 1–9. [Google Scholar]
- Hill, R.; Canal, A.; Bondioli, K.; Morell, R.; Garcia, M. Molecular markers located on the DGAT1, CAST, and LEPR genes and their associations with milk production and fertility traits in Holstein cattle. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Bobbo, T.; Tiezzi, F.; Penasa, M.; De Marchi, M.; Cassandro, M. Short communication: Association analysis of diacylglycerol acyltransferase (DGAT1) mutation on chromosome 14 for milk yield and composition traits, somatic cell score, and coagulation properties in Holstein bulls. J. Dairy Sci. 2018, 101, 8087–8091. [Google Scholar] [CrossRef]
- Bovenhuis, H.; Visker, W.; van Valenberg, H.J.F.; Buitenhuis, A.J.; van Arendonk, J.A.M. Effects of the DGAT1 polymorphism on test-day milk production traits throughout lactation. J. Dairy Sci. 2015, 98, 6572–6582. [Google Scholar] [CrossRef] [Green Version]
- Kadlecova, V.; Nemeckova, D.; Jecminkova, K.; Stadnik, L. The effects of polymorphism in the dgat1 gene on energy balance and milk production traits in primiparous Holstein cows during the first six months of lactation. Bulg. J. Agric. Sci. 2014, 20, 203–209. [Google Scholar]
- Komisarek, J.; Kolenda, M. The effect of DGAT1 polymorphism on milk production traits in dairy cows depending on envi-ronmental temperature. Turk. J. Vet. Anim. Sci. 2016, 40, 251–254. [Google Scholar] [CrossRef]
- Lu, J.; Boeren, S.; van Hooijdonk, T.; Vervoort, J.; Hettinga, K. Effect of the DGAT1 K232A genotype of dairy cows on the milk metabolome and proteome. J. Dairy Sci. 2015, 98, 3460–3469. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Pappenheim, S.; Yener, S.; Van Valenberg, H.J.; Tzompa-Sosa, D.A.; Bovenhuis, H. The DGAT1 K232A polymorphism and feeding modify milk fat triacylglycerol composition. J. Dairy Sci. 2019, 102, 6842–6852. [Google Scholar] [CrossRef] [PubMed]
- Streit, M.; Neugebauer, N.; Meuwissen, T.; Bennewitz, J. Short communication: Evidence for a major gene by polygene interaction for milk production traits in German Holstein dairy cattle. J. Dairy Sci. 2011, 94, 1597–1600. [Google Scholar] [CrossRef] [Green Version]
- Szyda, J.; Morek-Kopeć, M.; Komisarek, J.; Żarnecki, A. Evaluating markers in selected genes for association with functional longevity of dairy cattle. BMC Genet. 2011, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Tabaran, A.-F.; Balteanu, V.A.; Gal, E.; Pusta, D.; Mihaiu, R.; Dan, S.D.; Mihaiu, M. Influence of DGAT1 K232A Polymorphism on Milk Fat Percentage and Fatty Acid Profiles in Romanian Holstein Cattle. Anim. Biotechnol. 2014, 26, 105–111. [Google Scholar] [CrossRef]
- Tzompa-Sosa, D.A.; Van Valenberg, H.; Van Aken, G.; Bovenhuis, H. Milk fat triacylglycerols and their relations with milk fatty acid composition, DGAT1 K232A polymorphism, and milk production traits. J. Dairy Sci. 2016, 99, 3624–3631. [Google Scholar] [CrossRef] [PubMed]
- van Gastelen, S.; Antunes-Fernandes, E.C.; Hettinga, K.A.; Dijkstra, J. The effect of linseed oil and DGAT1 K232A polymor-phism on the methane emission prediction potential of milk fatty acids. J. Dairy Sci. 2018, 101, 5599–5604. [Google Scholar] [CrossRef] [Green Version]
- Krovvidi, S.; Thiruvenkadan, A.K.; Murali, N.; Saravanan, R.; Vinoo, R.; Metta, M. Evaluation of non-synonym mutation in DGAT1 K232A as a marker for milk production traits in Ongole cattle and Murrah buffalo from Southern India. Trop. Anim. Health Prod. 2021, 53, 118. [Google Scholar] [CrossRef]
