Are Cover Crops Affecting the Quality and Sustainability of Fruit Production?
Abstract
:1. Introduction
2. Fruit Quality in Relation to Cover Crops
3. Ecosystem Services Affected by Cover Crops
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization; Intergovernmental Technical Panel on Soils. Recarbonizing Global Soils: A Technical Manual of Recommended Management Practices. Cropland, Grassland, Integrated Systems and Farming Approaches–Practices Overview; Food and Agriculture Organization: Rome, Italy, 2021; Volume 3, pp. 2–13. [Google Scholar] [CrossRef]
- Pardini, A.; Faiello, C.; Longhi, F.; Mancuso, S.; Snowball, R. Cover crop species and their management in vineyards and olive groves. Adv. Hortic. Sci. 2002, 16, 225–234. [Google Scholar]
- Bugg, R.L.; Sarrantonio, M.; Dutcher, J.D.; Phatak, S.C. Understory cover crops in pecan orchards: Possible management systems. Am. J. Alt. Agric. 1991, 6, 50–62. [Google Scholar] [CrossRef]
- Tilman, D.; Lehman, C.L.; Thomson, K.T. Plant diversity and ecosystem productivity: Theoretical considerations. Proc. Natl. Acad. Sci. USA 1997, 94, 1857–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Reich, P.B.; Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl. Acad. Sci. USA 2012, 109, 10394–10397. [Google Scholar] [CrossRef] [Green Version]
- Finney, D.M.; Kaye, J.P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 2017, 54, 509–517. [Google Scholar] [CrossRef]
- Smith, R.G.; Atwood, L.W.; Warren, N.D. Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services. PLoS ONE 2014, 9, e97351. [Google Scholar] [CrossRef] [Green Version]
- Crézé, C.M.; Horwath, W.R. Cover Cropping: A Malleable Solution for Sustainable Agriculture? Meta-Analysis of Ecosystem Service Frameworks in Perennial Systems. Agronomy 2021, 11, 862. [Google Scholar] [CrossRef]
- Echtenkamp, G.W.; Moomaw, R.S. No-till corn production in a living mulch system. Weed Technol. 1989, 3, 261–266. [Google Scholar] [CrossRef]
- Johnston, W.E. Cross sections of a diverse agriculture: Profiles of California’s agricultural production regions and principal commodities. In California Agricultural Dimensions and Issues; Siebert, J., Ed.; University of California, Davis, Giannini Foundation: Davis, CA, USA, 2003; pp. 29–55. [Google Scholar]
- Campbell, A.J.; Wilby, A.; Sutton, P.; Wackers, F. Do sown flower strips boost wild pollinator abundance and pollination services in a spring-flowering crop? A case study from UK cider apple orchards. Agric. Ecosyst. Environ. 2017, 239, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2018, 1, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Seager, T.P. The sustainability spectrum and the sciences of sustainability. Bus. Strat. Environ. 2018, 17, 444–453. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Demir, Z.; Tursun, N.; Isik, D. Effects of Different Cover Crops on Soil Quality Parameters and Yield in an Apricot Orchard. Int. J. Agric. Biol. 2019, 21, 399–408. [Google Scholar] [CrossRef]
- Greenham, D. The environment of the fruit tree: Managing the fruit soils. Sci. Hortic. 1955, 12, 25–31. [Google Scholar]
- Chiusoli, A.; Intrieri, C. “Inerbimento” e permeabilità del terreno negli interfilari di un frutteto. Riv. Ortoflorofruttic. 1966, 50, 342–347. [Google Scholar]
- Pou, A.; Gulias, J.; Moreno, M.; Tomas, M.; Medrano, H.; Cifre, J. Cover cropping in Vitis Vinifera, L. CV. Manto negro vineyards under Mediterranean conditions: Effects on plant vigor, yield and grape quality. J. Int. Sci. Vigne. Vin. 2011, 45, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Chiusoli, A. Competizioni idriche nei frutteti inerbiti. Riv. Ortoflorofruttic. Ital. 1965, 49, 11–15. [Google Scholar]
