Hyperspectral Characteristics and Scale Effects of Leaf and Canopy of Summer Maize under Continuous Water Stresses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Observation Items
2.2.1. Leaf Area
2.2.2. Leaf Fresh Weight and Dry Weight
2.2.3. Leaf Equivalent Water Thickness
2.2.4. Dry Matter Content
2.2.5. Chlorophyll Content
2.2.6. Canopy Spectral Reflectance
2.2.7. Leaf Spectral Reflectance
2.3. Vegetation Index
2.4. Statistical Analysis
3. Results and Discussion
3.1. Hyperspectral Characteristics of Summer Maize at Different Growth Stages
3.1.1. Variation Characteristics of Leaf Spectrum
3.1.2. Variation Characteristics of Canopy Spectrum
3.2. Spectral Reflectance Characteristics of Maize Leaf and Soil under Continuous Water Stresses
3.3. Influences of Different Canopy Characteristics on Spectral Reflectance
3.3.1. The Impact of LAI on the Spectral Characteristics of the Leaf-Canopy Scale
3.3.2. The Impact of LIA on the Spectral Characteristics of Leaf-Canopy Scale
3.4. Effects of Canopy Characteristics on Vegetation Index of Summer Maize under Continuous Water Stresses
3.4.1. Effects of Different LAI on Vegetation Index
3.4.2. Effects of Different LIA on Vegetation Index
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pocketbook. World Food and Agriculture; FAO: Rome, Italy, 2015. [Google Scholar]
- FAO. FAOSTAT-Agriculture Database. 2014. Available online: http://faostat.fao.org/site/339/default.aspx (accessed on 14 October 2021).
- Zhang, F.; Cui, Z.; Fan, M.; Zhang, W.; Chen, X.; Jiang, R. Integrated soil-crop system management: Reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. J. Environ. Qual. 2011, 40, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shen, S.; Lv, H.; Han, Y.; Chu, R.; Sha, X. Thermal resources and summer maize temperature suitability in the Huang-Huai-Hai region under future climate change. Trans. Atmos. Sci. 2016, 39, 391–399. [Google Scholar]
- Farré, I.; Faci, J.M. Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Agric. Water Manag. 2009, 96, 383–394. [Google Scholar] [CrossRef]
- Zaidi, P.H.; Rafique, S.; Rai, P.K.; Singh, N.N.; Srinivasan, G. Tolerance to excess moisture in maize (Zea mays L.): Susceptible crop stages and identification of tolerant genotypes. Field Crop. Res. 2004, 90, 189–202. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, B.; Zheng, Y.; Ma, K.; Xu, S.; Qiu, F. Screening methods for waterlogging tolerance at maize (Zea mays L.) seedling stage. Agric. Sci. China 2010, 9, 362–369. [Google Scholar] [CrossRef]
- Haylock, M.; Nicholls, N. Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910–1998. Int. J. Climatol. 2000, 20, 1533–1541. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Singh, V.P.; Xiao, M. Spatio-temporal relations between temperature and precipitation regimes: Implications for temperature-induced changes in the hydrological cycle. Glob. Planet Chang. 2013, 111, 57–76. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Kong, D.; Chen, X. Spatiotemporal behavior of floods and droughts and their impacts on agriculture in China. Glob. Planet Chang. 2015, 131, 63–72. [Google Scholar] [CrossRef]
- Gerhards, M.; Rock, G.; Schlerf, M.; Udelhoven, T. Water stress detection in potato plants using leaf temperature, emissivity, and reflectance. Int. J. Appl. Earth Obs. 2016, 53, 27–39. [Google Scholar] [CrossRef]
- Liu, F.; Shen, S.; Yang, B.; Tao, S. Spectral Monitoring Model of Leaf/Canopy Stomatal Conductance in Maize under Different Soil Moisture Treatments. Chin. J. Agrometeorol. 2013, 34, 727–732. [Google Scholar]
- Ashraf, M.; Habib-ur-Rehman. Interactive effects of nitrate and long-term waterlogging on growth, water relations, and gaseous exchange properties of maize (Zea mays L.). Plant Sci. 1999, 144, 35–43. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, J.; Li, X.; Fan, X.; Dong, S.; Liu, P.; Zhao, B. Effects of waterlogging on the yield and growth of summer maize under field conditions. Can. J. Plant Sci. 2014, 94, 23–31. [Google Scholar] [CrossRef]
