Technical Efficiency and Technological Gaps of Rice Production in Anambra State, Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Analytical Framework
2.3. Stochastic Meta-Frontier Analysis
2.4. Empirical Model Specification
3. Results and Discussion
3.1. Hypothesis Tests
3.2. Estimation of Parameter Estimates of Regional Stochastic Frontiers
3.3. Estimation of Parameters of the SMF
3.4. Estimation of the Technical Efficiency and the Technological Gap Ratios
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Osmani, A.G.; Hossain, E. Market participation decision of smallholder’s farmers and its determinants in Bangladesh. Econ. Agric. 2015, 62, 163–179. [Google Scholar]
- Anumudu, O.O.; Obianefo, C.A.; Okafor, I.P.; Onyekineso, J.C. Determinants of market participation and failure of table egg production by small scale poultry farmers in Anambra State, Nigeria. Int. J. Sci. Res. PONTE 2020, 76, 58–77. [Google Scholar]
- Mulungu, K.; Ng’ombe, J.N. Sources of economic growth in Zambia, 1970–2013: A growth accounting approach. Economies 2017, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Frimawaty, E.; Basukriadi, A.; Syamsu, A.J.; Soesilo Budhi, T.E. Sustainability of rice farming based on eco-farming to face food security and climate change: Case study in Jambi Province, Indonesia. Procedia Environ. Sci. 2013, 17, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Taridala, S.A.A.; Abdullah, W.G.; Wahyuni, S.; Wianti, N.I.; Zani, M. Understanding the social and economic aspects of upland rice farming. Earth Environ. Sci. 2018, 122, 1–8. [Google Scholar] [CrossRef]
- Ike, P.C.; Ugwumba, C.O. The profitability of small-scale broiler production in Onitsha North Local Government Area of Anambra State, Nigeria. Int. J. Poult. Sci. 2015, 10, 106–109. [Google Scholar] [CrossRef]
- Egbetokun, O.A.; Sittu, B.A.; Ayode, M.O. Determinants of market participation among maize farmer’s in Ogbomoso Zone, Oyo State, Nigeria. Cercet. Agron. Mold. 2017, 2017, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Obianefo, C.A.; Aguaguiyi, N.F.; Umebali, E.E.; Ezeano, C.I. Comparative analysis of rainfed and dry season rice farming in value chain development programme in Ayamelum Local Government Area Anambra State. Inter J. Sci. Res. 2019, 8, 1655–1659. [Google Scholar]
- Obianefo, C.A.; Nwigwe, C.A.; Meludu, T.N.; Anyasie, I.C. Technical efficiency of rice farmers in Anambra State value chain development programme. J. Dev. Agric. Econ. 2020, 12, 67–74. [Google Scholar] [CrossRef]
- Nwinya, C.E.; Obienusi, E.A.; Onuoha, D.C. Comparative economic analysis of upland and lowland rice production in Izzi Local Government Area of Ebonyi State. J. Econ. Sustain. Dev. 2014, 5, 144–160. [Google Scholar]
- Ayambila, N.S.; Kwadzo, M.T.G.; Brempong-Asuming, S. Economics of rice production an economic analysis of rice production systems in the Upper East region of Ghana. Ghana J. Dev. Stud. 2008, 5, 95–108. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, X.; Wang, D.; Chen, L.; Xu, C.; Zhang, X. Effect of long-term paddy- upland yearly rotations on rice (Oryza sativa) yield, soil properties, and bacteria community diversity. Sci. World J. 2012, 2012, 279641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saputra, E.; Tabrani, G.; Zuhry, E. The Experiment of Bokashi and Ferinsa Composition on Upland Red Rice (Oryza nivara L.) Inpago 7 Variety. JOM Faperta 2016, 3, 1–13. [Google Scholar]
- The World Bank. Pairing Agriculture with Technology in Bangladesh. Available online: www.worldbank.org/en/news/feature/2014/06/23/pairing-agriculture-with-technology-in-banglashe (accessed on 23 June 2014).
