Productive Performance, Carcass Traits, and Meat Quality in Finishing Lambs Supplemented with a Polyherbal Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Polyherbal Mixture Characteristics
2.3. Diet Composition
2.4. Animals and Experimental Design
2.5. Sampling and Analyses of Feeds
2.6. Apparent Dry Matter Digestibility
2.7. Carcass Characteristics
2.8. Meat Quality
2.9. Statistical Analysis
3. Results
3.1. Productive Performance and Digestibility
3.2. Carcass Traits
3.3. Meat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lillehoj, H.; Liu, Y.; Calsamiglia, G.; Fernandez-Miyakawa, M.E.; Chi, F.; Cravens, R.L.; Oh, S.; Gay, C.G. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet. Res. 2018, 49, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasta, V.; Luciano, G. The effects of dietary consumption of plants secondary compounds on small ruminants’ products quality. Small Rumin. Res. 2011, 101, 150–159. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, D.H.; Le, L.G.; Ahn, S.K.; Cho, K.W.; Lee, S.S. Effect of medicinal plant by-products supplementation to total mixed ration on growth performance, carcass characteristics and economic efficacy in the late fattening period of Hanwoo steers. Asian-Australas. J. Anim. Sci. 2015, 28, 1729–1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Hernández-García, P.A. Growth Performance, Carcass Characteristics, and Blood Metabolites of Lambs Supplemented with a Polyherbal Mixture. Animals 2021, 11, 955. [Google Scholar] [CrossRef] [PubMed]
- Razo, O.P.B.; Mendoza, M.G.D.; Vázquez, S.G.; Osorio, T.A.I.; González, S.J.F.; Hernández, G.P.A.; Torre, H.M.E.; Espinosa, A.E. Polyherbal feed additive for lambs: Effects on performance, blood biochemistry and biometry. J. Appl. Anim. Res. 2020, 48, 419–424. [Google Scholar] [CrossRef]
- Díaz, G.C.; Méndez, O.E.T.; Martínez, G.D.; Gloria, T.A.; Hernández, G.P.A.; Espinosa, A.E.; Palacios, M.M.; Lara, B.A.; Mendoza, M.G.D.; Velázquez, C.L.A. Influence of a polyherbal mixture in dairy calves: Growth performance and gene expression. Front. Vet. Sci. 2021, 7, 623710. [Google Scholar] [CrossRef] [PubMed]
- Čobanová, K.; Váradyová, Z.; Grešáková, L.; Kucková, K.; Mravčáková, D.; Várady, M. Does herbal and/or zinc dietary supplementation improve the antioxidant and mineral status of lambs with parasite infection? Antioxidants 2020, 9, 1172. [Google Scholar] [CrossRef]
- Hao, X.; Wang, P.; Ren, Y.; Liu, G.; Zhang, J.; Leury, B.; Zhang, C. Effects of Astragalus membranaceus roots supplementation on growth performance, serum antioxidant and immune response in finishing lambs. Asian-Australas. J. Anim. 2020, 33, 965–972. [Google Scholar] [CrossRef]
- Wang, X.J.; Ding, L.M.; Wei, H.Y.; Jiang, C.X.; Yan, Q.; Hu, C.S.; Jia, G.X.; Zhou, Y.Q.; Henkin, Z.; Degen, A.A. Astragalus membranaceus root supplementation improves average daily gain, rumen fermentation, serum immunity and antioxidant indices of Tibetan sheep. Animal 2021, 15, 100061. [Google Scholar] [CrossRef]
- Choubey, M.; Pattanaik, A.K.; Baliyan, S.; Dutta, N.; Jadhav, S.E.; Sharma, K. Dietary supplementation of a novel phytogenic feed additive: Effects on nutrient metabolism, antioxidant status and immune response of goats. Anim. Prod. Sci. 2016, 56, 1612–1621. [Google Scholar] [CrossRef]
