Effects of Exogenous Calcium on Adaptive Growth, Photosynthesis, Ion Homeostasis and Phenolics of Gleditsia sinensis Lam. Plants under Salt Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design
2.3. Plant Growth Parameters
2.4. Plant Damage and Lipid Peroxidation
2.5. Leaf Photosynthesis, Chlorophyll Fluorescence Parameters, and Chlorophyll Content
2.6. Determination of K+, Na+, and Ca2+
2.7. Extraction and LC–MS Analysis of Phenolic Compounds
2.7.1. Chemicals and Reagents
2.7.2. Preparation of Test Sample Solution
2.7.3. Chromatographic Conditions
2.7.4. Mass Spectrometry Conditions
2.8. Statistical Analysis
3. Results
3.1. Effect of Salt Stress on Growth Parameters of G. sinensis
3.2. Effect of Salt Stress on Relative Electrical Conductivity (REC) and Relative Water Content (RWC) in G. sinensis Leaves
3.3. Effect of Salt Stress on Photosynthetic Pigments in G. sinensis Leaves
3.4. The Degree of Membrane Peroxidation in G. sinensis Plants under Salt Stress
3.5. Effect of Adding Exogenous Calcium on Plant Growth Parameters in 100 mmol/L NaCl Treatment
3.6. Effects of Different Concentrations of Exogenous Calcium on Lipid Peroxidation of G. sinensis Plants under Salt Stress
3.7. Effects of Exogenous Calcium on Photosynthetic System Parameters in Leaves of G. sinensis
3.8. Effects of Exogenous Calcium on Chlorophyll Fluorescence Parameters of G. sinensis
3.9. Content of Na+, K+, and Ca2+ in G. sinensis under Salt Stress and the Effect of Exogenous Calcium
3.10. Effects of Exogenous Calcium on Plant Phenolic Compounds under Salt Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Harper, R.J.; Dell, B.; Ruprecht, J.K.; Sochacki, S.J.; Smettem, K. Salinity and the reclamation of salinized lands. In Soils and Landscape Restoration; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Zhang, W.-W.; Wang, C.; Xue, R.; Wang, L.-J. Effects of salinity on the soil microbial community and soil fertility. J. Integr. Agric. 2019, 18, 188–196. [Google Scholar] [CrossRef]
- Wang, Z.; Zhuang, J.; Zhao, A.; Li, X. Types, harms and improvement of saline soil in Songnen Plain. IOP Conf. Ser. Mater. Sci. Eng. 2018, 322, 52059. [Google Scholar] [CrossRef]
- Zhu, J.K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Hannan, M.A.; Saha, N.R.; Roy, S.K.; Woo, S.H.; Haque, M.S. Genetic Diversity Analysis and Molecular Screening for Salinity Tolerance in Wheat Germplasm. Plant Breed. Biotechnol. 2021, 9, 185–198. [Google Scholar] [CrossRef]
- Haque, M.A.; Rafii, M.Y.; Yusoff, M.M.; Ali, N.S.; Yusuff, O.; Datta, D.R.; Anisuzzaman, M.; Ikbal, M.F. Advanced Breeding Strategies and Future Perspectives of Salinity Tolerance in Rice. Agronomy 2021, 11, 1631. [Google Scholar] [CrossRef]
- Moez, H.; Chantal, E.; Mariama, N.; Laurent, L.; Khaled, M. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Front. Plant Sci. 2016, 7, 1787. [Google Scholar]
- Marriboina, S.; Attipalli, R.R. Optimization of hydroponic growth system and Na+-fluorescence measurements for tree species Pongamiapinnata (L.) pierre. MethodsX 2020, 7, 100809. [Google Scholar] [CrossRef]
- Rahman, A.; Hossain, M.S.; Mahmud, J.A.; Nahar, K.; Hasanuzzaman, M.; Fujita, M. Manganese-induced salt stress tolerance in rice seedlings: Regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiol. Mol. Biol. Plants 2016, 22, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Roussos, P.A.; Pontikis, C.A. Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro. J. Plant Physiol. 2007, 164, 895–903. [Google Scholar] [CrossRef]