- Valliyodan, B.; Ye, H.; Song, L.; Murphy, M.; Shannon, J.G.; Nguyen, H.T. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans. J. Exp. Bot. 2016, 68, 1835–1849. [Google Scholar] [CrossRef] [Green Version]
- Grzesiak, S.; Hura, T.; Grzesiak, M.T.; Piefikowski, S. The impact of limited soil moisture and waterlogging stress conditions on morphological and anatomical root traits in maize (Zea mays L.) hybrids of different drought tolerance. Acta Physiol. Plant. 1999, 21, 305–315. [Google Scholar] [CrossRef]
- Mutava, R.N.; Prince, S.J.K.; Syed, N.H.; Song, L.; Valliyodan, B.; Chen, W.; Nguyen, H.T. Understanding abiotic stress tolerance mechanisms in soybean: A comparative evaluation of soybean response to drought and flooding stress. Plant Physiol. Biochem. 2015, 86, 109–120. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Iijima, M. Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species. Plant Prod. Sci. 2005, 8, 454–460. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y. Prospects on future developments of quantitative remote sensing. Acta Geogr. Sin. 2013, 68, 1163–1169. [Google Scholar]
- Li, X.; Wang, J.; Strahler, A.H. Scaling effects and geometric-optical modeling used for scale correction. Sci. China 2000, 30, 12–17. [Google Scholar]
- Lichtenthaler, H.K.; Welburn, A.R. Determination of Total Carotenoids and Chlorophylls a and b of Extracts in Different Solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.; Chen, J.M.; Yu, H.; Chen, B.; Zhang, X.; Croft, H.; Khalid, S.; Li, M.; Shi, Q. Canopy-Level Photochemical Reflectance Index from Hyperspectral Remote Sensing and Leaf-Level Non-Photochemical Quenching as Early Indicators of Water Stress in Maize. Remote Sens. 2017, 9, 794. [Google Scholar] [CrossRef] [Green Version]
- Seelig, H.D.; Hoehn, A.; Stodieck, L.S.; Klaus, D.M.; Iii, W.W.A.; Emery, W.J. Relations of remote sensing leaf water indices to leaf water thickness in cowpea, bean, and sugarbeet plants. Remote Sens. Environ. 2008, 112, 445–455. [Google Scholar] [CrossRef]
- Li, M.; Chu, R.; Yu, Q.; Islam, A.R.M.T.; Chou, S.; Shen, S. Evaluating Structural, Chlorophyll-Based and Photochemical Indices to Detect Summer Maize Responses to Continuous Water Stress. Water 2018, 10, 500. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, C.; Guo, X.; Tian, Q. Study on the Water Status of the Wheat Leaves Diagnosed by the Spectral Reflectance. Sci. Agric. Sin. 2001, 34, 1–4. [Google Scholar]
- Wang, J.; Zhao, C.; Guo, X.; Huang, W.; Tian, Q. Study on the Water Content of Wheat Leaves by the Remote Sensing. Acta Agric. Boreali Sin. 2000, 15, 68–72. [Google Scholar]
- Cheng, T.; Rivard, B.; Sánchez-Azofeifa, G.A. Spectroscopic determination of leaf water content using continuous wavelet analysis. In Proceedings of the Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 659–670. [Google Scholar]
- Fang, M.; Ju, W. A Inversion Model for Remote Sensing of Leaf Water Content Based on the Leaf Optical Property. Spectrosc. Spect. Anal. 2015, 35, 167–171. [Google Scholar]
- Hunt, E.R., Jr.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. 2013, 21, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Bi, Y.; Li, S.; Chen, S.; Feng, Y.; Yu, H. Hyperspectral estimation of leaf chlorophyll content in mycorrhizal inoculated soybean under drought stress. Trans. Chin. Soc. Agric. Eng. 2014, 30, 123–131. [Google Scholar]
- Song, L.; Jin, J. Improving CERES-Maize for simulating maize growth and yield under water stress conditions. Eur. J. Agron. 2020, 117, 126072. [Google Scholar] [CrossRef]
- Wang, B.; Li, Z.; Eneji, E.; Tian, X.; Zhai, Z.; Li, J.; Duan, L. Effects of Coronatine on Growth, Gas Exchange Traits, Chlorophyll Content, Antioxidant Enzymes and Lipid Peroxidation in Maize (Zea mays L.) Seedlings under Simulated Drought Stress. Plant Prod. Sci. 2008, 11, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Zygielbaum, A.I.; Gitelson, A.A.; Arkebauer, T.J.; Rundquist, D.C. Non-destructive detection of water stress and estimation of relative water content in maize. Geophys. Res. Lett. 2009, 36, L12403. [Google Scholar] [CrossRef] [Green Version]