- Shehu, J.F.; Mshelia, S.I.; Tashikalma, A.K. Analysis of technical efficiency of small-scale rain-fed upland rice farmers in North-west agricultural zone of Adamawa state, Nigeria. J. Agric. Soc. Sci. 2007, 3, 133–136. [Google Scholar]
- Oluwadamilola, K.A. Challenges of rice production in Nigeria: A case study of Kogi State. Department of Science and Technology, National Defense College Abuja, Nigeria. Food Sci. Qual. Manag. 2018, 74, 1–16. [Google Scholar]
- IFAD. Value Chain Development Programme. Available online: https://www.ifad.org/en/web/operations/-/project/1100001594 (accessed on 4 July 2020).
- Umar, M.F.; Nugroho, I.; Darmadji, S. The study of entrepreneurship and innovation adoption by farmer in improving lowland rice farming. J. Socioecon. Dev. 2020, 3, 16–28. [Google Scholar] [CrossRef]
- Rohmad, B.; Praptiningsih, G.A. Efficiency Analysis of Production Factors Utilization in Upland Rice Farming in NRLS Conference Proceedings. KnE Life Sci. 2017, 2017, 180–187. [Google Scholar]
- Willybrordus, L. Measurement of economic efficiency of upland rice farming in different land ownership status in Mausambi Village, Maurole Sub- District, Ende Regency. J. AGRISEP 2019, 18, 387–402. [Google Scholar]
- Yurkushi, E.N. Comparative economic analysis of upland and lowland rice production in selected Local Government Area of Kaduna State, Nigeria. Ph.D. Thesis, Ahmadu Bello University, Zaria, Nigeria, 2015. [Google Scholar]
- Ng’ombe, J.N. Technical efficiency of smallholder maize production in Zambia: A stochastic meta-frontier approach. Agrekon 2017, 56, 347–365. [Google Scholar] [CrossRef]
- Mariko, K.; Moussa, M.; Li, X.; Matafwali, E.; John-Philippe, E.A.; Ekram, A.E.; Osewe, M.O. Stochastic meta frontier analysis of smallholder rice farmers’ technical efficiency. J. Agric. Sci. 2019, 11, 31–44. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.P. Technology gap, efficiency, and a stochastic metafrontier function. Int. J. Bus. Econ. 2002, 1, 87. [Google Scholar]
- Mzyece, A.; Ng’ombe, J.N. Does crop diversification involve a trade-off between technical efficiency and income stability for rural farmers? Evidence from Zambia. Agronomy 2020, 10, 1875. [Google Scholar] [CrossRef]
- Forsund, F.R.; Lovell, C.A.K.; Schmidt, P. A survey of frontier production functions and their relationships to efficiency measurement. J. Econom. 1980, 13, 5–25. [Google Scholar] [CrossRef]
- Ume, S.I.; Ochiaka, J.S. Technical efficiency of catfish production among smallholder Farmers in Anambra State of Nigeria. Case Stud. J. 2016, 5, 147–155. [Google Scholar]
- Mzyece, A.; Ng’ombe, J.N. Crop diversification improves technical efficiency and reduces income variability in Northern Ghana. J. Agric. Food Res. 2021, 5, 100162. [Google Scholar] [CrossRef]
- Farrel, M. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 3, 253–290. [Google Scholar] [CrossRef]
- Jondrow, J.C.A.; Lovell, L.S.; Schmidt, P.S. On the Estimation of technical inefficiency in the stochastic frontier production function model. J. Econom. 1982, 19, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Aigner, D.J.; Lovell, C.A.; Schmidt, P. Formulation and estimation of stochastic frontier production function model. J. Econom. 1977, 1, 21–37. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. J. Pro. Anal. 1992, 3, 153–169. [Google Scholar] [CrossRef]
