The Effect of Dried Grape Pomace Feeding on Nutrients Digestibility and Serum Biochemical Profile of Wethers
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Materials Animals and Housing
2.2. Feeding and Experimental Design
2.3. Blood Sampling and Analyses
2.4. Feed and Feces Collection, Analysis and Determination of Digestibility
2.5. Statistical Analysis
3. Results and Discussion
3.1. Nutrient Digestibility
3.2. Mineral Profile
3.3. Energetic Profile
3.4. Nitrogen Profile
3.5. Enzymatic Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Domínguez, J.; Martínez-Cordeiro, H.; Lores, M. Earthworms and grape marc: Simultaneous production of a high-quality biofertilizer and bioactive-rich seeds. In Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; Intech: London, UK, 2016; pp. 167–183. [Google Scholar]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of Grape Pomace: An Approach That Is Increasingly Reaching Its Maturity—A Review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Yan, L.; Kim, I. Effect of Dietary Grape Pomace Fermented by Saccharomyces Boulardii on the Growth Performance, Nutrient Digestibility and Meat Quality in Finishing Pigs. Asian-Australas. J. Anim. Sci. 2011, 24, 1763–1770. [Google Scholar] [CrossRef]
- Eleonora, N.; Dobrei, A.; Alina, D.; Bampidis, V.; Valeria, C. Grape Pomace in Sheep and Dairy Cows Feeding. J. Hortic. For. Biotechnol. 2014, 18, 146–150. [Google Scholar]
- Abarghuei, M.; Rouzbehan, Y.; Alipour, D. The Effect of Tannins in Grape Pomace and Oak Leaf on the in Vitro Organic Matter Digestibility and in Situ Disappearance of Sheep. Iran. J. Appl. Anim. Sci. 2015, 5, 95–103. [Google Scholar]
- Lichovnikova, M.; Kalhotka, L.; Adam, V.; Klejdus, B.; Anderle, V. The Effects of Red Grape Pomace Inclusion in Grower Diet on Amino Acid Digestibility, Intestinal Microflora, and Sera and Liver Antioxidant Activity in Broilers. Turk. J. Vet. Anim. Sci. 2015, 39, 406–412. [Google Scholar] [CrossRef]
- Nudda, A.; Buffa, G.; Atzori, A.; Cappai, M.; Caboni, P.; Fais, G.; Pulina, G. Small Amounts of Agro-Industrial Byproducts in Dairy Ewes Diets Affects Milk Production Traits and Hematological Parameters. Anim. Feed Sci. Technol. 2019, 251, 76–85. [Google Scholar] [CrossRef]
- Kolláthová, R.; Gálik, B.; Halo, M.; Kováčik, A.; Hanušovský, O.; Bíro, D.; Rolinec, M.; Juráček, M.; Šimko, M. The Effects of Dried Grape Pomace Supplementation on Biochemical Blood Serum Indicators and Digestibility of Nutrients in Horses. Czech J. Anim. Sci. 2020, 65, 58–65. [Google Scholar] [CrossRef]
- Pirmohammadi, R.; Golgasemgarebagh, A.; Azari, A.M. Effects of Ensiling and Drying of White Grape Pomace on Chemical Composition, Degradability and Digestibility for Ruminants. J. Anim. Vet. Adv. 2007, 6, 1079–1082. [Google Scholar]
- Winkler, A.; Weber, F.; Ringseis, R.; Eder, K.; Dusel, G. Determination of Polyphenol and Crude Nutrient Content and Nutrient Digestibility of Dried and Ensiled White and Red Grape Pomace Cultivars. Arch. Anim. Nutr. 2015, 69, 187–200. [Google Scholar] [CrossRef]
- Guerra-Rivas, C.; Gallardo, B.; Mantecón, Á.R.; del Álamo-Sanza, M.; Manso, T. Evaluation of Grape Pomace from Red Wine By-Product as Feed for Sheep. J. Sci. Food Agric. 2017, 97, 1885–1893. [Google Scholar] [CrossRef]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel Application and Industrial Exploitation of Winery By-Products. Bioresour. Bioproc. 2018, 5, 1–21. [Google Scholar] [CrossRef]
