Effect of Aviation Spray Adjuvant on Improving Control of Fusarium Head Blight and Reducing Mycotoxin Contamination in Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instruments
2.3. Plants and Diseases
2.4. Field Trials
2.5. Determination of Droplets Deposition
2.6. Control Efficacy
2.7. Wheat Yield Assessment
2.8. Pesticide Residues Analysis
2.9. Mycotoxin Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Effect of Aviation Spray Adjuvants on Droplet Deposition
3.2. Effect of Aviation Spray Adjuvants on FHB Control and Wheat Yield
3.3. Effect of Aviation Spray Adjuvants on Prothioconazole Residue and DON Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guttieri, M.J.; Seabourn, B.W.; Liu, C.; Baenziger, P.S.; Waters, B.M. Distribution of cadmium, iron, and zinc in millstreams of hard winter wheat (Triticum aestivum L.). J. Agri. Food Chem. 2015, 63, 10681–10688. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, M.; Krska, R.; Buerstmayr, H.; Josephs, R.; Schumacher, R.; Grausgruber, H.; Ruckenbauer, P. Fusarium head blight reaction and accumulation of deoxynivalenol, moniliformin and zearalenone in wheat grains. Cereal Res. Commun. 2003, 31, 407–411. [Google Scholar] [CrossRef]
- Karlsson, I.; Persson, P.; Friberg, H. Fusarium head blight from a microbiome perspective. Front. Microbiol. 2021, 12, 628373. [Google Scholar] [CrossRef] [PubMed]
- Salgado, J.D.; Wallhead, M.; Madden, L.V.; Paul, P.A. Grain harvesting strategies to minimize grain quality losses due to Fusarium head blight in wheat. Plant Dis. 2011, 95, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Rózewicz, M.; Wyzińska, M.; Grabiński, J. The most important fungal diseases of cereals—Problems and possible solutions. Agronomy 2021, 11, 714. [Google Scholar] [CrossRef]
- Sun, J.; Wu, Y. Evaluation of dietary exposure to deoxynivalenol (DON) and its derivatives from cereals in China. Food Control 2016, 69, 90–99. [Google Scholar] [CrossRef]
- Gao, Q.; Ma, J.; Liu, Q.; Liao, M.; Xiao, J.; Jiang, M.; Shi, Y.; Cao, H. Effect of application method and formulation on prothioconazole residue behavior and mycotoxin contamination in wheat. Sci. Total Environ. 2020, 729, 139019. [Google Scholar] [CrossRef]
- Iost Filho, F.H.; Heldens, W.B.; Kong, Z.; de Lange, E.S. Drones: Innovative technology for use in precision pest management. J. Econo. Entomol. 2020, 113, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.C.; Qiu, B.J.; Xue, X.Y.; Chen, C.; Xu, Z.F.; Zhou, Q.Q. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Lan, Y.; Chen, S. Current status and trends of plant protection UAV and its spraying technology in China. Int. J. Precis. Agric. Aviat. 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Reis, E.M.; Zanatta, M.; Reis, A.C. Relationship between efficacy of Fusarium head blight chemical control and deoxynivalenol contamination on wheat kernels. J. Agri. Sci. 2020, 12, 227–234. [Google Scholar] [CrossRef]