- Szewczuk, M. Association of a genetic marker at the bovine Janus kinase 2 locus (JAK2/RsaI) with milk production traits of four cattle breeds. J. Dairy Res. 2015, 82, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Qisong, G.; Qiang, Z.; Abdelaziz, A.; Li, M.; Zhangping, Y.; Niel, K.; Mao, Y. Polymorphisms of the ACSL1 Gene Influence Milk Production Traits and Somatic Cell Score in Chinese Holstein Cows. Animals 2020, 10, 2282. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, S.; Song-Jia, L. Polymorphisms of Mitochondrial ATPASE 8/6 Genes and Association with Milk Production Traits in Holstein Cows. Anim. Biotechnol. 2012, 23, 204–212. [Google Scholar] [CrossRef]
- Derakhshani, H.; Jan, P.; Jeroen, B.; Herman, B.; Ehsan, K.W. Association of bovine major histocompatibility complex (BoLA) gene polymorphism with colostrum and milk microbiota of dairy cows during the first week of lactation. Microbiome 2018, 6, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmatalla, A.S.; Müller, U.; Strucken, E.M.; Reissmann, M.; Gudrun, A. BrockmannThe F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell score in German Holstein dairy cattle. J. Appl. Genet. 2011, 52, 459–465. [Google Scholar] [CrossRef]
- Sajjanar, B.; Deb, R.; Singh, U.; Kumar, S.; Brahmane, M.; Nirmale, A.; Bal, S.K.; Minhas, P.S. Identification of SNP inHSP90AB1and its Association with the Relative Thermotolerance and Milk Production Traits in Indian Dairy Cattle. Anim. Biotechnol. 2014, 26, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Shi, L.; Peng, P.; Han, B.; Liu, L.; Lv, X.; Ma, Z.; Zhang, S.; Sun, D. Determination of genetic effects and functional SNPs of bovine HTR1B gene on milk fatty acid traits. BMC Genom. 2021, 22, 575. [Google Scholar] [CrossRef]
- Bagnicka, E.; Siadkowska, E.; Strzałkowska, N.; Żelazowska, B.; Flisikowski, K.; Krzyżewski, J.; Zwierzchowski, L. Association of polymorphisms in exons 2 and 10 of the insulin-like growth factor 2 (IGF2) gene with milk production traits in Polish Holstein-Friesian cattle. J. Dairy Res. 2010, 77, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Berkowicz, E.W.; Magee, D.A.; Sikora, K.M.; Berry, D.P.; Howard, D.J.; Mullen, M.P.; Evans, R.D.; Spillane, C.; Machugh, D.E. Single nucleotide polymorphisms at the imprinted bovine insulin-like growth factor 2 (IGF2) locus are associated with dairy performance in Irish Holstein-Friesian cattle. J. Dairy Res. 2010, 78, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clempson, M.M.; Pollott, G.E.; Brickell, J.; Wathes, D.C. Associations Between Bovine IGFBP2 Polymorphisms with Fertility, Milk Production, and Metabolic Status in UK Dairy Cows. Anim. Biotechnol. 2012, 23, 101–113. [Google Scholar] [CrossRef]
- Yang, S.-H.; Bi, X.-J.; Xie, Y.; Li, C.; Zhang, S.-L.; Zhang, Q.; Sun, D.-X. Validation of PDE9A Gene Identified in GWAS Showing Strong Association with Milk Production Traits in Chinese Holstein. Int. J. Mol. Sci. 2015, 16, 26530–26542. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Ju, Z.; Wang, J.; Li, Q.; Huang, J.; Zhang, A.; Zhong, J.; Wang, C. Single nucleotide polymorphisms, haplotypes and combined gen-otypes of LAP3 gene in bovine and their association with milk production traits. Mol. Biol. Rep. 2011, 38, 4053–4061. [Google Scholar] [CrossRef]