- Chiona, S.; Kalinda, T.; Tembo, G. Stochastic frontier analysis of the technical efficiency of smallholder maize farmers in Central Province, Zambia. J. Agric. Sci. 2014, 6, 108–118. [Google Scholar] [CrossRef]
- Souleymane, O. Technical and economic efficiency of rice production in the Kou valley (Burkina Faso): Stochastic frontier approach. Asian J. Agric. Rural Dev. 2015, 5, 53–63. [Google Scholar]
- Ng’ombe, J.; Kalinda, T.A. Stochastic frontier analysis of technical efficiency of maize production under minimum tillage in Zambia. Sustain. Agric. Res. 2015, 5, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Bidzakin, J.K.; Fialor, S.C.; Awunyo-Vitor, D.; Yahaya, I. Impact of irrigation ecology on rice production efficiency in Ghana. Adv. Agric. 2018, 2018, 5287138. [Google Scholar] [CrossRef]
- Raimondo, M.; Caracciolo, F.; Nazzaro, C.; Marotta, G. Organic Farming Increases the Technical Efficiency of Olive Farms in Italy. Agriculture 2021, 11, 209. [Google Scholar] [CrossRef]
- Liu, J.; Dong, C.; Liu, S.; Rahman, S.; Sriboonchitta, S. Sources of Total-Factor Productivity and Efficiency Changes in China’s Agriculture. Agriculture 2020, 10, 279. [Google Scholar] [CrossRef]
- Obi, A.; Ayodeji, B.T. Determinants of economic farm-size–efficiency relationship in smallholder maize farms in the Eastern Cape Province of South Africa. Agriculture 2020, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.J.; Huang, T.H.; Liu, N.H. A new approach to estimating the metafrontier production function based on a stochastic frontier framework. J. Pro. Anal. 2014, 42, 241–254. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.P.; O’donnell, C.J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Pro. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- O’Donnell, C.J.; Rao, D.P.; Battese, G.E. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Osawe, O.W.; Adeqeye-Bolarin, A.J.; Omonona-Bolarin, O. Technical efficiency of small scale farmers: An application of the stochastic frontier production function on fish farmers in Ibadan Metropolis. J. Econ. Rural Dev. 2008, 16, 71–82. [Google Scholar] [CrossRef]
- Assa, M.M.; Abdi-Khalil, E.; Matchaya, G.C. Unexploited Profit among smallholder farmers in Central Malawi: What are the sources? Int. J. Appl. Econ. 2012, 9, 83–95. [Google Scholar]
- Battese, G.E.; Broca, S.S. Functional forms of stochastic frontier production functions and models for technical inefficiency effects: A comparative study for wheat farmers in Pakistan. J. Pro. Anal. 1997, 8, 395–414. [Google Scholar] [CrossRef]
- Lee, L.; Tyler, F.W.G. The stochastic frontier production function and average efficiency: An empirical analysis. J. Econom. 1978, 7, 385–389. [Google Scholar] [CrossRef]
- Mensah, A.; Brümmer, B. Drivers of technical efficiency and technology gaps in Ghana’s mango production sector: A stochastic metafrontier approach Amos. Afr. J. Agric. Resour. Econ. 2016, 11, 101–117. [Google Scholar]