- Brindza, J.; Ivanisova, E.; Grygorieva, O.; Abrahamova, V.; Schubertova, Z.; Abrahamova, V. Antioxidants from Plants in Human Nutrition and Improving of Health. Acupunct. Nat. Med. 2015, 2, 40. [Google Scholar]
- Kerasioti, E.; Terzopoulou, Z.; Komini, O.; Kafantaris, I.; Makri, S.; Stagos, D.; Gerasopoulos, K.; Anisimov, N.Y.; Tsatsakis, A.M.; Kouretas, D. Tissue Specific Effects of Feeds Supplemented with Grape Pomace or Olive Oil Mill Wastewater on Detoxification Enzymes in Sheep. Toxicol. Rep. 2017, 4, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Q.; Zhang, R.; Liu, W.; Ren, Y.; Zhang, C.; Zhang, J. Effect of Dietary Grape Pomace on Growth Performance, Meat Quality and Antioxidant Activity in Ram Lambs. Anim. Feed Sci. Technol. 2018, 236, 76–85. [Google Scholar] [CrossRef]
- Foiklang, S.; Wanapat, M.; Norrapoke, T. Influence of Grape Pomace Powder as a Feed Supplement on Feed Intake, Digestibility and Rumen Ecology of Dairy Steers. Khon Kaen Agric. J. 2016, 44, 147–154. [Google Scholar]
- Sinz, S.; Kunz, C.; Liesegang, A.; Braun, U.; Marquardt, S.; Soliva, C.R.; Kreuzer, M. In Vitro Bioactivity of Various Pure Flavonoids in Ruminal Fermentation, with Special Reference to Methane Formation. Czech J. Anim. Sci. 2018, 63, 293–304. [Google Scholar]
- Alipour, D.; Rouzbehan, Y. Effects of Several Levels of Extracted Tannin from Grape Pomace on Intestinal Digestibility of Soybean Meal. Livest. Sci. 2010, 128, 87–91. [Google Scholar] [CrossRef]
- Bahrami, Y.; Foroozandeh, A.-D.; Zamani, F.; Modarresi, M.; Eghbal-Saeid, S.; Chekani-Azar, S. Effect of Diet with Varying Levels of Dried Grape Pomace on Dry Matter Digestibility and Growth Performance of Male Lambs. J. Anim. Plant Sci. 2010, 6, 605–610. [Google Scholar]
- Dias, I.R.; Viegas, C.A.; Silva, A.; Pereira, H.; Sousa, C.; Carvalho, P.; Cabrita, A.; Fontes, P.J.; Silva, S.; Azevedo, J.M.T.D. Haematological and Biochemical Parameters in Churra-Da-Terra-Quente Ewes from the Northeast of Portugal. Arq. Bras. De Med. Veterinária E Zootec. 2010, 62, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Šimpraga, M.; Šmuc, T.; Matanović, K.; Radin, L.; Shek-Vugrovečki, A.; Ljubičić, I.; Vojta, A. Reference Intervals for Organically Raised Sheep: Effects of Breed, Location and Season on Hematological and Biochemical Parameters. Small Rumin. Res. 2013, 112, 1–6. [Google Scholar] [CrossRef]
- Bhat, S.A.; Mir, M.R.; Reshi, A.A.; Ahmad, S.B.; Husain, I.; Bashir, S.; Khan, H.M. Impact of Age and Gender on Some Blood Biochemical Parameters of Apparently Healthy Small Ruminants of Sheep and Goats in Kashmir Valley India. Int. J. Agric. Sci. Vet. Med. 2014, 2, 22–27. [Google Scholar]
- Lipińska, P.; Atanasov, A.G.; Palka, M.; Jóźwik, A. Chokeberry Pomace as a Determinant of Antioxidant Parameters Assayed in Blood and Liver Tissue of Polish Merino and Wrzosówka Lambs. Molecules 2017, 22, 1461. [Google Scholar] [CrossRef] [Green Version]
- Shek Vugrovečki, A.; Vojta, A.; Šimpraga, M. Establishing Reference Intervals for Haematological and Biochemical Blood Variables in Lika Pramenka Sheep. Vet. Arh. 2017, 87, 487–499. [Google Scholar] [CrossRef]