- Yoshida, M.; Nakajima, T. Chemical control of Fusarium head blight and mycotoxin contamination in barley and wheat based on mycotoxin accumulation during grain development. Mycotoxins 2012, 62, 19–67. [Google Scholar] [CrossRef]
- Kheiri, A.; Moosawi Jorf, S.A.; Malihipour, A.; Saremi, H.; Nikkhah, M. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int. J. Biol. Macromol. 2016, 93, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Doohan, F.M. Comparison of the efficacy of chitosan with that of a fluorescent pseudomonad for the control of Fusarium head blight disease of cereals and associated mycotoxin contamination of grain. Biol. Control 2009, 48, 48–54. [Google Scholar] [CrossRef]
- Gunupuru, L.R.; Patel, J.S.; Sumarah, M.W.; Renaud, J.B.; Mantin, E.G.; Prithiviraj, B. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. PLoS ONE 2019, 14, e0220562. [Google Scholar] [CrossRef]
- Casida, J.E.; Durkin, K.A. Pesticide chemical research in toxicology: Lessons from nature. Chem. Res. Toxico. 2017, 30, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Jiang, H.T.; Chang, J.; Wang, Y.H.; Li, J.Z.; Wang, H.L. Gonadal disruption after single dose exposure of prothioconazole and prothioconazole-desthio in male lizards (Eremias argus). Environ. Poll. 2019, 255, 113297. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.N.; He, X.K.; Song, J.L.; Wang, Z.C.; Wang, C.L.; Wang, S.L.; Wu, R.C.; Meng, Y.H. Drift potential of UAV with adjuvants in aerial applications. Int. J. Agric. Biol. Eng. 2018, 11, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.H.; Lan, Y.B.; Mei, G.Y.; Guo, Y.W.; Song, J.L.; Wang, Z.G. Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control. Int. J. Agric. Biol. Eng. 2018, 11, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Xin, F.; Lou, Z.; Zhou, T.; Wang, G.; Han, X.; Lan, Y.; Fu, W. Effect of aviation spray adjuvants on defoliant droplet deposition and cotton defoliation efficacy sprayed by unmanned aerial vehicles. Agronomy 2019, 9, 217. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Wang, G.; Zhou, Y.; Wang, M.; Yang, D.; Yuan, H.; Yan, X. Water-soluble food dye of Allura Red as a tracer to determine the spray deposition of pesticide on target crops. Pest Manag. Sci. 2019, 75, 2592–2597. [Google Scholar] [CrossRef]
- Zhu, H.; Salyani, M.; Fox, R.D. A portable scanning system for evaluation of spray deposit distribution. Comput. Electron. Agric. 2011, 76, 38–43. [Google Scholar] [CrossRef]
- Hoffmann, W.C.; Hewitt, A.J. Comparison of three imaging systems for water-sensitive papers. Appl. Eng. Agric. 2005, 21, 961–964. [Google Scholar] [CrossRef]
- Klein, R.N.; Golus, J.A.; Nelms, K.L. The effect of adjuvants, pesticide formulation, and spray nozzle tips on spray droplet size. J. ASTM Int. 2009, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Liu, W.L.; Pan, Z.P.; Li, C.Y.; Zhang, Y.P.; Zhu, T.S.; Huang, S.H.; Liao, Y.L. The influence of adjuvants on the characteristics of aerial spraying about the emanectin benzoate ME and the control efficacy of the thrips. J. Environ. Entomol. 2017, 39, 940–944. [Google Scholar]