- Huang, T.H.; Chiang, D.L.; Tsai, C.M. Applying the new metafrontier directional distance function to compare banking efficiencies in Central and Eastern European countries. Econ. Model. 2015, 44, 188–199. [Google Scholar] [CrossRef]
- Belotti, F.; Daidone, S.; Ilardi, G.; Atella, V. Stochastic frontier analysis using Stata. Stata J. 2013, 13, 719–758. [Google Scholar] [CrossRef] [Green Version]
- StataCorp. Stata Statistical Software: Release 16; StataCorp LLC: College Station, TX, USA, 2019. [Google Scholar]
- Ng’ombe, J.N.; Tembo, M.C.; Masasi, B. “Are they aware, and why?” Bayesian analysis of predictors of smallholder farmers’ awareness of climate change and its risks to agriculture. Agronomy 2020, 10, 376. [Google Scholar] [CrossRef] [Green Version]
- Alem, H.; Lien, G.; Hardaker, J.B.; Guttormsen, A. Regional differences in technical efficiency and technological gap of Norwegian dairy farms: A stochastic meta-frontier model. Appl. Econ. 2019, 51, 409–421. [Google Scholar] [CrossRef]
- Manda, J.; Alene, A.D.; Gardebroek, C.; Kassie, M.; Tembo, G. Adoption and impacts of sustainable agricultural practices on maize yields and incomes: Evidence from rural Zambia. J. Agric. L. Econ. 2016, 67, 130–153. [Google Scholar] [CrossRef]
- Mulungu, K.; Tembo, G. Effects of weather variability on crop abandonment. Sustainability 2015, 7, 2858–2870. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Addai, K.N.; Ng’ombe, J.N. Impact of improved rice varieties on household food security in Northern Ghana: A doubly robust analysis. J. Int. Dev. 2021, 33, 342–359. [Google Scholar] [CrossRef]
- Masasi, B.; Taghvaeian, S.; Boman, R.; Moriasi, D.N.; Starks, P.J. Impacts of variable irrigation regimes on cotton yield and fiber quality. Agric. Environ. Lett. 2020, 5, e20031. [Google Scholar] [CrossRef]
- Lu, W.; Addai, K.N.; Ng’ombe, J.N. Does the use of multiple agricultural technologies affect household welfare? Evidence from Northern Ghana. Agrekon 2021, 60, 1–18. [Google Scholar] [CrossRef]
- Abman, R.; Carney, C. Agricultural productivity and deforestation: Evidence from input subsidies and ethnic favoritism in Malawi. J. Environ. Econ. Manag. 2020, 103, 102342. [Google Scholar] [CrossRef]
Variable | Upland (n = 70) | Lowland (n = 30) | Pooled (n = 100) | |||
---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | |
Rice yield (kg) | 9155.714 | 4687.75 | 5893.33 | 3620.48 | 8172 | 4631.72 |
Fertilizer (kg) | 638.6714 | 279.16 | 328.57 | 205.23 | 545.64 | 295.03 |
Seed (kg) | 104 | 46.08 | 53.2 | 27.32 | 88.76 | 47.39 |
Agro-chemicals (liter) | 16.47 | 7.41 | 8.8 | 5.48 | 14.17 | 7.72 |
Labor (man-day) | 235.12 | 105.66 | 131.87 | 81.85 | 204.14 | 109.57 |
Land (Ha) | 2.05 | 0.98 | 1.27 | 0.72 | 1.72 | 0.99 |
Age (year) | 41.93 | 11.52 | 43.2 | 11.19 | 42.65 | 11.22 |
Household size (No) | 8.87 | 3.34 | 8.7 | 3.13 | 8.87 | 3.24 |
Farming experience (year) | 11.26 | 3.93 | 14.67 | 5.53 | 12.33 | 4.67 |
Level of education (year) | 11.64 | 4.17 | 10.87 | 5 | 11.43 | 4.44 |
Contact with extension agent (No) | 2.14 | 0.95 | 2.63 | 1.18 | 2.31 | 1.06 |
Rainfall level () | 3.663 | 0.302 | 3.639 | 0.313 | 3.656 | 0.304 |
Gender: (equals 1 if male, 0 otherwise) | 38.6% | 30.0% | 35.0% | |||
Female | 61.4% | 70.0% | 65% |
Variables | Upland Region | Lowland Region | ||