- Han, B.; Yuan, Y.; Liang, R.; Li, Y.; Liu, L.; Sun, D. Genetic Effects of LPIN1 Polymorphisms on Milk Production Traits in Dairy Cattle. Genes 2019, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Haruna, I.L.; Zhou, H.; Hickford, J.G.H. Variation in bovine leptin gene affects milk fatty acid composition in New Zealand Holstein Friesian × Jersey dairy cows. Arch. Anim. Breed. 2021, 64, 245–256. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Li, Q.; Ju, Z.; Huang, J.; Li, J.; Wang, H.; Zhong, J. Three novel single-nucleotide polymorphisms of MBL1 gene in Chinese native cattle and their associations with milk performance traits. Vet. Immunol. Immunopathol. 2011, 139, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.Z.; Wang, C.F.; Li, Q.L.; Ju, Z.H.; Huang, J.M.; Li, J.B.; Zhong, J.F.; Zhang, J.B. Novel SNPs of the mannan-binding lectin 2 gene and their association with production traits in Chinese Holsteins. Genet. Mol. Res. 2012, 11, 3744–3754. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peñagaricano, F.; Tal-Stein, R.; Lipkin, E.; Khatib, H. Short communication: Association of an OLR1 polymorphism with milk production traits in the Israeli Holstein population. J. Dairy Sci. 2012, 95, 1565–1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Xiaoqing, L.; Lin, L.; Yuze, Y.; Zhu, M.; Han, B.; Sun, D. A post-GWAS confirming effects of PRKG1 gene on milk fatty acids in a Chinese Holstein dairy population. BMC Genet. 2019, 20, 53. [Google Scholar] [CrossRef] [Green Version]
- Nafikov, R.A.; Schoonmaker, J.P.; Korn, K.T.; Noack, K.; Garrick, D.J.; Koehler, K.J.; Minick-Bormann, J.; Reecy, J.M.; Spurlock, D.E.; Beitz, D.C. Sterol regulatory element binding transcription factor 1 (SREBF1) polymorphism and milk fatty acid composition. J. Dairy Sci. 2013, 96, 2605–2616. [Google Scholar] [CrossRef]
- Lv, Y.; Wei, C.; Zhang, L.; Lu, G.; Liu, K.; Du, L. Association Between Polymorphisms in the SLC27A1 Gene and Milk Pro-duction Traits in Chinese Holstein Cattle. Anim. Biotechnol. 2011, 22, 1–6. [Google Scholar] [CrossRef]
- Nafikov, A.R.; Schoonmaker, P.J.; Korn, T.K.; Noack, K.; Garrick, J.D.; Koehler, K.J.; Minick-Bormann, J.; Reecy, J.M.; Spurlock, D.E.; Beitz, D.C. Association of polymorphisms in solute carrier family 27, isoform A6(SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein-4 (FABP3 and FABP4) with fatty acid composition of bovine milk. J. Dairy Sci. 2013, 96, 6007–6021. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Song, H.; Zhu, X.; Xing, S.; Zhang, M.; Zhang, H.; Wang, X.; Yang, Z.; Ding, X.; Karrow, N.A.; et al. Toll-like receptor 4 gene polymorphisms influence milk production traits in Chinese Holstein cows. J. Dairy Res. 2018, 85, 407–411. [Google Scholar] [CrossRef]
- Zhou, H.; Cheng, L.; Gong, H.; Byun, S.O.; Edwards, G.R.; Hickford, J.G.H. Variation in the Toll-like Receptor 4 (TLR4) gene affects milk traits in dairy cows. J. Dairy Res. 2017, 84, 426–429. [Google Scholar] [CrossRef]