- Chedea, V.S.; Pelmus, R.S.; Lazar, C.; Pistol, G.C.; Calin, L.G.; Toma, S.M.; Dragomir, C.; Taranu, I. Effects of a Diet Containing Dried Grape Pomace on Blood Metabolites and Milk Composition of Dairy Cows. J. Sci. Food Agric. 2017, 97, 2516–2523. [Google Scholar] [CrossRef]
- Iannaccone, M.; Elgendy, R.; Giantin, M.; Martino, C.; Giansante, D.; Ianni, A.; Dacasto, M.; Martino, G. RNA Sequencing-Based Whole-Transcriptome Analysis of Friesian Cattle Fed with Grape Pomace-Supplemented Diet. Animals 2018, 8, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alba, D.F.; Campigotto, G.; Cazarotto, C.J.; Dos Santos, D.S.; Gebert, R.R.; Reis, J.H.; Souza, C.F.; Baldissera, M.D.; Gindri, A.L.; Kempka, A.P.; et al. Use of Grape Residue Flour in Lactating Dairy Sheep in Heat Stress: Effects on Health, Milk Production and Quality. J. Therm. Biol. 2019, 82, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Gálik, B.; Bíro, D.; Marko, H.; Juráček, M.; Šimko, M.; Vaščáková, V.; Rolinec, M. The Effect of Phytoadditives on Macroelements Digestibility of Sport Horses. J. Cent. Eur. Agric. 2011, 12, 390–397. [Google Scholar] [CrossRef]
- Šimko, M.; Čerešňáková, Z.; Bíro, D.; Juráček, M.; Gálik, B.; Straková, E.; France, J.; Alzahal, O.; McBride, B. Influence of Wheat and Maize Starch on Fermentation in the Rumen, Duodenal Nutrient Flow and Nutrient Digestibility. Acta Vet. Brno 2011, 79, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Rolinec, M.; Bíro, D.; Gálik, B.; Šimko, M.; Juráček, M. Effect of Phytoadditives on Sow Reproductive Efficiency. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 1907–1914. [Google Scholar]
- Gálik, B.; Bíro, D.; Šimko, M.; Juráček, M.; Capcarová, M.; Kolesárová, A.; Rolinec, M.; Toman, R.; Kanka, T. The Effect of Dietary Bee Pollen Intake on Growth Performance and Biochemical Indicators of Rats. Acta Vet. Brno 2016, 85, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Kovacik, A.; Gasparovic, M.; Tvrda, E.; Tokarova, K.; Kovacikova, E.; Rolinec, M.; Rumanova, L.; Capcarova, M.; Galik, B. Effects of Humic Acid Diet on the Serum Biochemistry and Oxidative Status Markers in Pheasants. Veterinární Med. 2020, 65, 258–268. [Google Scholar] [CrossRef]
- Dupak, R.; Kovac, J.; Kalafova, A.; Kovacik, A.; Tokarova, K.; Hascik, P.; Simonova, N.; Kacaniova, M.; Mellen, M.; Capcarova, M. Supplementation of Grape Pomace in Broiler Chickens Diets and Its Effect on Body Weight, Lipid Profile, Antioxidant Status and Serum Biochemistry. Biologia 2021, 76, 2511–2518. [Google Scholar] [CrossRef]
- Rolinec, M.; Bíro, D.; Šimko, M.; Juráček, M.; Hanušovskỳ, O.; Schubertová, Z.; Chadimová, L.; Gálik, B. Grape Pomace Ingestion by Dry Cows Does Not Affect the Colostrum Nutrient and Fatty Acid Composition. Animals 2021, 11, 1633. [Google Scholar] [CrossRef] [PubMed]
- Vašeková, P.; Juráček, M.; Bíro, D.; Šimko, M.; Gálik, B.; Rolinec, M.; Hanušovskỳ, O.; Kolláthová, R.; Ivanišová, E. Bioactive Compounds and Fatty Acid Profile of Grape Pomace. Acta Fytotechn. Zootech. 2020, 23, 230–235. [Google Scholar] [CrossRef]
- Massanyi, P.; Stawarz, R.; Halo, M.; Formicki, G.; Lukac, N.; Cupka, P.; Schwarcz, P.; Kovacik, A.; Tusimova, E.; Kovacik, J. Blood Concentration of Copper, Cadmium, Zinc and Lead in Horses and Its Relation to Hematological and Biochemical Parameters. J. Environ. Sci. Health Part A 2014, 49, 973–979. [Google Scholar] [CrossRef]