---|---|---|---|---|
Estimate | Std. Error | Estimate | Std. Error | |
Log-Fertilizer | 0.423 *** | 0.137 | 0.248 * | 0.132 |
Log-Seed | −0.031 | 0.110 | 0.068 | 0.165 |
Log-Agrochemicals | 0.068 | 0.073 | 0.464 ** | 0.166 |
Log-Labor | 0.471 *** | 0.120 | −0.063 | 0.120 |
Log-Land | 0.044 | 0.073 | 0.201 | 0.148 |
Constant | 3.882 *** | 0.489 | 6.340 *** | 0.825 |
Region-specific Variables | ||||
Age | −0.020 | 0.04 | −0.042 | 0.127 |
Gender | −0.534 | 0.7 | −4.471 | 7.704 |
Household size | −0.007 | 0.11 | 0.007 | 0.591 |
Farming experience | −0.248 ** | 0.13 | 0.066 | 0.181 |
Education | −0.126 | 0.14 | −0.040 | 0.241 |
Extension contacts | −2.219 | 1.45 | −0.825 | 1.048 |
Constant | 5.556 | 4.56 | −1.105 | 6.310 |
Model statistics | ||||
Log-likelihood | 23.927 | 7.578 | ||
Sigma | 0.035 | 0.039 | ||
Gamma | 0.719 | 0.163 |
Variable Name | Anambra State, Nigeria | |
---|---|---|
Parameter Estimates | Std. Error | |
Log-Fertilizer | 0.286 *** | 0.034 |
Log-Seed | 0.140 *** | 0.031 |
Log-Agrochemicals | 0.215 *** | 0.033 |
Log-Labor | 0.170 *** | 0.033 |
Log-Land | 0.129 *** | 0.026 |
Constant | 5.204 *** | 0.144 |
Environmental-specific variables | ||
Rainfall dependent | −1.687 | 1.334 |
Constant | 0.001 | 4.658 |
Model statistics | ||
Log-likelihood | 98.398 | |
Sigma | 0.006 | |
Gamma | 0.379 |
Output Elasticity | Upland Region | Lowland Region | Rice Industry |
---|---|---|---|
Log-Fertilizer | 0.423 | 0.248 | 0.247 |
Log-Seed | −0.031 | 0.068 | 0.107 |
Log-Agrochemical | 0.068 | 0.464 | 0.201 |
Log-Labor | 0.471 | −0.063 | 0.069 |
Log-Land | 0.044 | 0.201 | 0.267 |
Return to scale | 0.975 | 0.918 | 0.890 |
Mean | Std. Dev. | Min | Max | ||
---|---|---|---|---|---|
Upland Region | TE | 0.842 | 0.144 | 0.455 | 0.975 |
MTE | 0.994 | 0.005 | 0.964 | 0.998 | |
TGR | 0.847 | 0.146 | 0.460 | 0.984 | |
Lowland Region | |||||
TE | 0.917 | 0.058 | 0.784 | 0.976 | |
MTE | 0.995 | 0.002 | 0.986 | 0.998 | |
TGR | 0.921 | 0.058 | 0.787 | 0.981 | |
Rice Industry | TE | 0.875 | 0.113 | 0.499 | 0.978 |
MTE | 0.955 | 0.036 | 0.665 | 0.988 | |
TGR | 0.882 | 0.106 | 0.506 | 0.992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obianefo, C.A.; Ng’ombe, J.N.; Mzyece, A.; Masasi, B.; Obiekwe, N.J.; Anumudu, O.O. Technical Efficiency and Technological Gaps of Rice Production in Anambra State, Nigeria. Agriculture 2021, 11, 1240. https://doi.org/10.3390/agriculture11121240
Obianefo CA, Ng’ombe JN, Mzyece A, Masasi B, Obiekwe NJ, Anumudu OO. Technical Efficiency and Technological Gaps of Rice Production in Anambra State, Nigeria. Agriculture. 2021; 11(12):1240. https://doi.org/10.3390/agriculture11121240
Chicago/Turabian StyleObianefo, Chukwujekwu A., John N. Ng’ombe, Agness Mzyece, Blessing Masasi, Ngozi J. Obiekwe, and Oluchi O. Anumudu. 2021. "Technical Efficiency and Technological Gaps of Rice Production in Anambra State, Nigeria" Agriculture 11, no. 12: 1240. https://doi.org/10.3390/agriculture11121240
APA StyleObianefo, C. A., Ng’ombe, J. N., Mzyece, A., Masasi, B., Obiekwe, N. J., & Anumudu, O. O. (2021). Technical Efficiency and Technological Gaps of Rice Production in Anambra State, Nigeria. Agriculture, 11(12), 1240. https://doi.org/10.3390/agriculture11121240