- He, L.; Wang, G.B.; Hu, T.; Meng, Y.H.; Yan, X.J.; Yuan, H.Z. Influences of spray adjuvants and spray volume on the droplet deposition distribution with unmanned aerial vehicle (UAV) spraying on rice. J. Plant Prot. 2017, 44, 1046–1052. [Google Scholar]
- Han, Q.Q.; Zhu, C.; Pan, J.L.; Chen, A.L. Preparation and application performance of pinolene spray adjuvant. Chin. J. Pest. Sci. 2021, 23, 176–182. [Google Scholar]
- Zang, Y.; Zhou, Z.; Zang, Y.; Luo, X.; Liao, J.; Ming, R.; Song, C.; Zi, L.; Jiang, R.; Xiao, H. Optimization of aviation adjuvants based on wettability analysis for insecticide application on maize using UAV. Int. J. Agric. Biol. Eng. 2021, 14, 11–18. [Google Scholar] [CrossRef]
- Cromey, M.G.; Lauren, D.R.; Parkes, R.A.; Sinclair, K.I.; Shorter, S.C.; Wallace, A.R. Control of Fusarium head blight of wheat with fungicides. Australas. Plant Path. 2001, 30, 301–308. [Google Scholar] [CrossRef]
- Xu, C.; Cao, L.; Bilal, M.; Cao, C.; Zhao, P.; Zhang, H.; Huang, Q. Multifunctional manganese-based carboxymethyl chitosan hydrogels for pH-triggered pesticide release and enhanced fungicidal activity. Carbohyd. Polym. 2021, 262, 117933. [Google Scholar] [CrossRef]
- Rotter, B.A.; Prelusky, D.B.; Pestka, J.J. Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Env. Health 1996, 48, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Sobrova, P.; Adam, V.; Vasatkova, A.; Beklova, M.; Zeman, L.; Kizek, R. Deoxynivalenol and its toxicity. Interdisc. Toxicol. 2010, 3, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Váňová, M.; Hajšlová, J.; Havlová, P.; Matušinsky, P.; Lancová, K.; Spitzerová, D. Effect of spring barley protection on the production of Fusarium spp. mycotoxins in grain and malt using fungicides in field trials. Plant Soil Environ. 2004, 50, 447–455. [Google Scholar] [CrossRef] [Green Version]
Treatment a | Spraying Equipment | Dosage b (mL ha−1) | Adjuvant c (mL ha−1) | Water (L ha−1) | Flight Speed (m s−1) | Height d (m) |
---|---|---|---|---|---|---|
T1 | UAV | 675 | 0 | 15 | 5 | 2 |
T2 | UAV | 675 | 150 | 15 | 5 | 2 |
T3 | Boom sprayer | 675 | 0 | 300 | / | 0.5 |
T4 | UAV | 0 | 0 | 15 | 5 | 2 |
Wheat Canopy | Treatment a | Sample Points | Droplets Density (Droplets Number cm−2) | Deposition (μg cm−2) | ||
---|---|---|---|---|---|---|
Mean | RSD | Mean | RSD | |||
Upper layer | Pro | 1 | 51.97 ± 1.39 | 9.91 | 1.18 ± 0.18 | 43.09 |
2 | 157.70 ± 1.55 | 1.47 ± 0.20 | ||||
3 | 172.40 ± 3.90 | 3.02 ± 0.13 | ||||
4 | 142.30 ± 3.48 | 1.60 ± 0.07 | ||||
5 | 81.87 ± 0.67 | 1.55 ± 0.27 | ||||
6 | 62.07 ± 1.59 | 1.05 ± 0.07 | ||||
Pro + AD | 1 | 77.93 ± 3.88 | 3.28 | 1.49 ± 0.14 | 30.98 | |
2 | 242.30 ± 3.96 | 2.33 ± 0.11 | ||||
3 | 184.20 ± 4.84 | 2.93 ± 0.17 | ||||