- White, G.C.; Holloway, R.I.C. The influence of simazine or a straw mulch on the establishment of apple trees in grassed down or cultivated soil. J. Hortic. Sci. 1967, 42, 377–389. [Google Scholar] [CrossRef]
- Chiusoli, A. Contributo allo studio della tecnica di “inerbimento” in pescheti adulti. Riv. Ortoflorofruttic. Ital. 1971, 55, 130–135. [Google Scholar]
- Stefanelli, D.; Zoppolo, R.J.; Perry, R. Organic orchard floor management systems for apple effect on rootstock performance in the midwestern United States. HortScience 2009, 44, 263–267. [Google Scholar] [CrossRef]
- Pisani, P. Effetti dell’«inerbimento» sullo sviluppo degli alberi, sulla loro produttività e sulla qualità dei frutti. Riv. Ortoflorofruttic. Ital. 1965, 49, 28–33. [Google Scholar]
- Ali Sarıdaş, M.; Kapur, B.; Çeliktopuz, E.; Şahiner, Y.; Kargı, S.P. Land productivity, irrigation water use efficiency and fruit quality under various plastic mulch colors and irrigation regimes of strawberry in the eastern Mediterranean region of Turkey. Agric. Water Manag. 2021, 245, 106568. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Wang, Y.; Tao, H.; Fan, J.; Zhao, Z.; Guo, Y. Effects of soil water stress on fruit yield, quality and their relationship with sugar metabolism in “Gala” apple. Sci. Hortic. 2019, 258, 108753. [Google Scholar] [CrossRef]
- Kodad, O.; Socias, I.; Company, R. Flower age and pollinizer could affect fruit set in late-blooming self-compatible almond cultivars under warm climatic conditions. Sci. Hortic. 2013, 164, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.A.; Arrobas, M. Cover cropping for increasing fruit production and farming sustainability. In Fruit Crops; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–295. ISBN 9780128187326. [Google Scholar] [CrossRef]
- Sanchez, E.E.; Khemira, H.; Sugar, D.; Righetti, T.L. Nitrogen management in orchards. In Nitrogen Fertilization in the Environment; Bacon, P.E., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1995; pp. 327–380. [Google Scholar]
- Wilkinson, B.G. The effect of orchard factors on the chemical composition of apples: I. Some effects of manurial treatment and of grass. J. Hortic. Sci. 1957, 32, 74–84. [Google Scholar] [CrossRef]
- Bould, C.; Hughes, H.M.; Gunn, E. Effects of soil management and NPK fertilisers on tree growth, yield and leaf nutrient composition of dessert apples. Exp. Hortic. 1972, 24, 25–36. [Google Scholar]
- Haynes, R.J. Some observations on the effect of grassing-down, nitrogen fertilisation, and irrigation on the growth, leaf nutrient content and fruit quality of young golden delicious apple trees. J. Sci. Food Agric. 1981, 32, 1001–1013. [Google Scholar] [CrossRef]
- Tagliavini, M.; Tonon, G.; Scandellari, F.; Quinones, A.; Palmieri, S.; Menarbin, G.; Gioacchini, P.; Masia, A. Nutrient recycling during the decomposition of apple leaves (Malus domestica) and mowed grasses in an orchard. Agric. Ecosyst. Environ. 2017, 118, 191–200. [Google Scholar] [CrossRef]
- Giese, G.; Velasco-Cruz, C.; Roberts, L.; Heitman, J.; Wolf, T.K. Complete vineyard floor cover crops favorably limit grapevine vegetative growth. Scientia horticulturae 2014, 170, 256–266. [Google Scholar] [CrossRef]
- Motisi, A.; Pernice, F.; Sottile, F.; Caruso, T. Rootstock effect on stem water potential gradients in cv. “armking” nectarine trees. Acta Hortic. 2004, 658, 75–79. [Google Scholar] [CrossRef]