- McMurphy, C.P.; Sexten, A.L.; Mourer, G.L.; Sharman, E.D.; Trojan, S.J.; Rincker, M.J.; Coblentz, W.K.; Lalman, D.L. Effects of including saponins (Micro-Aid®) on intake, rumen fermentation and digestibility in steers fed low-quality prairie hay. Anim. Feed Sci. Technol. 2014, 190, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ma, T.; Chen, D.; Zhang, N.; Si, B.; Deng, K.; Tu, Y.; Diao, Q. Effects of tea saponin supplementation on nutrient digestibility, methanogenesis, and ruminal microbial flora in Dorper crossbred ewe. Animals 2019, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Molina-Botero, I.C.; Arroyave-Jaramillo, J.; Valencia-Salazar, S.; Barahona-Rosales, R.; Aguilar-Pérez, C.F.; Ayala, B.A.; Arango, J.; Ku-Vera, J.C. Effect of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Anim. Feed Sci. Technol. 2019, 251, 1–11. [Google Scholar] [CrossRef]
- Mao, H.L.; Wang, J.K.; Zhou, Y.Y.; Liu, J.X. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livest. Sci. 2010, 129, 56–62. [Google Scholar] [CrossRef]
- Hassan, F.U.; Arshad, M.A.; Li, M.; Rehman, M.S.U.; Loor, J.J.; Huang, J. Potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: Mechanistic insights and prospects. Animals 2020, 10, 2076. [Google Scholar] [CrossRef] [PubMed]
- Petrič, D.; Mravčáková, D.; Kucková, K.; Kišidayová, S.; Cieslak, A.; Szumacher-Strabel, M.; Huang, H.; Kolodziejski, P.; Lukomska, A.; Slusarczyk, S.; et al. Impact of zinc and/or herbal mixture on ruminal fermentation, microbiota, and histopathology in lambs. Front. Vet. Sci. 2021, 8, 630971. [Google Scholar] [CrossRef] [PubMed]
- Paniagua, M.; Crespo, F.J.; Arís, A.; Devant, M. Effects of flavonoids extracted from citrus aurantium on performance, behavior, and rumen gene expression in holstein bulls fed with high-concentrate diets in pellet form. Animals 2021, 11, 1387. [Google Scholar] [CrossRef] [PubMed]
- Mandal, G.P.; Roy, A.; Patra, A.K. Effects of feeding plant additives rich in saponins and essential oils on the performance carcass traits and conjugated linoleic acid concentration in muscle and adipose tissues of Black Bengal goats. Anim. Feed Sci. Technol. 2014, 197, 76–84. [Google Scholar] [CrossRef]
- Hundal, J.S.; Wadhwa, M.; Bakshi, M.P.S.; Chatli, M.K. Effect of herbal feed additive containing saponins on the performance of goat kids. Indian J. Anim. Sci. 2020, 90, 229–236. [Google Scholar]
- Wina, E.; Muetzel, S.; Hoffmann, E.; Makkar, H.P.S.; Becker, K. Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim. Feed Sci. Technol. 2005, 121, 159–174. [Google Scholar] [CrossRef]
- Nasehi, M.; Torbatinejad, N.M.; Rezaie, M.; Ghoorchi, T. Effects of partial substitution of alfalfa hay with green tea waste on growth performance and in vitro methane emission of fat-tailed lambs. Small Rumin. Res. 2018, 168, 52–59. [Google Scholar] [CrossRef]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci. 2005, 83, 2572–2579. [Google Scholar] [CrossRef] [PubMed]
- García, E. Modificaciones del Sistema de Clasificación Climática de Köppen, 5th ed.; Instituto de Geografía, Universidad Nacional Autónoma de México: México City, Mexico, 2004; p. 51. (In Spanish) [Google Scholar]