- Boriboonkaset, T.; Theerawitaya, C.; Yamada, N.; Pichakum, A.; Supaibulwatana, K.; Cha-Um, S.; Takabe, T.; Kirdmanee, C. Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress. Protoplasma 2013, 250, 1157–1167. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Chen, K.C.; Cheng, T.S.; Lee, C.; Lin, S.H.; Tung, C.W. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biol. 2019, 19, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antal, T.; Konyukhov, I.; Volgusheva, A.; Plyusnina, T.; Khruschev, S.; Kukarskikh, G.; Goryachev, S.; Rubin, A. Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. Physiol. Plant. 2019, 165, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Krause, G.H.; Weis, E. Chlorophyll fluorescence as a tool in plant physiology. Photosynth. Res. 1984, 5, 139–157. [Google Scholar] [CrossRef]
- Dąbrowski, P.; Baczewska, A.H.; Pawluśkiewicz, B.; Paunov, M.; Alexantrov, V.; Goltsev, V.; Kalaji, M.H. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. J. Photochem. Photobiol. B Biol. 2016, 157, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Qiu, N.; Wang, B.; Zhang, J. Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. J. Exp. Bot. 2003, 54, 851–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardingham, G.E.; Bading, H. Calcium as a versatile second messenger in the control of gene expression. Microsc. Res. Tech. 1999, 46, 348–355. [Google Scholar] [CrossRef]
- Hongfei, Q.I. Review of the Research on Plant Stress Resistance. J. Anhui Agric. Sci. 2008, 36, 13943–13946. [Google Scholar]
- Tuna, A.L.; Kaya, C.; Ashraf, M.; Altunlu, H.; Yokas, I.; Yagmur, B. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ. Exp. Bot. 2007, 59, 173–178. [Google Scholar] [CrossRef]
- Koster, P.; Wallrad, L.; Edel, K.H.; Faisal, M.; Alatar, A.A.; Kudla, J. The battle of two ions: Ca2+ signalling against Na+ stress. Plant Biol. 2019, 21, 39–48. [Google Scholar] [CrossRef]
- Stueber, T.; Eberhardt, M.J.; Caspi, Y.; Lev, S.; Binshtok, A.; Leffler, A. Differential cytotoxicity and intracellular calcium-signalling following activation of the calcium-permeable ion channels TRPV1 and TRPA1. Cell Calcium 2017, 68, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.Q.; Yang, L.; Gao, S.; Zhu, W.F.; Huang, L.Q. The complete plastid genome sequence of Gleditsia sinensis, an ancient medicinal tree in China. Mitochondrial DNA Part B Resour. 2020, 5, 2859–2861. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, W.; Lei, F.; Li, P.; Jiang, J. Comparison and characterization of galactomannan at different developmental stages of Gleditsia sinensis Lam. Carbohydr. Polym. 2019, 223, 115127. [Google Scholar] [CrossRef]
- Zhang, J.P.; Tian, X.H.; Yang, Y.X.; Liu, Q.X.; Zhang, W.D. Gleditsia species: An ethnomedical, phytochemical and pharmacological review. J. Ethnopharmacol. 2016, 178, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.S.; Zeid, A.A.; Hawary, S.E.; Sleem, A.A.; Ashour, W.E. Flavonoid constituents, cytotoxic and antioxidant activities of Gleditsia triacanthos L. leaves. Saudi J. Biol. Sci. 2014, 21, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, J.; Wang, Y.; Abozeid, A.; Tian, D.M.; Zhang, X.N.; Tang, Z.H. The Different Resistance of Two Astragalus Plants to UV-B Stress is Tightly Associated with the Organ-specific Isoflavone Metabolism. Photochem. Photobiol. 2018, 94, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Liang, X.; Zhang, Y.; Dai, P.; Liang, B.; Li, J.; Sun, C.; Lin, X. Role of sucrose in modulating the low-nitrogen-induced accumulation of phenolic compounds in lettuce (Lactuca sativa L.). J. Sci. Food Agric. 2020, 100, 5412–5421. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Sytykiewicz, H.; Durak, R.; Borowiak-Sobkowiak, B.; Chrzanowski, G. Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiol. Biochem. 2017, 118, 529–540. [Google Scholar] [CrossRef]