- Aras, S.; Keles, H.; Bozkurt, E. Physiological and histological responses of peach plants grafted onto different rootstocks under calcium deficiency conditions. Sci. Hortic. 2021, 281, 109967. [Google Scholar] [CrossRef]
- Szalay, L.; Bakos, J.; Tósaki, Á.; Keleta, B.T.; Froemel-Hajnal, V.; Karsai, I. A 15-yearlong assessment of cold hardiness of apricot flower buds and flowers during the blooming period. Sci. Hortic. 2021, 290, 110520. [Google Scholar] [CrossRef]
- Thapa, V.R.; Ghimire, R.; Acosta-Martínez, V.; Marsalis, M.A.; Schipanski, M.E. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semiarid cropping systems. Appl. Soil 2021, 157, 103735. [Google Scholar] [CrossRef]
- Bould, C.; Jarrett, R.M. The effect of cover crops and NPK fertilizers on growth, crop yield and leaf nutrient status of young dessert apple trees. J. Hortic. Sci. 1962, 37, 58–82. [Google Scholar] [CrossRef]
- Goode, J.E.; Hyrycz, K.J. The effect of nitrogen on young, newly-planted, apple rootstocks in the presence and absence of grass competition. J. Hortic. Sci. 1976, 51, 321–327. [Google Scholar] [CrossRef]
- Hipps, N.A.; Davies, M.J.; Johnson, D.S. Effects of different ground vegetation management systems on soil quality, growth and fruit quality of culinary apple trees. J. Hortic. Sci. Biotechnol. 2004, 79, 610–618. [Google Scholar] [CrossRef]
- Raese, J.T. Response of young ‘d’Anjou’ pear trees to triazine and triazole herbicides and nitrogen. J. Am. Soc. Hortic. Sci. 1976, 102, 215–218. [Google Scholar]
- Tworkoski, T.J.; Glenn, D.M. Long-term effects of managed grass competition and two pruning methods on growth and yield of peach trees. Sci. Hortic. 2010, 126, 130–137. [Google Scholar] [CrossRef]
- Hipps, N.A.; Samuelson, T.J. Effects of long-term herbicide use, irrigation and nitrogen fertiliser on soil fertility in an apple orchard. J. Sci. Food Agric. 1991, 55, 377–387. [Google Scholar] [CrossRef]
- Sweet, R.M.; Schreiner, R.P. Alleyway cover crops have little influence on Pinot noir grapevines (Vitis vinifera L.) in two western Oregon vineyards. Am. J. Enol. Vitic. 2010, 61, 240–252. [Google Scholar]
- Mercenaro, L.; Nieddu, G.; Pulina, P.; Porqueddu, C. Sustainable management of an intercropped Mediterranean vineyard. Agriculture Ecosyst. Env. 2014, 192, 95–104. [Google Scholar] [CrossRef]
- Mia, M.J.; Massetani, F.; Murri, G.; Facchi, J.; Monaci, E.; Amadio, L.; Neri, D. Integrated weed management in high density fruit orchards. Agronomy 2020, 10, 1492. [Google Scholar] [CrossRef]
- Gormley, R.; Robinson, D.; O’Kennedy, N. The effects of soil management systems on the chemical composition and quality of apples. II. Cox’s Orange Pippin and Red Jonathan apples. J. Sci. Food Agric. 1973, 24, 241–247. [Google Scholar] [CrossRef]
- Atkinson, J.; Taylor, L.; Taylor, J.M.; Lucas, A.S. Temperature and irrigation effects on the cropping, development and quality of “Cox’s Orange Pippin” and “Queen Cox” apples. Sci. Hortic. 1998, 75, 59–81. [Google Scholar] [CrossRef]
- Gormley, R.; Robinson, D.; O’Kennedy, N. The effects of soil management systems on the chemical composition and quality of apples I. Golden Delicious apples. J. Sci. Food Agric. 1973, 24, 227–239. [Google Scholar] [CrossRef]
- Stevenson, D.S.; Neilsen, G.H.; Cornelson, A. The effect of woven plastic mulch, herbicides, grass sod, and nitrogen on ‘Foch’ grapes under irrigation. HortScience 1986, 21, 439–441. [Google Scholar]
- Cavender, G.; Liu, M.; Hobbs, D.; Frei, B.; Strik, B.; Zhao, Y. Effects of different organic weed management strategies on the physicochemical, sensory, and antioxidant properties of machine-harvested blackberry fruits. J. Food Sci. 2014, 79, S2107–S2116. [Google Scholar] [CrossRef]