- Mao, Y.; Zhu, X.; Xing, S.; Zhang, M.; Zhang, H.; Wang, X.; Karrow, N.; Yang, L.; Yang, Z. Polymorphisms in the promoter region of the bovine lactoferrin gene influence milk somatic cell score and milk production traits in Chinese Holstein cows. Res. Vet. Sci. 2015, 103, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Ju, Z.; Li, Q.; Huang, J.; Hou, M.; Li, R.; Li, J.; Zhong, J.; Wang, C. Three novel SNPs of the bovine Tf gene in Chinese native cattle and their associations with milk production traits. Genet. Mol. Res. 2011, 10, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Zwierzchowski, L.; Ostrowska, M.; Żelazowska, B.; Bagnicka, E. Single nucleotide polymorphisms in the bovine SLC2A12 and SLC5A1 glucose transporter genes—The effect on gene expression and milk traits of Holstein Friesian cows. Anim. Biotechnol. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.R.; Singh, M.; Thakur, S.; Verma, A. Exploring the relationship between polymorphisms of leptin and IGF-1 genes with milk yield in indicine and taurine crossbred cows. Trop. Anim. Health Prod. 2021, 53, 1–8. [Google Scholar] [CrossRef]
- Ostrowska, M.; Zwierzchowski, L.; Brzozowska, P.; Kawecka-Grochocka, E.; Żelazowska, B.; Bagnicka, E. The effect of single nucleotide polymorphism in the promoter region of bovine alpha-lactalbumin (LALBA) gene on LALBA expression in milk cells and milk traits of cows. J. Anim. Sci. 2021, 99, skab169. [Google Scholar] [CrossRef] [PubMed]
- Bordonaro, S.; Tumino, S.; Donata, M.; Anna, D.; Fortunato, D.P.; Avondo, M.; Valenti, B. Effect of GH p.L127V Polymorphism and Feeding Systems on Milk Production Traits and Fatty Acid Composition in Modicana Cows. Animals 2020, 10, 1651. [Google Scholar] [CrossRef]
- Friedrich, J.; Brand, B.; Ponsuksili, S.; Graunke, K.L.; Langbein, J.; Knaust, J.; Kühn, C.; Schwerin, M. Detection of genetic variants affecting cattle behaviour and their impact on milk production: A genome-wide association study. Anim. Genet. 2016, 47, 12–18. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, L.; Wang, W.; Zhang, S.; Yin, Z.; Zhang, Q.; Liu, J.-F. Associations between variants of the HALgene and milk production traits in Chinese Holstein cows. BMC Genet. 2014, 15, 125. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Cai, W.; Liu, S.; Zhou, C.; Cao, M.; Yin, H.; Sun, D.; Zhang, S.; Loor, J.J. Association of UDP-galactose-4-epimerase with milk protein concentration in the Chinese Holstein population. Asian-Australas. J. Anim. Sci. 2020, 33, 1725–1731. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Khan, M.Z.; Xiao, J.; Alugongo, G.M.; Chen, X.; Chen, T.; Liu, S.; He, Z.; Wang, J.; Shah, M.K.; et al. Genetic Markers Associated with Milk Production Traits in Dairy Cattle. Agriculture 2021, 11, 1018. https://doi.org/10.3390/agriculture11101018
Ma Y, Khan MZ, Xiao J, Alugongo GM, Chen X, Chen T, Liu S, He Z, Wang J, Shah MK, et al. Genetic Markers Associated with Milk Production Traits in Dairy Cattle. Agriculture. 2021; 11(10):1018. https://doi.org/10.3390/agriculture11101018
Chicago/Turabian StyleMa, Yulin, Muhammad Zahoor Khan, Jianxin Xiao, Gibson Maswayi Alugongo, Xu Chen, Tianyu Chen, Shuai Liu, Zhiyuan He, Jingjun Wang, Muhammad Kamal Shah, and et al. 2021. "Genetic Markers Associated with Milk Production Traits in Dairy Cattle" Agriculture 11, no. 10: 1018. https://doi.org/10.3390/agriculture11101018
APA StyleMa, Y., Khan, M. Z., Xiao, J., Alugongo, G. M., Chen, X., Chen, T., Liu, S., He, Z., Wang, J., Shah, M. K., & Cao, Z. (2021). Genetic Markers Associated with Milk Production Traits in Dairy Cattle. Agriculture, 11(10), 1018. https://doi.org/10.3390/agriculture11101018