- Kovacik, A.; Arvay, J.; Tusimova, E.; Harangozo, L.; Tvrda, E.; Zbynovska, K.; Cupka, P.; Andrascikova, S.; Tomas, J.; Massanyi, P. Seasonal Variations in the Blood Concentration of Selected Heavy Metals in Sheep and Their Effects on the Biochemical and Hematological Parameters. Chemosphere 2017, 168, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kovacik, A.; Tvrda, E.; Miskeje, M.; Arvay, J.; Tomka, M.; Zbynovska, K.; Andreji, J.; Hleba, L.; Kovacikova, E.; Fik, M.; et al. Trace Metals in the Freshwater Fish Cyprinus Carpio: Effect to Serum Biochemistry and Oxidative Status Markers. Biol. Trace Elem. Res. 2019, 188, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Kishi, Y.; Oishi, K.; Hirooka, H.; Kumagai, H. Effects of Feeding Polyphenol-Rich Winery Wastes on Digestibility, Nitrogen Utilization, Ruminal Fermentation, Antioxidant Status and Oxidative Stress in Wethers. Anim. Sci. J. 2015, 86, 260–269. [Google Scholar] [CrossRef]
- Abarghuei, M.; Rouzbehan, Y.; Alipour, D. The Influence of the Grape Pomace on the Ruminal Parameters of Sheep. Livest. Sci. 2010, 132, 73–79. [Google Scholar] [CrossRef]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta-Analysis of the Relationship between Dietary Tannin Level and Methane Formation in Ruminants from in Vivo and in Vitro Experiments. J. Anim. Physiol. Anim. Nutr. 2012, 96, 365–375. [Google Scholar] [CrossRef]
- Bahrami, Y.; Chekani-Azar, S. Some Blood Biochemical Parameters and Yield of Lambs Fed Ration Contained Dried Grape Pomace. Glob. Vet. 2010, 4, 571–575. [Google Scholar]
- Baumgärtel, T.; Kluth, H.; Epperlein, K.; Rodehutscord, M. A Note on Digestibility and Energy Value for Sheep of Different Grape Pomace. Small Rumin. Res. 2007, 67, 302–306. [Google Scholar] [CrossRef]
- Tayengwa, T.; Chikwanha, O.C.; Raffrenato, E.; Dugan, M.E.; Mutsvangwa, T.; Mapiye, C. Comparative Effects of Feeding Citrus Pulp and Grape Pomace on Nutrient Digestibility and Utilization in Steers. Animal 2021, 15, 100020. [Google Scholar] [CrossRef]
- Pavlata, L.; Misurova, L.; Pechova, A.; Husakova, T.; Dvorak, R. Direct and Indirect Assessment of Selenium Status in Sheep-a Comparison. Veterinární Med. 2012, 57, 219–223. [Google Scholar] [CrossRef] [Green Version]
- James, L.F. Serum Electrolyte, Acid-Base Balance, and Enzyme Changes in Acute Halogeton Glomeratus Poisoning in Sheep. Can. J. Comp. Med. 1968, 32, 539. [Google Scholar] [PubMed]
- Persson, J.; Luthman, J. The Effects of Insulin, Glucose and Catecholamines on Some Blood Minerals in Sheep. Acta Vet. Scand. 1974, 15, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Vrzgula, L.; Alijev, A.A.; Bartko, P.; Bouda, J.; Dvorak, R.; Gabrasanski, P.; Illek, J.; Jagos, P.; Karsai, F.; Kona, E.; et al. Metabolic Disorders and Their Prevention in Farm Animals, 2nd ed.; Priroda: Bratislava, Slovak, 1990. [Google Scholar]
- Jackson, P.; Cockcroft, P. Clinical Examination of the Udder. Clinical Examination of Farm Animals, 1st ed.; Blackwell Science: Hoboken, NJ, USA, 2002; pp. 154–166. [Google Scholar]
- Tschuor, A.C.; Riond, B.; Braun, U.; Lutz, H. Hämatologische Und Klinisch-Chemische Referenzwerte Für Adulte Ziegen Und Schafe. Schweiz. Arch. Für Tierheilkd. 2008, 150, 287–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manual, M.V. Hematologic Reference Ranges-Appendixes. Merck Sharp Dohme Kenilworth. 2019. Available online: http://www.merckvetmanual.com (accessed on 29 June 2019).