- Awais, M.M.; Akhtar, M.; Anwar, M.I.; Khaliq, K. Evaluation of Saccharum officinarum L. bagasse-derived polysaccharides as native immunomodulatory and anticoccidial agents in broilers. Vet. Parasitol. 2018, 249, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Chothani, D.L.; Vaghasiya, H.U. A review on Balanites aegyptiaca Del (desert date): Phytochemicals constituents, traditional uses, and pharmacological activity. Phcog. Rev. 2011, 5, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukhetpitakwong, R.; Hahnvajanawong, C.; Homchampa, P.; Leelavatcharamas, V.; Satra, J.; Khunkitti, W. Immunological adjuvant activities of saponin extracts from the pods of Acacia concinna. Int. Immunopharmacol. 2006, 6, 1729–1735. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists, The William Byrd Press Inc.: Richmond, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Keulen, J.V.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Silva, S.R.; Gomes, M.J.; Dias-da-Silva, A.; Gil, L.F.; Azevedo, J.M.T. Estimation in vivo of the body and carcass chemical composition of growing lambs by real-time ultrasonography. J. Anim. Sci. 2005, 83, 350–357. [Google Scholar] [CrossRef]
- Zimerman, M.; Domingo, E.; Lanari, M.R. Carcass characteristics of Neuquén Criollo kids in Patagonia region, Argentina. Meat Sci. 2008, 79, 453–457. [Google Scholar] [CrossRef]
- Vazquez-Mendoza, O.V.; Aranda-Osorio, G.; Huerta-Bravo, M.; Kholif, A.E.; Elghandour, M.M.Y.; Salem, A.Z.M.; MaldonadoSimán, E. Carcass and meat properties of six genotypes of young bulls finished under feedlot tropical conditions of Mexico. Anim. Prod. Sci. 2017, 57, 1186–1192. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Shackelford, S.D.; Johnson, L.P.; Miller, M.F.; Miller, R.K.; Koohmaraie, M. A comparison of Warner-Bratzler shear force assessment within and among institutions. J. Anim. Sci. 1997, 75, 2423–2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miltenburg, G.A.; Wensing, T.; Smulders, F.J.M.; Breukink, H.J. Relationship between blood hemoglobin, plasma and tissue iron, muscle heme pigment, and carcass color of veal. J. Anim. Sci. 1992, 70, 2766–2772. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Albertí, P.; Joy, M. Influence of alfalfa grazing based feeding systems on carcass fat colour and meat quality of light lambs. Meat Sci. 2012, 90, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Negrete, L.O.; Pinos-Rodríguez, J.M.; Grajales-Lagunes, A.; Morales, J.A.; García-López, J.C.; Lee-Rangel, H.A. Effects of increasing amount of dietary Prosopis laevigata pods on performance, meat quality and fatty acid profile in growing lambs. J. Anim. Physiol. Anim. Nutr. 2017, 101, 303–311. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- SAS (Statistical Analysis System). SAS/STAT User’s Guide (Release 6.4); SAS Inst.: Cary, NC, USA, 2017. [Google Scholar]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Ding, L.; Wang, X.; Yan, Q.; Jiang, C.; Hu, C.; Wang, G.; Zhou, Y.; Henkin, Z.; Degen, A.A. Astragalus root extract improved average daily gain, immunity, antioxidant status and ruminal microbiota of early weaned yak calves. J. Sci. Food Agric. 2020, 101, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Qu, Y.-H.; Guo, P.-T.; Xu, C.-C.; Ma, Y.; Luo, H.-L. Effects of dietary supplementation with alfalfa (Medicago sativa L.) saponins on lamb growth performance, nutrient digestibility, and plasma parameters. Anim. Feed Sci. Technol. 2018, 236, 98–106. [Google Scholar] [CrossRef]