4 | 104.30 ± 3.41 | 2.69 ± 0.21 | ||||
5 | 95.50 ± 3.73 | 2.48 ± 0.45 | ||||
6 | 65.23 ± 3.55 | 1.23 ± 0.09 | ||||
Middle layer | Pro | 1 | 21.27 ± 1.42 | 60.35 | 0.05 ± 0.03 | 79.34 |
2 | 47.30 ± 0.46 | 0.19 ± 0.03 | ||||
3 | 70.70 ± 5.84 | 0.65 ± 0.02 | ||||
4 | 34.30 ± 0.26 | 0.55 ± 0.05 | ||||
5 | 24.30 ± 2.71 | 0.45 ± 0.08 | ||||
6 | 18.30 ± 0.85 | 0.06 ± 0.02 | ||||
Pro + AD | 1 | 27.00 ± 0.47 | 14.41 | 0.26 ± 0.04 | 41.12 | |
2 | 45.80 ± 2.87 | 0.51 ± 0.05 | ||||
3 | 74.90 ± 1.42 | 0.56 ± 0.04 | ||||
4 | 36.30 ± 5.33 | 0.72 ± 0.05 | ||||
5 | 31.00 ± 8.11 | 0.63 ± 0.07 | ||||
6 | 22.10 ± 1.15 | 0.22 ± 0.07 | ||||
Lower layer | Pro | 1 | 7.80 ± 0.58 | 46.54 | 0.03 ± 0.01 | 63.59 |
2 | 15.90 ± 2.86 | 0.05 ± 0.01 | ||||
3 | 8.50 ± 1.08 | 0.07 ± 0.02 | ||||
4 | 8.10 ± 1.00 | 0.11 ± 0.02 | ||||
5 | 5.30 ± 0.15 | 0.03 ± 0.01 | ||||
6 | 3.90 ± 0.31 | 0.02 ± 0.01 | ||||
Pro + AD | 1 | 14.80 ± 2.66 | 23.36 | 0.07 ± 0.02 | 43.86 | |
2 | 24.70 ± 3.27 | 0.08 ± 0.02 | ||||
3 | 14.40 ± 1.04 | 0.16 ± 0.03 | ||||
4 | 13.10 ± 2.63 | 0.18 ± 0.04 | ||||
5 | 8.80 ± 0.45 | 0.12 ± 0.01 | ||||
6 | 7.50 ± 0.49 | 0.08 ± 0.02 |
Treatment a | Disease Index | Control Effect (%) | Yield (kg hm−2) |
---|---|---|---|
T1 | 1.52 ± 0.72 b | 96.64 ± 1.58 b | 9334.1 ± 148.8 c |
T2 | 0.38 ± 0.44 b | 99.16 ± 0.96 a | 9981.6 ± 114.9 a |
T3 | 0.48 ± 0.33 b | 98.94 ± 0.72 a | 9644.4 ± 117.7 b |
T4 | 45.41 ± 16.52 a | / | 7832.6 ± 111.1 d |
Treatment a | Prothioconazole-Desthio in the Wheat Plant (mg kg−1) | Prothioconazole-Desthio in Wheat Grain (mg kg−1) | DON in Wheat Grain (mg kg−1) |
---|---|---|---|
T1 | 0.12 | ND | 0.18 |
T2 | 0.13 | ND | ND |
T3 | 0.22 | ND | 0.13 |
T4 | — | — | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Wang, M.; Zhu, Y.; Shi, X.; Liu, X.; Chen, Y.; Xu, J.; Yang, D.; Yuan, H. Effect of Aviation Spray Adjuvant on Improving Control of Fusarium Head Blight and Reducing Mycotoxin Contamination in Wheat. Agriculture 2021, 11, 1284. https://doi.org/10.3390/agriculture11121284
Yan X, Wang M, Zhu Y, Shi X, Liu X, Chen Y, Xu J, Yang D, Yuan H. Effect of Aviation Spray Adjuvant on Improving Control of Fusarium Head Blight and Reducing Mycotoxin Contamination in Wheat. Agriculture. 2021; 11(12):1284. https://doi.org/10.3390/agriculture11121284
Chicago/Turabian StyleYan, Xiaojing, Ming Wang, Yuxiao Zhu, Xin Shi, Xiaohui Liu, Yixuan Chen, Jun Xu, Daibin Yang, and Huizhu Yuan. 2021. "Effect of Aviation Spray Adjuvant on Improving Control of Fusarium Head Blight and Reducing Mycotoxin Contamination in Wheat" Agriculture 11, no. 12: 1284. https://doi.org/10.3390/agriculture11121284
APA StyleYan, X., Wang, M., Zhu, Y., Shi, X., Liu, X., Chen, Y., Xu, J., Yang, D., & Yuan, H. (2021). Effect of Aviation Spray Adjuvant on Improving Control of Fusarium Head Blight and Reducing Mycotoxin Contamination in Wheat. Agriculture, 11(12), 1284. https://doi.org/10.3390/agriculture11121284