Isolation and Molecular Characterization of Plant-Growth-Promoting Bacteria and Their Effect on Eggplant (Solanum melongena) Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Isolation
2.3. Evaluation of Phosphate Solubilization Activity
2.4. Measurement of Siderophore Production
2.5. Determination of Nitrogen-Fixing Ability
2.6. Detection of Indole Acetic Acid (IAA)
2.7. Effect of Five Strains on Plant Growth Promotion in New Reclamation Land
2.8. Identification of Bacterial Strains
2.9. Statistical Analysis
3. Results and Discussion
3.1. P-Solubilizing Ability of Bacterial Strains
3.2. Siderophore Production
3.3. Nitrogen Fixation Ability
3.4. Indole Acetic Acid (IAA) Detection
3.5. Growth Promotion Effect of Eggplant Seedlings
3.6. Bacterial Identification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghose, B. Food security and food self-sufficiency in China: From past to 2050. Food Energy Secur. 2014, 3, 86–95. [Google Scholar] [CrossRef]
- Li, X.; Su, Y.; Ahmed, T.; Ren, H.; Javed, M.R.; Yao, Y.; An, Q.; Yan, J.; Li, B. Effects of Different Organic Fertilizers on Improving Soil from Newly Reclaimed Land to Crop Soil. Agriculture 2021, 11, 560. [Google Scholar] [CrossRef]
- Larney, F.J.; Angers, D.A. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef]
- Gómez-Sagasti, M.T.; Hernández, A.; Artetxe, U.; Garbisu, C.; Becerril, J.M. How valuable are organic amendments as tools for the phytomanagement of degraded soils? The knowns, known unknowns, and unknowns. Front. Sustain. 2018, 2, 68. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Gupta, R.; Singh, R.L. Microbes and environment. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2017; pp. 43–84. [Google Scholar]
- Dutta, S.; Podile, A.R. Plant growth promoting rhizobacteria (PGPR): The bugs to debug the root zone. Crit. Rev. Microbiol. 2010, 36, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, D.; Yan, J.; Zhang, Y.; Wang, H.; Zhang, J.; Ahmed, T.; Li, B. Effects of Plant-Growth-Promoting Fungi on Eggplant (Solanum melongena L.) in Newly Reclaimed Land. Agriculture 2021, 11, 1036. [Google Scholar] [CrossRef]
- Ali, L.; Manzoor, N.; Li, X.; Naveed, M.; Nadeem, S.; Waqas, M.; Khalid, M.; Abbas, A.; Ahmed, T.; Li, B.; et al. Impact of Corn Cob-Derived Biochar in Altering Soil Quality, Biochemical Status and Improving Maize Growth under Drought Stress. Agronomy 2021, 11, 2300. [Google Scholar] [CrossRef]
- Souza, R.d.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.; Reddy, M.; El Enshasy, H. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Adesemoye, A.O. Improvement of crop protection and yield in hostile agroecological conditions with PGPR-based biofertilizer formulations. In Bioformulations: For Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; pp. 199–211. [Google Scholar]
- Kalam, S.; Basu, A.; Podile, A.R. Functional and molecular characterization of plant growth promoting Bacillus isolates from tomato rhizosphere. Heliyon 2020, 6, e04734. [Google Scholar] [CrossRef] [PubMed]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.-S.; Patra, J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef]
- Mehta, S.; Nautiyal, C.S. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 2001, 43, 51–56. [Google Scholar] [CrossRef]