- Nasri, S.; Ben Salem, H.; Vasta, V.; Abidi, S.; Makkar, H.P.S.; Priolo, A. Effect of increasing levels of Quillaja saponaria on digestion, growth and meat quality of Barbarine lamb. Anim. Feed Sci. Technol. 2011, 164, 71–78. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Salman, H.A.K.; Sulaiman, R. Extraction and quantification of saponins: A review. Food Res. Int. 2014, 59, 16–40. [Google Scholar] [CrossRef]
- Wang, B.; Ma, M.P.; Diao, Q.Y.; Tu, Y. Saponin-induced shifts in the rumen microbiome and metabolome of young cattle. Front. Microbiol. 2019, 10, 356. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, A.; Zhang, P.; Elemba, E.; Zhong, Q.; Sun, Z. Carcass characteristics, meat quality, and functional compound deposition in sheep fed diets supplemented with Astragalus membranaceus by-product. Anim. Feed Sci. Technol. 2020, 259, 114346. [Google Scholar] [CrossRef]
- Liang, H.; Xu, L.; Zhao, X.; Pan, K.; Yi, Z.; Bai, J.; Qi, X.; Xin, J.; Li, M.; Ouyang, K.; et al. RNA-Seq analysis reveals the potential molecular mechanisms of daidzein on adipogenesis in subcutaneous adipose tissue of finishing Xianan beef cattle. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1–11. [Google Scholar] [CrossRef]
- de Lima, J.D.M.; de Carvalho, F.F.; da Silva, F.J.; Rangel, A.H.D.N.; Novaes, L.P.; Difante, G.D.S. Intrinsic factors affecting sheep meat quality: A review. Rev. Colomb. Cienc. Cienc. 2016, 29, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Corazzin, M.; Del Bianco, S.; Bovolenta, S.; Piasentier, E. Carcass characteristics and meat quality of sheep and goat. In More than Beef, Pork and Chicken-The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Lorenzo, J.M., Munekata, P.E.S., Barba, F., Toldrá, F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 119–165. ISBN 978-3-030-05483-0. [Google Scholar]
- Riley, R.R.; Savell, J.W.; Shelton, M.; Smith, G.C. Carcass and offal yields of sheep and goats as influenced by market class and breed. Small Rumin. Res. 1989, 2, 265–272. [Google Scholar] [CrossRef]
- Fluharty, F.L.; McClure, K.E. Effects of dietary energy intake and protein concentration on performance and visceral organ mass in lambs. J. Anim. Sci. 1997, 75, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Sañudo, C.; Santolaria, M.P.; Maria, G.; Osorio, M.; Sierra, I. Influence of carcass weight on instrumental and sensory lamb meat quality in intensive production systems. Meat Sci. 1996, 42, 195–202. [Google Scholar] [CrossRef]
- Dalle, Z.O. Perception of rabbit meat quality and major factors influencing the rabbit carcass and meat quality. Livest. Prod. Sci. 2002, 75, 11–32. [Google Scholar] [CrossRef]
- Toldrá, F. Lawrie’s Meat Science, 8th ed.; Woodhead Publishing Limited: Cambridge, UK, 2017; p. 713. [Google Scholar]
- Ponnampalam, E.N.; Hopkins, D.L.; Bruce, H.; Li, D.; Baldi, G.; El-din Bekhit, A. Causes and contributing factors to dark cutting meat: Current trends and future directions: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 400–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, A.; Daly, C.; Devine, C. The effects of the ultimate pH of meat on tenderness changes during ageing. Meat Sci. 1996, 42, 67–78. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, T.; Cao, Y.; Deng, B.; Zhang, J.; Zhao, J. Effects of dietary sea buckthorn pomace supplementation on skeletal muscle mass and meat quality in lambs. Meat Sci. 2020, 166, 108141. [Google Scholar] [CrossRef]