- Jelinek, P.; Helanova, I.; Illek, J.; Frais, Z. Biochemical and Hematological Values of the Blood in Rams during Rearing [Nutrition, Age]. Acta Vet. 1984, 53, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Schweinzer, V.; Iwersen, M.; Drillich, M.; Wittek, T.; Tichy, A.; Mueller, A.; Krametter-Froetscher, R. Macromineral and Trace Element Supply in Sheep and Goats in Austria. Vet. Med. 2017, 62, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Baye, K.; Guyot, J.-P.; Mouquet-Rivier, C. The Unresolved Role of Dietary Fibers on Mineral Absorption. Crit. Rev. Food Sci. Nutr. 2017, 57, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Wang, W.; Degen, A.; Guo, Y.; Kang, J.; Liu, P.; Ding, L.; Shang, Z.; Zhou, J.; Long, R. Energy Substrate Metabolism in Skeletal Muscle and Liver When Consuming Diets of Different Energy Levels: Comparison between Tibetan and Small-Tailed Han Sheep. Animal 2021, 15, 100162. [Google Scholar] [CrossRef] [PubMed]
- Slanina, L.; Sokol, J.; Augustinsky, V.; Bajova, V.; Balascak, J.; Balun, J.; Bartik, M.; Benes, J.; Beseda, I.; Birova, V.; et al. Vademecum of a Veterinarian; Príroda: Bratislava, Slovakia, 1991. [Google Scholar]
- Panev, A.; Hauptmanová, K.; Pavlata, L.; Pechová, A.; Filípek, J.; Dvorak, R. Effect of Supplementation of Various Selenium Forms and Doses on Selected Parameters of Ruminal Fluid and Blood in Sheep. Czech J. Anim. Sci. 2013, 58, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Carlos, M.; Leite, J.; Chaves, D.; Vale, A.; Façanha, D.; Melo, M.; Soto-Blanco, B. Blood Parameters in the Morada Nova Sheep: Influence of Age, Sex and Body Condition Score. J. Anim. Plant Sci. 2015, 25, 950–955. [Google Scholar]
- Jelínek, P.; Koudela, K.; Doskocil, J.; Illek, J.; Kotrbacek, V.; Kovaru, F.; Kroupova, V.; Kucera, M.; Kudlac, E. Farm Animal Physiology; Mendel University in Brno: Brno, Czech Republic, 2003. [Google Scholar]
- Rahman, M.K.; Islam, S.; Ferdous, J.; Uddin, M.H.; Hossain, M.B.; Hassan, M.M.; Islam, A. Determination of Hematological and Serum Biochemical Reference Values for Indigenous Sheep (Ovies aries) in Dhaka and Chittagong Districts of Bangladesh. Vet. World 2018, 11, 1089–1093. [Google Scholar] [CrossRef] [Green Version]
- Lepherd, M.; Canfield, P.; Hunt, G.B.; Bosward, K. Haematological, Biochemical and Selected Acute Phase Protein Reference Intervals for Weaned Female Merino Lambs. Aust. Vet. J. 2009, 87, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Al-Hadithy, H. Estimation of Serum Liver Enzymes Activities in Awassi Sheep. Iraqi J. Vet. Med. 2013, 37, 115–120. [Google Scholar] [CrossRef]