- Kuan, K.B.; Othman, R.; Rahim, K.A.; Shamsuddin, Z.H. Plant Growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 2016, 11, e0152478. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, A.; Saini, R.; Sharma, J.C. Plant growth promoting rhizobacteria and their biological properties for soil enrichment and growth promotion. J. Plant Nutr. 2021, 45, 273–299. [Google Scholar] [CrossRef]
- Olenska, E.; Malek, W.; Wojcik, I.; Swiecicka, I.; Thijs, S.; Vangronsveld, J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci. Total Environ. 2020, 743, 140682. [Google Scholar] [CrossRef]
- Abdallah, Y.; Yang, M.; Zhang, M.; Masum, M.M.; Ogunyemi, S.O.; Hossain, A.; An, Q.; Yan, C.; Li, B. Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Lett. Appl. Microbiol. 2019, 68, 423–429. [Google Scholar] [CrossRef]
- Kumar, V.; Narula, N. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum. Biol. Fertil. Soil. 1999, 27, 301–305. [Google Scholar] [CrossRef]
- Murugappan, R.; Aravinth, A.; Karthikeyan, M. Chemical and structural characterization of hydroxamate siderophore produced by marine Vibrio harveyi. J. Ind. Microbiol. Biotechnol. 2011, 38, 265–273. [Google Scholar] [CrossRef]
- Tang, A.; Haruna, A.O.; Majid, N.M.A.; Jalloh, M.B. Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms 2020, 8, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khamna, S.; Yokota, A.; Lumyong, S. Actinomycetes isolated from medicinal plant rhizosphere soils: Diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 2009, 25, 649–655. [Google Scholar] [CrossRef]
- Tomah, A.A.; Abd Alamer, I.S.; Li, B.; Zhang, J.-Z. A new species of Trichoderma and gliotoxin role: A new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper. Biol. Control 2020, 145, 104261. [Google Scholar] [CrossRef]
- Alamer, A.; Sabah, I.; Tomah, A.A.; Li, B.; Zhang, J.-Z. Isolation, identification and characterization of rhizobacteria strains for biological control of bacterial wilt (Ralstonia solanacearum) of eggplant in China. Agriculture 2020, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.; Biosciences, I.; Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2011, 2, 60–61. [Google Scholar]
- Silvestro, D.; Michalak, I. raxmlGUI: A graphical front-end for RAxML. Org. Divers. Evol. 2012, 12, 335–337. [Google Scholar] [CrossRef]
- Wissuwa, M. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol. 2003, 133, 1947–1958. [Google Scholar] [CrossRef] [Green Version]
- Azaroual, S.E.; Hazzoumi, Z.; Mernissi, N.E.; Aasfar, A.; Kadmiri, I.M.; Bouizgarne, B. Role of Inorganic Phosphate Solubilizing Bacilli Isolated from Moroccan Phosphate Rock Mine and RhizosphereSoils in Wheat (Triticum aestivum L) Phosphorus Uptake. Curr. Microbiol. 2020, 77, 2391–2404. [Google Scholar] [CrossRef]
- Hii, Y.S.; San, C.Y.; Lau, S.W.; Danquah, M.K. Isolation and characterisation of phosphate solubilizing microorganisms from peat. Biocatal. Agric. Biotechnol. 2020, 26, 101643. [Google Scholar] [CrossRef]
- Pastore, G.; Kaiser, K.; Kernchen, S.; Spohn, M. Microbial release of apatite- and goethite-bound phosphate in acidic forest soils. Geoderma 2020, 370, 114360. [Google Scholar] [CrossRef]
- Mpanga, I.K.; Ludewig, U.; Dapaah, H.K.; Neumann, G. Acquisition of rock phosphate by combined application of ammonium fertilizers and Bacillus amyloliquefaciens FZB42 in maize as affected by soil pH. J. Appl. Microbiol. 2020, 129, 947–957. [Google Scholar] [CrossRef]
- Sheng, M.M.; Jia, H.K.; Zhang, G.Y.; Zeng, L.N.; Zhang, T.T.; Long, Y.H.; Lan, J.; Hu, Z.Q.; Zeng, Z.; Wang, B.; et al. Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans. J. Microbiol. Biotechnol. 2020, 30, 689–699. [Google Scholar] [CrossRef]