- Zamora, F.; Aubry, L.; Sayd, T.; Lepetit, J.; Lebert, A.; Sentandreu, M.A.; Ouali, A. Serine peptidase inhibitors, the best predictor of beef ageing amongst a large set of quantitative variables. Meat Sci. 2005, 71, 730–742. [Google Scholar] [CrossRef]
- Whipple, G.; Koohmaraiae, M.; Dikeman, M.E.; Crouse, J.D.; Hunt, M.C.; Klemm, R.D. Evaluation of attributes that affect Longissimus muscle tenderness in Bos taurus and Bos indicus cattle. J. Anim. Sci. 1990, 68, 2716–2728. [Google Scholar] [CrossRef] [Green Version]
- Wiklund, E.; Dobbie, P.; Stuart, A.; Littlejohn, R.P. Seasonal variation in red deer (Cervus elaphus) venison (M. longissimus dorsi) dripp loss, calpain activity, colour and tenderness. Meat Sci. 2010, 86, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.C.; Agbeniga, B. Timing and duration of low voltage electrical stimulation on selected meat quality characteristics of light and heavy cattle carcasses. Anim. Prod. Sci. 2020, 60, 967–977. [Google Scholar] [CrossRef]
- Cimmino, R.; Barone, C.M.A.; Claps, S.; Varricchio, E.; Rufrano, D.; Caroprese, M.; Albenzio, M.; De Palo, P.; Campanile, G.; Neglia, G. Effects of dietary supplementation with polyphenols on meat quality in Saanen goat kids. BMC Vet. Res. 2018, 14, 181. [Google Scholar] [CrossRef]
- Garcia-Galicia, I.A.; Arras-Acosta, J.A.; Huerta-Jimenez, M.; Rentería-Monterrubio, A.L.; Loya-Olguin, J.L.; Carrillo-Lopez, L.M.; Tirado-Gallegos, J.M.; Alarcon-Rojo, A.D. Natural oregano essential oil may replace antibiotics in lamb diets: Effects on meat quality. Antibiotics 2020, 9, 248. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Su, L.; Su, R.; Wang, B.; Liu, C.; Wang, Z.; Zhao, L.; Jin, Y. Effects of Astragalus Membranaceus supplementation on oxidative stability of Cashmere goat. Food Sci. Nutr. 2020, 8, 5550–5556. [Google Scholar] [CrossRef]
- Lopez-Baca, M.A.; Contreras, M.; González-Ríos, H.; Macías-Cruz, U.; Torrentera, N.; Valenzuela-Melendres, M.; Muhlia-Almazán, A.; Soto-Navarro, S.; Avendaño-Reyes, L. Growth, carcass characteristics, cut yields and meat quality of lambs finished with zilpaterol hydrochloride and steroid implant. Meat Sci. 2019, 158, 107890. [Google Scholar] [CrossRef] [PubMed]
- Dávila-Ramírez, J.L.; Avendaño-Reyes, L.; Macías-Cruz, U.; Torrentera-Olivera, N.G.; Zamorano-García, L.; Peña-Ramos, A.; González-Ríos, H. Effects of zilpaterol hydrochloride and soybean oil supplementation on physicochemical and sensory characteristics of meat from hair lambs. Small Rumin. Res. 2013, 114, 253–257. [Google Scholar] [CrossRef]
Treatment | p-Value | ||||||
---|---|---|---|---|---|---|---|
Parameter | CON | HM1 | HM2 | HM3 | EEM | Linear | Quadratic |
Initial body weight (IBW) kg | 23.15 | 23.45 | 22.93 | 23.55 | 1.233 | 0.90 | 0.90 |
Final body weight (FBW) kg | 41.93 | 39.88 | 40.13 | 38.80 | 1.608 | 0.21 | 0.82 |
Dry matter intake (DMI) kg d−1 | 1.161 | 1.083 | 1.059 | 1.034 | 0.056 | 0.12 | 0.64 |
Daily weight gain (DWG) kg d−1 | 0.335 * | 0.293 | 0.307 | 0.272 * | 0.020 | 0.06 | 0.85 |
Feed conversion ratio (FCR) DMI/DWG | 3.49 | 3.74 | 3.54 | 3.91 | 0.196 | 0.23 | 0.76 |
Dry matter Digestibility (DMD) % | 75.71 a | 74.72 ab | 72.31 ab | 70.39 b | 1.528 | 0.03 | 0.76 |
Treatment | p-Value | ||||||
---|---|---|---|---|---|---|---|
Parameter | CON | HM1 | HM2 | HM3 | EEM | Linear | Quadratic |
Hot carcass weight kg | 20.73 | 19.43 | 19.38 | 18.88 | 0.757 | 0.11 | 0.22 |
Hot carcass yield % | 49.47 | 48.72 | 48.28 | 48.95 | 0.767 | 0.57 | 0.54 |