- Nudda, A.; Correddu, F.; Marzano, A.; Battacone, G.; Nicolussi, P.; Bonelli, P.; Pulina, G. Effects of Diets Containing Grape Seed, Linseed, or Both on Milk Production Traits, Liver and Kidney Activities, and Immunity of Lactating Dairy Ewes. J. Dairy Sci. 2015, 98, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Hao, S.; Zhao, J.; Ma, X.; Su, R.; Ren, Y.; Zhang, C.H.; Zhang, J. Effect of Dietary Grape Pomace on Growth Performance, Organ Index and Blood Biochemical Indexes in Sheep. China Anim. Husb. Vet. Med. 2016, 43, 2326–2332. [Google Scholar]
Control | Grape Pomace Addition | ||
---|---|---|---|
C (n = 8) | GP1 (n = 8) GP2 (n = 8) | ||
Preparatory period | Balance period | Preparatory period | Balance period |
14 days | 5 days | 7 days | 5 days |
Feeds (g) | Feeding Groups | ||
---|---|---|---|
C | GP1 | GP2 | |
Meadow hay | 700.0 | 700.0 | 700.0 |
Ground wheat | 118.6 | 118.6 | 118.6 |
Soybean meal | 238.6 | 238.6 | 238.6 |
Grape pomace (dried) | - | 10.3 * | 20.6 ** |
Mineral and vitamin lick | ad libitum | ad libitum | ad libitum |
Meadow Hay | Wheat | Soybean Meal | Grape Pomace | |
---|---|---|---|---|
DM * | 873.85 | 909.75 | 898.95 | 942.25 |
CP | 69.12 | 125.86 | 484.85 | 98.70 |
EE | 10.41 | 17.29 | 15.52 | 84.19 |
CF | 388.29 | 31.55 | 52.04 | 183.98 |
ADF | 459.15 | 43.56 | 103.9 | 380.87 |
NDF | 697.17 | 116.77 | 117.03 | 459.67 |
NFE | 478.45 | 805.79 | 377.89 | 593.42 |
NFC | 169.56 | 720.57 | 312.89 | 317.72 |
OM | 946.26 | 980.49 | 930.28 | 960.28 |
Ash | 53.74 | 19.51 | 69.72 | 39.72 |
Ca | 4.58 | 0.40 | 3.39 | 4.46 |
P | 2.28 | 4.29 | 7.70 | 3.21 |
Mg | 1.52 | 1.45 | 3.65 | 1.20 |
Na | 0.30 | 0.20 | 0.30 | 0.26 |
K | 12.82 | 5.07 | 24.86 | 12.89 |
Feeding Groups | |||
---|---|---|---|
C | GP1 | GP2 | |
CP | 70.22 a ± 1.19 | 72.17 b ± 1.46 | 73.49 b ± 0.98 |
EE | 58.10 ± 3.45 | 63.03 ± 0.58 | 60.76 ± 2.69 |
CF | 47.25 ± 4.04 | 50.25 ± 1.94 | 51.30 ± 1.14 |
NFE | 67.31 ± 2.30 | 66.91 ± 1.44 | 69.85 ± 0.51 |
NFC | 77.52 a ± 1.07 | 77.78 a ± 1.58 | 79.93 b ± 0.16 |
OM | 62.32 a ± 2.83 | 62.93 a ± 0.53 | 65.09 b ± 0.62 |
ADF | 49.49 ± 3.04 | 50.36 ± 0.24 | 51.37 ± 1.01 |
NDF | 49.91 a ± 3.83 | 51.40 a ± 0.53 | 53.97 b ± 1.19 |
Feeding Groups | ||||
---|---|---|---|---|