- Ouhibi, C.; Attia, H.; Rebah, F.; Msilini, N.; Chebbi, M.; Aarrouf, J.; Urban, L.; Lachaal, M. Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiol. Biochem. 2014, 83, 126–133. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Sci. Rep. 2018, 8, 12349. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhong, H.; Zhu, L.; Yuan, Y.; Zhang, J. Arbuscular Mycorrhizal Fungi Effectively Enhances the Growth of Gleditsia sinensis Lam. Seedlings under Greenhouse Conditions. Forests 2019, 10, 567. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, P.S.; Sairam, R.K.; Shukla, D.S. Measurement of ion leakage as a screening technique for drought resistance in wheat genotypes. Indian J. Plant. Physiol. 1991, 24, 361–368. [Google Scholar]
- Jensen, C.R.; Jacobsen, S.-E.; Andersen, M.N.; Núñez, N.; Andersen, S.D.; Rasmussen, L.; Mogensen, V.O. Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. Eur. J. Agron. 2000, 13, 11–25. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Pamela, P.D.; Thorpe, T.A. Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Wellburn, A.R.; Lichtenthaler, H.K. Formulae and Program to Determine Total Carotenoids and Chlorophylls A and B of Leaf Extracts in Different Solvents. In Advances in Photosynthesis Research; Springer: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Suzuki, K.; Yamaji, N.; Costa, A.; Okuma, E.; Kobayashi, N.I.; Kashiwagi, T.; Katsuhara, M.; Wang, C.; Tanoi, K.; Murata, Y.; et al. OsHKT1;4-mediated Na(+) transport in stems contributes to Na(+) exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biol. 2016, 16, 22. [Google Scholar] [CrossRef] [Green Version]
- Yücel, N.; Heybet, E.H. Salicylic Acid and Calcium Treatments Improves Wheat Vigor, Lipids and Phenolics Under High Salinity. Acta Chim. Slov. 2016, 63, 738–746. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Gao, S.; Zhang, X.; Zhang, Z.; Khan, S.A. Impact of saline stress on the uptake of various macro and micronutrients and their associations with plant biomass and root traits in wheat. Plant Soil Environ. 2021, 67, 61–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Si, L.; Liu, N.; Yang, Y. Effects of tea polyphenols on the activities of antioxidant enzymes and the expression of related gene in the leaves of wheat seedlings under salt stress. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Javeed, H.M.R.; Ali, M.; Skalicky, M.; Nawaz, F.; Sabagh, A.E. Lipoic Acid Combined with Melatonin Mitigates Oxidative Stress and Promotes Root Formation and Growth in Salt-Stressed Canola Seedlings (Brassica napus L.). Molecules 2021, 26, 3147. [Google Scholar] [CrossRef]
- Shi, D.; Wang, D. Effects of various salt-alkaline mixed stresses on Aneurolepidium Chinense (Trin.) Kitag. Plant Soil 2005, 271, 15–26. [Google Scholar] [CrossRef]
- Kaya, C.; Ak, B.E.; Higgs, D.; Murillo-Amador, B. Influence of foliar-applied calcium nitrate on strawberry plants grown under salt-stressed conditions. Anim. Prod. Sci. 2002, 42, 631–636. [Google Scholar] [CrossRef]
- Shen, C.; Hu, Y.; Du, X.; Li, T.; Tang, H.; Wu, J. Salicylic acid induces physiological and biochemical changes in Torreyagrandis cv. Merrillii seedlings under drought stress. Trees 2014, 28, 961–970. [Google Scholar] [CrossRef]
- Khan, M.N.; Siddiqui, M.H.; Mohammad, F.; Naeem, M. Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide Biol. Chem. 2012, 27, 210–218. [Google Scholar] [CrossRef]