Backfat thickness mm | 3.00 | 3.11 | 3.00 | 3.11 | 0.114 | 0.67 | 0.99 |
Muscle area longissimus dorsi cm2 | 11.24 | 10.90 | 10.92 | 10.66 | 0.312 | 0.22 | 0.90 |
Rumen (empty) kg | 1.188 | 1.152 | 1.134 | 1.139 | 0.047 | 0.43 | 0.47 |
Small intestine (empty) kg | 0.882 | 0.839 | 0.896 | 0.913 | 0.046 | 0.47 | 0.34 |
Large intestine (empty) kg | 1.046 | 1.042 | 1.024 | 1.045 | 0.053 | 0.93 | 0.86 |
Lungs and Trachea kg | 0.699 | 0.686 | 0.679 | 0.638 | 0.040 | 0.30 | 0.41 |
Heart kg | 0.198 | 0.172 | 0.176 | 0.192 | 0.009 | 0.74 | 0.92 |
Liver, kg | 0.823 | 0.842 | 0.839 | 0.800 | 0.034 | 0.64 | 0.71 |
Kidneys kg | 0.337 | 0.352 | 0.328 | 0.316 | 0.019 | 0.31 | 0.24 |
Spleen kg | 0.076 | 0.079 | 0.083 | 0.078 | 0.006 | 0.70 | 0.60 |
Testicles kg | 0.690 | 0.717 | 0.718 | 0.634 | 0.055 | 0.50 | 0.62 |
Skin kg | 2.914 | 2.718 | 2.834 | 2.527 | 0.159 | 0.15 | 0.40 |
Feet kg | 0.882 | 0.824 | 0.833 | 0.807 | 0.041 | 0.25 | 0.44 |
Head kg | 1.967 | 2.025 | 1.986 | 1.937 | 0.072 | 0.69 | 0.64 |
Treatment | p-Value | ||||||
---|---|---|---|---|---|---|---|
Parameter | CON | HM1 | HM2 | HM3 | EEM | Linear | Quadratic |
Meat pH (24 h) | 5.50 ab | 5.36 b | 5.69 a | 5.84 a | 0.14 | 0.04 | 0.32 |
WBSF kg cm−2 | 6.47 a | 6.29 a | 5.53 ab | 4.73 b | 0.57 | 0.02 | 0.58 |
Cooking loss (%) | 16.89 | 18.72 | 19.28 | 20.13 | 1.09 | 0.04 | 0.65 |
Dripp loss (%) | 3.55 b | 4.07 ab | 4.84 a | 4.81 a | 0.38 | 0.01 | 0.48 |
Lightness (L*) | 36.22 | 36.20 | 33.45 | 34.77 | 1.27 | 0.22 | 0.60 |
Redness (a*) | 9.23 | 8.45 | 9.05 | 9.23 | 0.44 | 0.75 | 0.28 |
Yellowness (b*) | 10.28 a | 9.11 b | 9.45 ab | 8.73 b | 0.45 | 0.04 | 0.62 |
Chroma | 13.87 | 12.46 | 13.12 | 12.74 | 0.51 | 0.25 | 0.33 |
Hue ° | 47.81 a | 47.12 ab | 46.48 ab | 43.40 b | 1.65 | 0.07 | 0.47 |
Moisture, g 100 g−1 | 73.70 | 73.69 | 73.69 | 73.58 | 0.48 | 0.97 | 0.99 |
Crude protein, g 100 g−1 | 20.38 | 20.47 | 20.59 | 20.48 | 0.38 | 0.94 | 0.88 |
Fat, g 100 g−1 | 2.45 | 2.46 | 2.45 | 2.49 | 0.07 | 0.99 | 0.98 |
Ash, g 100 g−1 | 1.34 | 1.33 | 1.33 | 1.32 | 0.03 | 0.82 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; López-Ordaz, R.; Hernández-García, P.A. Productive Performance, Carcass Traits, and Meat Quality in Finishing Lambs Supplemented with a Polyherbal Mixture. Agriculture 2021, 11, 942. https://doi.org/10.3390/agriculture11100942
Orzuna-Orzuna JF, Dorantes-Iturbide G, Lara-Bueno A, Mendoza-Martínez GD, Miranda-Romero LA, López-Ordaz R, Hernández-García PA. Productive Performance, Carcass Traits, and Meat Quality in Finishing Lambs Supplemented with a Polyherbal Mixture. Agriculture. 2021; 11(10):942. https://doi.org/10.3390/agriculture11100942
Chicago/Turabian StyleOrzuna-Orzuna, José Felipe, Griselda Dorantes-Iturbide, Alejandro Lara-Bueno, Germán David Mendoza-Martínez, Luis Alberto Miranda-Romero, Rufino López-Ordaz, and Pedro Abel Hernández-García. 2021. "Productive Performance, Carcass Traits, and Meat Quality in Finishing Lambs Supplemented with a Polyherbal Mixture" Agriculture 11, no. 10: 942. https://doi.org/10.3390/agriculture11100942
APA StyleOrzuna-Orzuna, J. F., Dorantes-Iturbide, G., Lara-Bueno, A., Mendoza-Martínez, G. D., Miranda-Romero, L. A., López-Ordaz, R., & Hernández-García, P. A. (2021). Productive Performance, Carcass Traits, and Meat Quality in Finishing Lambs Supplemented with a Polyherbal Mixture. Agriculture, 11(10), 942. https://doi.org/10.3390/agriculture11100942