Parameters | Unit | C | GP1 | GP2 |
P | mmol/L | 2.89 ± 0.18 | 2.87 ± 0.16 | 2.75 ± 0.50 |
Ca | mmol/L | 3.09 ± 1.12 | 3.08 ± 0.42 | 3.10 ± 0.77 |
Mg | mmol/L | 1.69 ± 0.92 | 1.92 ± 0.96 | 1.32 ± 0.44 |
Na | mmol/L | 143.08 ± 2.96 | 135.13 ± 8.18 | 140.63 ± 1.96 |
K | mmol/L | 6.01 ± 1.16 | 5.62 ± 0.33 | 5.30 ± 0.06 |
Cl- | mmol/L | 105.28 a ± 1.68 | 106.60 a ± 0.91 | 108.40 b ± 1.47 |
GLU | mmol/L | 3.90 a ± 0.30 | 3.17 b ± 1.05 | 3.26 b ± 0.35 |
CHOL | mmol/L | 1.01 ± 0.00 | 1.01 ± 0.00 | 1.01 ± 0.00 |
TG | mmol/L | 0.45 ± 0.06 | 0.53 ± 0.08 | 0.43 ± 0.07 |
TP | g/L | 74.45 ± 8.18 | 77.25 ± 6.01 | 66.25 ± 15.35 |
ALB | g/L | 33.87 ± 3.43 | 23.34 ± 10.15 | 29.41 ± 6.39 |
GLB | g/L | 40.83 ± 9.44 | 53.91 ± 12.97 | 46.50 ± 10.64 |
UREA | mmol/L | 6.36 ± 1.19 | 6.52 ± 0.86 | 5.63 ± 0.75 |
AST | µkat/L | 2.02 ± 0.79 | 1.26 ± 0.69 | 1.57 ± 0.28 |
ALT | µkat/L | 0.34 ± 0.14 | 0.40 ± 0.08 | 0.41 ± 0.04 |
ALP | µkat/L | 3.49 ± 1.51 | 4.34 ± 1.24 | 5.16 ± 1.37 |
GGT | µkat/L | 0.14 ± 0.08 | 0.20 ± 0.09 | 0.17 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juráček, M.; Vašeková, P.; Massányi, P.; Kováčik, A.; Bíro, D.; Šimko, M.; Gálik, B.; Rolinec, M.; Hanušovský, O.; Kolláthová, R.; et al. The Effect of Dried Grape Pomace Feeding on Nutrients Digestibility and Serum Biochemical Profile of Wethers. Agriculture 2021, 11, 1194. https://doi.org/10.3390/agriculture11121194
Juráček M, Vašeková P, Massányi P, Kováčik A, Bíro D, Šimko M, Gálik B, Rolinec M, Hanušovský O, Kolláthová R, et al. The Effect of Dried Grape Pomace Feeding on Nutrients Digestibility and Serum Biochemical Profile of Wethers. Agriculture. 2021; 11(12):1194. https://doi.org/10.3390/agriculture11121194
Chicago/Turabian StyleJuráček, Miroslav, Patrícia Vašeková, Peter Massányi, Anton Kováčik, Daniel Bíro, Milan Šimko, Branislav Gálik, Michal Rolinec, Ondrej Hanušovský, Renata Kolláthová, and et al. 2021. "The Effect of Dried Grape Pomace Feeding on Nutrients Digestibility and Serum Biochemical Profile of Wethers" Agriculture 11, no. 12: 1194. https://doi.org/10.3390/agriculture11121194
APA StyleJuráček, M., Vašeková, P., Massányi, P., Kováčik, A., Bíro, D., Šimko, M., Gálik, B., Rolinec, M., Hanušovský, O., Kolláthová, R., Mixtajová, E., & Kalúzová, M. (2021). The Effect of Dried Grape Pomace Feeding on Nutrients Digestibility and Serum Biochemical Profile of Wethers. Agriculture, 11(12), 1194. https://doi.org/10.3390/agriculture11121194