- Parveen, S.R.; Latha, D. Characterization of Siderophore Producing Pseudomonas sp. for its Plant Growth Promoting Properties. Biosci. Biotechnol. Res. Commun. 2019, 12, 1031–1037. [Google Scholar] [CrossRef]
- Rengel, Z.; Marschner, P. Nutrient availability and management in the rhizosphere: Exploiting genotypic differences. New Phytol. 2005, 168, 305–312. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Loh, B.; Leptihn, S.; Ahmed, T.; Li, B. A novel NRPS cluster, acquired by horizontal gene transfer from algae, regulates siderophore iron metabolism in Burkholderia seminalis R456. Int. J. Biol. Macromol. 2021, 182, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Lou, Y.; Hafeez, R.; Li, X.; Hossain, A.; Xie, T.; Lin, L.; Li, B.; Yin, Y.; Yan, J. Functional analysis and genome mining reveal high potential of biocontrol and plant growth promotion in nodule-inhabiting bacteria within Paenibacillus polymyxa Complex. Front. Microbiol. 2021, 11, 3627. [Google Scholar] [CrossRef]
- Gajalakshmi, K.; Dhivya, K. Characterization of Potential Plant Growth Promoting Rhizobacteria Isolated from Rhizospheric soil of Banana (Musa paradisiaca L.). Res. J. Biotechnol. 2021, 16, 140–145. [Google Scholar]
- Altinkaynak, H.; Ozkoc, I. Isolation and molecular characterization of plant growth promoting bacteria from the rhizosphere of orchids in Turkey. Rhizosphere 2020, 16, 100280. [Google Scholar] [CrossRef]
- Henri, F.; Laurette, N.N.; Annette, D.; John, Q.; Wolfgang, M.; Francois-Xavier, E.; Dieudonne, N. Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afr. J. Microbiol. Res. 2008, 2, 171–178. [Google Scholar]
- Zhang, M.C.; Wang, X.X.; Ahmed, T.; Liu, M.J.; Wu, Z.F.; Luo, J.Y.; Tian, Y.; Jiang, H.B.; Wang, Y.L.; Sun, G.C.; et al. Identification of genes involved in antifungal activity of Burkholderia seminalis against Rhizoctonia solani using Tn5 transposon mutation method. Pathogens 2020, 9, 797. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.M.; Zhu, B.; Ibrahim, M.; Li, B.; Xie, G.L.; Li, H.Y. Antibacterial activity and mechanism of action of chitosan solution against apricot fruit rot pathogen Burkholderia seminalis. Carbohydr. Res. 2011, 346, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, A.; Mahenthiralingam, E.; Thickett, K.M.; Honeybourne, D.; Maiden, M.C.; Govan, J.R.; Speert, D.P.; LiPuma, J.J.; Vandamme, P.; Dowson, C.G. Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J. Clin. Microbiol. 2005, 43, 4665–4673. [Google Scholar] [CrossRef] [Green Version]
- Vanlaere, E.; LiPuma, J.J.; Baldwin, A.; Henry, D.; De Brandt, E.; Mahenthiralingam, E.; Speert, D.; Dowson, C.; Vandamme, P. Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int. J. Syst. Evol. Microbiol. 2008, 58, 1580–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.; Ibrahim, M.; Cui, Z.Q.; Xie, G.L.; Jin, G.L.; Kube, M.; Li, B.; Zhou, X.P. Multi-omics analysis of niche specificity provides new insights into ecological adaptation in bacteria. ISME J. 2016, 10, 2072–2075. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Liu, B.P.; Yu, R.R.; Lou, M.M.; Wang, Y.L.; Xie, G.L.; Li, H.Y.; Sun, G.C. Phenotypic and molecular characterization of rhizobacterium Burkholderia sp. strain R456 antagonistic to Rhizoctonia solani, sheath blight of rice. World J. Microbiol. Biotechnol. 2011, 27, 2305–2313. [Google Scholar] [CrossRef]