- Shao, Q.; Wang, H.; Guo, H.; Zhou, A.; Huang, Y.; Sun, Y.; Li, M.; Battista, J.R. Effects of Shade Treatments on Photosynthetic Characteristics, Chloroplast Ultrastructure, and Physiology of Anoectochilusroxburghii. PLoS ONE 2014, 9, e85996. [Google Scholar] [CrossRef] [PubMed]
- El-Esawi, M.A.; Alaraidh, I.A.; Alsahli, A.A.; Alamri, S.A.; Ali, H.M.; Alayafi, A.A. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol. Biochem. 2018, 132, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Feng, N.; Yu, M.; Li, Y.; Jin, D.; Zheng, D. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotoxicol. Environ. Saf. 2021, 220, 112369. [Google Scholar] [CrossRef]
- Sheng, S.; Guo, S.R.; Jin, S.; Yuan, L.Y. Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol. Plant. 2012, 146, 285–296. [Google Scholar]
- Li, M.; Zhang, K.; Yan, S.; Cui, H.; Cao, S.; Li, Y.; Xu, M. Growth, Physiology, and Transcriptional Analysis of Two Contrasting Carexrigescens Genotypes under Salt Stress Reveals Salt-Tolerance Mechanisms. J. Plant Physiol. 2018, 229, 77–88. [Google Scholar] [CrossRef]
- Zhang, C.; Ping, H.; Yu, Z.; Du, D.; Wei, P. Effect of exogenous Ca2+ and NO donor SNP on seed germination and antioxidase activities of Perilla frutescens seedlings under NaCl stress. China J. Chin. Mater. Medica 2010, 34, 3114–3119. [Google Scholar]
- Bao, S.W.; Tan, F. Effects of High Temperature on Taxus media Chlorophyll Fluorescence Parameters. J. Fujian For. Sci. Technol. 2009, 36, 64–68. [Google Scholar]
- Sun, J.; Zhang, W.; Lu, Z.; Liu, X. Chlorophyll Fluorescence Characteristics of Elaeagnus angustifolia L. and Grewia biloba G.Donvar. parviflora(Bge.)Hand.-Mazz.Seedlings under Drought Stress. Bull. Bot. Res. 2009, 29, 216–223. [Google Scholar]
- Huang, D.; Ma, M.; Wang, Q.; Zhang, M.; Jing, G.; Li, C.; Ma, F. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiol. Biochem. 2020, 149, 245–255. [Google Scholar] [CrossRef]
- Wei, L.I.; Zhao, Y.S.; Zhou, Z.Q.; Sun, G.Y.; Liu, T. Effects of Drought Stress and Rehydration on Chlorophyll Fluorescence Characteristics and Antioxidant Enzyme Activities in Leaves of Taxus cuspidata. J. Desert Res. 2012, 32, 112–116. [Google Scholar]
- Zhou, X.J.; Zhao, H.B.; Cheng-Cang, M.A. Effects of Silicon on Chlorophyll Fluorescence of Cucumber Seedlings Under Severe Drought Stress. Acta Agric. Boreali-Sin. 2007, 22, 79–81. [Google Scholar]
- Zhang, Q.T. Comparative Research on Diurnal Changes of the Chlorophyll Fluorescence Parameters of VitisamurensisRupr. “Zuoyouhong” and “Beibinghong”. J. Anhui Agric. Sci. 2010, 38, 9481–9490. [Google Scholar]
- Choi, W.G.; Miller, G.; Wallace, I.; Harper, J.; Mittler, R. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant J. Cell Mol. Biol. 2017, 90, 698. [Google Scholar] [CrossRef] [Green Version]
- Cramer, G.R.; Luchli, A.; Polito, V.S. Displacement of ca by na from the plasmalemma of root cells: A primary response to salt stress? Plant Physiol. 1985, 79, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Marriboina, S.; Sharma, K.; Sengupta, D.; Yadavalli, A.D.; Sharma, R.P.; Attipalli, R.R. Evaluation of high salinity tolerance in Pongamiapinnata (L.) Pierre by a systematic analysis of hormone-metabolic network. Physiol. Plant. 2021. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Shao, H.; Shao, C.; Chen, P.; Zhao, S.; Brestic, M.; Chen, X. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol. Plant. 2013, 35, 2867–2878. [Google Scholar] [CrossRef]
- Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol. 2015, 15, 170.