- Bonham-Carter, G.F. Numerical procedures and computer program for fitting an inverted gaussian model to vegetation reflectance data. Comput. Geosci. 1988, 14, 339–356. [Google Scholar] [CrossRef]
- Mille, J.; Hare, E.; Wu, J. Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model. Int. J. Remote Sens. 1990, 11, 1755–1773. [Google Scholar] [CrossRef]
- Li, Y.; Demetriades-Shah, T.H.; Kanemasu, E.T.; Shultis, J.K.; Kirkham, M.B. Use of second derivatives of canopy reflectance for monitoring prairie vegetation over different soil backgrounds. Remote Sens. Environ. 1993, 44, 81–87. [Google Scholar] [CrossRef]
- Dawson, T.P.; Curran, P.J.; Plummer, S.E. LIBERTY-Modeling the Effects of Leaf Biochemical Concentration on Reflectance Spectra. Remote Sens. Environ. 1998, 65, 50–60. [Google Scholar] [CrossRef]
- Feng, R.; Zhang, Y.; Yu, W.; Hu, W.; Wu, J.; Ji, R.; Wang, H.; Zhao, X. Analysis of the relationship between the spectral characteristics of maize canopy and leaf area index under drought stress. Acta Ecol. Sin. 2013, 33, 301–307. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of Canopy Water Content by Means of Hyperspectral Indices Based on Drought Stress Gradient Experiments of Maize in the North Plain China. Remote Sens. 2015, 7, 15203–15223. [Google Scholar] [CrossRef] [Green Version]
- Jong, S.M.d.; Addink, E.A.; Doelman, J.C. Detecting leaf-water content in Mediterranean trees using high-resolution spectrometry. Int. J. Appl. Earth Obs. 2014, 27, 128–136. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Zhou, D.M.; Gong, H.L.; Zhao, W.J. Sensitivity of canopy reflectance to biochemical and biophysical variables. J. Remote Sens. 2015, 19, 368–374. [Google Scholar]
- He, J.; Liu, B.; Li, J. Monitoring model of leaf area index of winter wheat based on hyperspectral reflectance at different growth stages. Trans. Chin. Soc. Agric. Eng. 2014, 30, 141–150. [Google Scholar]
- Dian, Y.Y.; Fang, S.H. Simulation analysis of vegetation TOA reflectance based on coupled leaf-canopy-atmosphere radiative transfer model. Remote. Sens. Land Resour. 2013, 25, 30–37. [Google Scholar]
- Zeng, Q.; Yu, K.Y.; Yao, X.; Zheng, W.Y.; Zhang, J.Z.; Ai, J.W.; Liu, J. Research on canopy reflectance modeling of Phyllostachys pubescens forest based on the PROSAIL canopy radiative transfer model. Plant Sci. J. 2017, 35, 699–707. [Google Scholar]
- Li, S.; Wang, C. The Methods of Obtaining and Expressing Information of Crop Plant Shape and Population Structure. J. Shihezi Univ. 1997, 1, 250–256. [Google Scholar]
- Stewart, D.W.; Costa, C.; Dwyer, L.M.; Smith, D.L.; Hamilton, R.I.; Ma, B.L. Canopy Structure, Light Interception, and Photosynthesis in Maize. Agron. J. 2003, 95, 1456–1474. [Google Scholar] [CrossRef]
- Su, W.; Guo, H.; Zhao, D.; Liu, T.; Zhang, M. Leaf Area Index Retrieval for Maize Canopy Using Optimized Leaf Angle Distribution Function of PROSAIL Model. Trans. Chin. Soc. Agric. Mach. 2016, 47, 234–241. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z. Improvement in Linearity Between Hyperspectral Vegetation Indices and Chlorophyll Content, Leaf Area Index Based on Radiative Transfer Models. Chin. Bull. Bot. 2008, 25, 714–721. [Google Scholar]
- Su, L.; Li, X.; Huang, Y. An review on scale in remote sensing. Adv. Earth Sci. 2001, 16, 544–548. [Google Scholar]
- Song, C.; Chen, C.; Shi, P. Geography complexity: New connotations of geography in the new era. Acta Geogr. Sin. 2018, 73, 1204–1213. [Google Scholar]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Wan, H.; Wang, J.; Qu, Y.; Jiao, Z.; Zhang, H. Preliminary research on scale effect and scaling-up of the vagetation spectrum. J. Remote Sens. 2008, 12, 538–545. [Google Scholar]
- Tian, Y.H.; Wang, Y.J. Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions. Remote Sens. Environ. 2003, 84, 143–159. [Google Scholar] [CrossRef]