- Guerra, B.; Steenwerth, K. Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: A review. Am. J. Enol. Vitic. 2012, 63, 149–164. [Google Scholar] [CrossRef]
- Scalabrelli, G.; Ferroni, G.; Boselli, M.; Bandinelli, R.; Mancuso, S. L’inerbimento del vigneto in Toscana. Atti del convegno XXIV Momevi sulla gestione del suolo in viticoltura. Not. Tec. 1999, 58, 43–63. [Google Scholar]
- Coniberti, A.; Ferrari, V.; Disegna, E.; Dellacassa, E.; Lakso, A.N. Under-trellis cover crop and deficit irrigation to regulate water availability and enhance Tannat wine sensory attributes in a humid climate. Sci. Hortic. 2018, 235, 244–252. [Google Scholar] [CrossRef]
- Van Huyssteen, L.; Weber, H.W. The effect of selected minimum and conventional tillage practices in vineyard cultivation on vine performance. S. Afr. J. Enol. Vitic. 1980, 1, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Colugnati, G.; Cattarossi, G.; Crespan, G. L’inerbimento nel vigneto moderno. Inf. Agrar. 2006, 10, 53–65. [Google Scholar]
- Luzzini, G.; Slaghenaufi, D.; Pasetto, F.; Ugliano, M. Influence of grape composition and origin, yeast strain and spontaneous fermentation on aroma profile of Corvina and Corvinone wines. LWT 2021, 143, 111120. [Google Scholar] [CrossRef]
- Wu, Y.S.; Zhang, Y.M.; Ji, X.H.; Zhang, R.; Liu, D.L.; Zhang, Z.Y.; Li, W.Y.; Chen, X.S. Effects of natural grass on soil nutrient, enzyme activity and fruit quality of pear orchard in Yellow River Delta. Sci. Agric. Sin. 2013, 46, 99–108. [Google Scholar]
- Marsh, K.B.; Daly, M.J.; McCarthy, T.P. The effect of understorey managment on soil fertility, tree nutrition, fruit production and apple fruit quality. Biol. Agric. Hortic. 1996, 13, 161–173. [Google Scholar] [CrossRef]
- Perring, M.A. The effect of orchard factors on the chemical composition of apples IV. Some effects of soil management and NPK fertilizers. J. Hortic. Sci. 1975, 50, 425–433. [Google Scholar] [CrossRef]
- White, K.E.; Brennan, E.B.; Cavigelli, M.A. Soil carbon and nitrogen data during eight years of cover crop and compost treatments in organic vegetable production. Data Brief 2020, 33, 106481. [Google Scholar] [CrossRef]
- Wheeler, S.J.; Pickering, G.J. The effects of Soil Management Techniques on Grape and Wine Quality. Fruits. Growth, Nutrition and Quality; WFL Publisher: Helsinki, Finland, 2006; pp. 195–208. [Google Scholar]
- Muscas, E.; Cocco, A.; Mercenaro, L.; Cabras, M.; Lentini, A.; Porqueddu, C.; Nieddu, G. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ. 2017, 237, 203–212. [Google Scholar] [CrossRef]
- Bouzas-Cid, Y.; Portu, J.; Pérez-Álvarez, E.P.; Gonzalo-Diago, A.; Garde-Cerdán, T. Effect of vegetal ground cover crops on wine anthocyanin content. Sci. Hortic. 2016, 211, 384–390. [Google Scholar] [CrossRef]
- Wallace, T. Some effects of orchard factors on the quality and storage properties of apples. In Science and Fruit; University of Bristol: Bristol, UK, 1953; pp. 140–161. [Google Scholar]
- Montgomery, H.B.S.; Wilkinson, B.G.; Edney, K.L. Storage experiments with Cox’s Orange Pippin apples from a manurial trial. J. Hortic. Sci. 1962, 37, 150–158. [Google Scholar] [CrossRef]
- Gulbagca, F.; Burhan, H.; Elmusa, F.; Sen, F. Calcium nutrition in fruit crops: Agronomic and physiological implications. In Fruit Crops; Srivastava, A.K., Hu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 173–190. [Google Scholar] [CrossRef]