- Li, K.H.; Park, E.J.; Lee, H.S.; Khu, D.M.; Lim, H.T. Evaluation of Potato Varieties with High Antioxidant Activities by Measuring Phenolic Acids in Different Tuber Parts. J. Korean Soc. Hortic. Sci. 2006, 47, 126–131. [Google Scholar]
- Kısa, D.; Elmastaş, M.; Öztürk, L.; Kayır, Ö. Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl. Biol. Chem. 2016, 59, 813–820. [Google Scholar] [CrossRef]
- Zafari, S.; Sharifi, M.; Chashmi, N.A.; Mur, L.A. Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids. Plant Physiol. Biochem. 2016, 99, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poonam, R.K.; Bhardwaj, R.; Sirhindi, G. Castasterone regulated polyphenolic metabolism and photosynthetic system in Brassica juncea plants under copper stress. J. Pharmacogn. Phytochem. 2015, 4, 282–289. [Google Scholar]
- Ngadze, E.; Coutinho, T.A.; Icishahayo, D.; Van, D. Effect of calcium soil amendments on phenolic compounds and soft rot resistance in potato tubers. Crop Prot. 2014, 62, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Sidhu, G.P.S.; Araniti, F.; Bali, A.S.; Shahzad, B.; Tripathi, D.K.; Landi, M. The role of salicylic acid in plants exposed to heavy metals. Molecules 2020, 25, 540. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Wang, P.; Zhou, T.; Chen, Z.; Gu, Z.; Yang, R. Role of Ca2+ in phenolic compound metabolism of barley (Hordeum vulgare L.) sprouts under NaCl stress. J. Sci. Food Agric. 2019, 99, 5176–5186. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, P.; Pérez, L. Calcium ions promote the response of Citrus limon against fungal elicitors or wounding. Phytochemistry 1996, 42, 595–598. [Google Scholar] [CrossRef]
Treatments | Plant Height (cm) | Root Length (cm) | Fresh Weight of Plant (g) | Dry Weight of Plants (g) |
---|---|---|---|---|
CK | 15.73 ± 0.31 a | 18.58 ± 0.35 a | 2.15 ± 0.03 a | 0.45 ± 0.05 a |
S1 | 13.46 ± 0.61 b | 15.58 ± 0.33 b | 1.78 ± 0.11 b | 0.42 ± 0.04 a |
S2 | 12.79 ± 0.32 c | 16.51 ± 0.21 b | 1.61 ± 0.13 c | 0.38 ± 0.20 b |
S1 + C1 | 13.94 ± 0.22 ab | 17.24 ± 0.5 a | 1.88 ± 0.09 ab | 0.47 ± 0.12 a |
S1 + C2 | 14.33 ± 0.10 ab | 15.96 ± 0.36 b | 2.01 ± 0.15 a | 0.47 ± 0.08 a |
S1 + C3 | 14.55 ± 0.29 a | 16.26 ± 0.24 b | 1.79 ± 0.08 b | 0.45 ± 0.09 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Liu, Y.; Zhang, Y.; Liu, J.; Gul, Z.; Guo, X.-R.; Abozeid, A.; Tang, Z.-H. Effects of Exogenous Calcium on Adaptive Growth, Photosynthesis, Ion Homeostasis and Phenolics of Gleditsia sinensis Lam. Plants under Salt Stress. Agriculture 2021, 11, 978. https://doi.org/10.3390/agriculture11100978
Guo Y, Liu Y, Zhang Y, Liu J, Gul Z, Guo X-R, Abozeid A, Tang Z-H. Effects of Exogenous Calcium on Adaptive Growth, Photosynthesis, Ion Homeostasis and Phenolics of Gleditsia sinensis Lam. Plants under Salt Stress. Agriculture. 2021; 11(10):978. https://doi.org/10.3390/agriculture11100978
Chicago/Turabian StyleGuo, Yun, Yang Liu, Yan Zhang, Jia Liu, Zarmina Gul, Xiao-Rui Guo, Ann Abozeid, and Zhong-Hua Tang. 2021. "Effects of Exogenous Calcium on Adaptive Growth, Photosynthesis, Ion Homeostasis and Phenolics of Gleditsia sinensis Lam. Plants under Salt Stress" Agriculture 11, no. 10: 978. https://doi.org/10.3390/agriculture11100978
APA StyleGuo, Y., Liu, Y., Zhang, Y., Liu, J., Gul, Z., Guo, X.-R., Abozeid, A., & Tang, Z.-H. (2021). Effects of Exogenous Calcium on Adaptive Growth, Photosynthesis, Ion Homeostasis and Phenolics of Gleditsia sinensis Lam. Plants under Salt Stress. Agriculture, 11(10), 978. https://doi.org/10.3390/agriculture11100978