- Zhang, W.C.; Zhong, S.; Hu, S.Y. Spatial scale transferring study on Leaf Area Index derived from remotely sensed data in the Heihe River Basin, China. Acta Ecol. Sin. 2008, 28, 2495–2503. [Google Scholar]
- Garrigues, S.; Allard, B.D.; Baret, F. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing date. Remote Sens. Environ. 2006, 105, 286–298. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, Y.; Jing, L.; Wen, D. The impact of spatial resolution on NDVI over heterogeneous surface. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005. [Google Scholar]
- Tittebrand, A.; Spank, U.; Bernhofer, C.H. Comparison of satellite- and ground-based NDVI above different land-use types. Theor. Appl. Climatol. 2009, 98, 171–186. [Google Scholar] [CrossRef]
- Liang, S. Quantitative Remote Sensing; Science Press: Beijing, China, 2009. [Google Scholar]
Water Treatment | Vegetative Stage (ST1) | Tasseling-Silking Stage (ST2) | Maturity Stage (ST3) | ||||
---|---|---|---|---|---|---|---|
Seeding | Jointing | Tasseling | Anthesis | Silking | Milk-Ripe | Mature | |
W1 | 80–90 | 35–45 | 35–45 | 35–45 | 35–45 | 35–45 | 35–45 |
W2 | 80–90 | 50–60 | 50–60 | 50–60 | 50–60 | 50–60 | 50–60 |
W3 | 80–90 | 65–75 | 65–75 | 65–75 | 65–75 | 65–75 | 65–75 |
W4 | 80–90 | 80–90 | 80–90 | 80–90 | 80–90 | 80–90 | 80–90 |
W5 | 80–90 | 95–105 | 95–105 | 95–105 | 95–105 | 95–105 | 95–105 |
Input Parameters | W1 | W2 | W3 | W4 | W5 |
---|---|---|---|---|---|
Chlorophyll A + B content (µg/cm2) | 30 | 42 | 51 | 58 | 52 |
Leaf equivalent water thickness (g/cm2) | 0.0138 | 0.015 | 0.0147 | 0.017 | 0.0146 |
Dry matter content (g/cm2) | 0.0049 | 0.0046 | 0.0043 | 0.0038 | 0.0036 |
Leaf structure parameter (N) | 1.5 |
Model | Parameters | W1 | W2 | W3 | W4 | W5 |
---|---|---|---|---|---|---|
Prospect | Chlorophyll A + B content (µg/cm²) | 30 | 42 | 51 | 58 | 52 |
Leaf equivalent water thickness (g/cm²) | 0.0138 | 0.015 | 0.0147 | 0.017 | 0.0146 | |
Dry matter content (g/cm²) | 0.0049 | 0.0046 | 0.0043 | 0.0038 | 0.0036 | |
Leaf structure parameter (N) | 1.5 | |||||
Sail | LAI | 0.50, 0.80, 1.00, 1.50, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00 | ||||
LIA (°) | 45 | |||||
Latitude (°) | 32 | |||||
Sun declination angle (°) | 0 | |||||
Observe zenith angle (°) | 0 | |||||
View azimuth angle (°) | 0 |
Model | Parameters | W1 | W2 | W3 | W4 | W5 |
---|---|---|---|---|---|---|
Prospect | Chlorophyll A + B content (µg/cm²) | 30 | 42 | 51 | 58 | 52 |
Leaf equivalent water thickness (g/cm²) | 0.0138 | 0.015 | 0.0147 | 0.017 | 0.0146 | |
Dry matter content (g/cm²) | 0.0049 | 0.0046 | 0.0043 | 0.0038 | 0.0036 | |
Leaf structure parameter (N) | 1.5 | |||||
Sail | LAI | 1, 4 | ||||
LIA (°) | 25, 35, 45, 55, 65, 75 | |||||
Latitude (°) | 32 | |||||
Sun declination angle (°) | 0 | |||||
Observe zenith angle (°) | 0 | |||||
View azimuth angle (°) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Chu, R.; Sha, X.; Ni, F.; Xie, P.; Shen, S.; Islam, A.R.M.T. Hyperspectral Characteristics and Scale Effects of Leaf and Canopy of Summer Maize under Continuous Water Stresses. Agriculture 2021, 11, 1180. https://doi.org/10.3390/agriculture11121180
Li M, Chu R, Sha X, Ni F, Xie P, Shen S, Islam ARMT. Hyperspectral Characteristics and Scale Effects of Leaf and Canopy of Summer Maize under Continuous Water Stresses. Agriculture. 2021; 11(12):1180. https://doi.org/10.3390/agriculture11121180
Chicago/Turabian StyleLi, Meng, Ronghao Chu, Xiuzhu Sha, Feng Ni, Pengfei Xie, Shuanghe Shen, and Abu Reza Md. Towfiqul Islam. 2021. "Hyperspectral Characteristics and Scale Effects of Leaf and Canopy of Summer Maize under Continuous Water Stresses" Agriculture 11, no. 12: 1180. https://doi.org/10.3390/agriculture11121180
APA StyleLi, M., Chu, R., Sha, X., Ni, F., Xie, P., Shen, S., & Islam, A. R. M. T. (2021). Hyperspectral Characteristics and Scale Effects of Leaf and Canopy of Summer Maize under Continuous Water Stresses. Agriculture, 11(12), 1180. https://doi.org/10.3390/agriculture11121180