- Perring, M.A.; Pearson, K. Redistribution of minerals in apple fruit during storage: Effects of storage temperature, varietal differences, and orchard management. J. Sci. Food Agric. 1986, 37, 607–617. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Florence, A.M.; Highley, L.G.; Drijber, R.A.; Francis, C.A.; Lindquist, J.L. Cover crop mixture diversity, biomass productivity, weed suppression and stability. PLoS ONE 2019, 14, e0206195. [Google Scholar] [CrossRef] [Green Version]
- Zilberman, D.; Lipper, L.; McCarthy, N.; Gordon, B. Innovation in response to climate change. Nat. Resour. Manag. Policy 2018, 52, 49–74. [Google Scholar]
- Vicente-Vicente, J.L.; Garcia-Ruiz, R.; Francaviglia, R.; Aguilera, E.; Smith, P. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agric. Ecosyst. Environ. 2016, 235, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystems services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef] [Green Version]
- Sansavini, S. The role of research and technology in shaping a sustainable fruit industry: European advances and prospects. Rev. Bras. Frutic. 2006, 28, 550–558. [Google Scholar] [CrossRef]
- Sasanelli, N.; Konrat, A.; Migunova, V.; Toderas, I.; Iurcu-Straistaru, E.; Rusu, S.; Bivol, A.; Andoni, C.; Veronico, P. Review on Control Methods against Plant Parasitic Nematodes Applied in Southern Member States (C Zone) of the European Union. Agriculture 2021, 11, 602. [Google Scholar] [CrossRef]
- Parolin, P.; Bresch, C.; Desneux., N.; Brun, R.; Bout, A.; Boll, R.; Poncet, C. Secondary plants used in biological control: A review. Int. J. Pest. Manag 2012, 58, 91–100. [Google Scholar] [CrossRef]
- Song, B.; Wu, H.; Kong, Y.; Zhang, J.; Du, Y.; Hu, J.; Yao, Y. Effects of intercropping with aromatic plants on the diversity and structure of an arthropod community in a pear orchard. BioControl 2010, 55, 741–751. [Google Scholar] [CrossRef]
- Miñarro, M.; Prida, E. Hedgerows surrounding organic apple orchards in north-west Spain: Potential to conserve beneficial insects. Agric. For. Entomol 2013, 15, 382–390. [Google Scholar] [CrossRef]
- Nicholls, C.; Altieri, M. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Samnegård, U. Management trade-offs on ecosystem services in apple orchards across Europe: Direct and indirect effects of organic production. J. Appl. Ecol. 2019, 56, 802–811. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.; Lenhardt, P.P.; Brühl, C.A. Characterization of field margins in intensified agro-ecosystems—Why narrow margins should matter in terrestrial pesticide risk assessment and management. Integr. Enviro. Assess. Manag. 2014, 10, 456–462. [Google Scholar] [CrossRef]
- Mania, E.; Isocrono, D.; Pedullà, M.L.; Guidoni, S. Plant diversity in an intensively cultivated vineyard agro-ecosystem (Langhe, North-West Italy). S. Afr. J. Enol. Vitic. 2015, 36, 378–388. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giacalone, G.; Peano, C.; Isocrono, D.; Sottile, F. Are Cover Crops Affecting the Quality and Sustainability of Fruit Production? Agriculture 2021, 11, 1201. https://doi.org/10.3390/agriculture11121201
Giacalone G, Peano C, Isocrono D, Sottile F. Are Cover Crops Affecting the Quality and Sustainability of Fruit Production? Agriculture. 2021; 11(12):1201. https://doi.org/10.3390/agriculture11121201
Chicago/Turabian StyleGiacalone, Giovanna, Cristiana Peano, Deborah Isocrono, and Francesco Sottile. 2021. "Are Cover Crops Affecting the Quality and Sustainability of Fruit Production?" Agriculture 11, no. 12: 1201. https://doi.org/10.3390/agriculture11121201
APA StyleGiacalone, G., Peano, C., Isocrono, D., & Sottile, F. (2021). Are Cover Crops Affecting the Quality and Sustainability of Fruit Production? Agriculture, 11(12), 1201. https://doi.org/10.3390/agriculture11121201