- Li, B.; Fang, Y.; Zhang, G.Q.; Yu, R.R.; Lou, M.M.; Xie, G.L.; Wang, Y.L.; Sun, G.C. Molecular characterization of Burkholderia cepacia complex isolates causing bacterial fruit rot of apricot. Plant Pathol. J. 2010, 26, 223–230. [Google Scholar] [CrossRef] [Green Version]
Strains | P-Solubilization Ability (cm) | Siderophore Production (cm) | N-Fixation | |||
---|---|---|---|---|---|---|
pH 5.0 | pH 7.0 | pH 5.0 | pH 7.0 | pH 5.0 | pH 7.0 | |
ZJ3-12 | 1.16 ± 0.05 d | 1.12 ± 0.08 c | 1.11 ± 0.21 cd | 0.94 ± 0.06 c | + | + |
ZJ5 | 1.20 ± 0.05 cd | 1.17 ± 0.06 c | 1.24 ± 0.19 b | 0.99 ± 0.05 c | + | + |
ZJ9 | 1.31 ± 0.13 ab | 1.18 ± 0.10 c | 1.06 ± 0.11 d | 0.85 ± 0.03 d | + | + |
ZJ62 | 1.40 ± 0.06 a | 1.45 ± 0.04 a | 1.21 ± 0.15 bc | 1.20 ± 0.09 a | + | + |
ZJ174 | 1.26 ± 0.13 bc | 1.25 ± 0.04 b | 2.12 ± 0.12 a | 1.10 ± 0.08 b | + | + |
Strains (pH 5.0) | IAA (µg/mL) | Strains (pH 7.0) | IAA (µg/mL) |
---|---|---|---|
ZJ3-12 | 29.58 ± 1.38 a | ZJ3-12 | 67.33 ± 2.60 b |
ZJ5 | 11.83 ± 0.63 d | ZJ5 | 123.92 ± 1.70 a |
ZJ9 | 20.75 ± 1.09 b | ZJ9 | 70.17 ± 0.52 b |
ZJ62 | 9.92 ± 0.80 e | ZJ62 | 23.25 ± 1.09 c |
ZJ174 | 17.67 ± 0.63 c | ZJ174 | 18.58 ± 0.38 d |
Strains | SH (cm) | GPE% | RL (cm) | GPE% | SFW (g) | GPE% | SDW (g) | GPE% | RFW (g) | GPE% | RDW (g) | GPE% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZJ3-12 | 16.67 ± 0.46 | 25.45 b | 32.80 ± 0.88 | 42.20 c | 14.69 ± 0.47 | 50.17 c | 1.91 ± 0.11 | 44.89 ab | 3.44 ± 0.22 | 107.38 b | 0.51 ± 0.06 | 53.42 a |
ZJ5 | 14.95 ± 0.53 | 12.52 c | 30.08 ± 0.98 | 30.40 d | 11.36 ± 0.47 | 16.05 d | 1.50 ± 0.07 | 13.48 c | 2.22 ± 0.19 | 33.77 c | 0.36 ± 0.05 | 8.32 c |
ZJ9 | 17.87 ± 0.52 | 34.50 a | 29.12 ± 0.71 | 26.22 e | 16.54 ± 0.37 | 69.06 b | 1.81 ± 0.32 | 37.39 b | 3.60 ± 0.41 | 117.01 b | 0.43 ± 0.05 | 28.95 b |
ZJ62 | 16.42 ± 0.80 | 23.57 b | 34.45 ± 1.29 | 49.33 a | 16.18 ± 0.87 | 65.35 b | 1.90 ± 0.11 | 43.62 ab | 3.63 ± 0.37 | 118.41 b | 0.46 ± 0.07 | 38.49 ab |
ZJ174 | 16.38 ± 0.95 | 23.24 b | 33.72 ± 0.86 | 46.16 b | 17.26 ± 0.71 | 76.37 a | 2.04 ± 0.21 | 54.80 a | 4.23 ± 0.38 | 154.89 a | 0.47 ± 0.07 | 39.51 ab |
Control | 13.29 ± 0.45 | — | 23.07 ± 0.59 | — | 9.79 ± 0.504 | — | 1.32 ± 0.05 | — | 1.66 ± 0.15 | — | 0.33 ± 0.04 | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yan, J.; Li, D.; Jiang, Y.; Zhang, Y.; Wang, H.; Zhang, J.; Ahmed, T.; Li, B. Isolation and Molecular Characterization of Plant-Growth-Promoting Bacteria and Their Effect on Eggplant (Solanum melongena) Growth. Agriculture 2021, 11, 1258. https://doi.org/10.3390/agriculture11121258
Li X, Yan J, Li D, Jiang Y, Zhang Y, Wang H, Zhang J, Ahmed T, Li B. Isolation and Molecular Characterization of Plant-Growth-Promoting Bacteria and Their Effect on Eggplant (Solanum melongena) Growth. Agriculture. 2021; 11(12):1258. https://doi.org/10.3390/agriculture11121258
Chicago/Turabian StyleLi, Xuqing, Jianli Yan, Dingyi Li, Yugen Jiang, Ya Zhang, Hong Wang, Jingze Zhang, Temoor Ahmed, and Bin Li. 2021. "Isolation and Molecular Characterization of Plant-Growth-Promoting Bacteria and Their Effect on Eggplant (Solanum melongena) Growth" Agriculture 11, no. 12: 1258. https://doi.org/10.3390/agriculture11121258
APA StyleLi, X., Yan, J., Li, D., Jiang, Y., Zhang, Y., Wang, H., Zhang, J., Ahmed, T., & Li, B. (2021). Isolation and Molecular Characterization of Plant-Growth-Promoting Bacteria and Their Effect on Eggplant (Solanum melongena) Growth. Agriculture, 11(12), 1258. https://doi.org/10.3390/agriculture11121258