Multiscale Assessments of Three Reanalysis Temperature Data Systems over China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. GLDAS Data
2.1.2. ERA5-Land Data
2.1.3. CLDAS Data
2.1.4. NAWS Observation Data
2.2. Data Processing
2.3. Metrics Used for Evaluation
3. Results Analysis
3.1. Evaluation of Overall Accuracy
3.1.1. Overall Accuracy during the Study Period
3.1.2. Evaluation at Individual Stations
3.2. Evaluation at Various Time Scales
3.2.1. At Different Times of the Day
3.2.2. Daily Evaluation
3.2.3. Monthly Changes
3.2.4. Seasonal Changes
3.3. Evaluation over Subregions
3.3.1. Evaluation over Subregions Divided according to Climate Regimes
3.3.2. Evaluation over Administrative Regions
4. Discussion
4.1. Impact of Terrain Elevation on the Accuracy of Gridded Dataset
4.2. Impact of Slope on the Accuracy of Gridded Dataset
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chen, S.; Gong, B. Response and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- Rolland, C. Spatial and seasonal variations of air temperature lapse rates in Alpine regions. J. Clim. 2003, 16, 1032–1046. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Duan, S.-B.; Zhang, X.; Wu, P.; Huang, C.; Leng, P.; Gao, M. Evaluation of seven atmospheric profiles from reanalysis and satellite-derived products: Implication for single-channel land surface temperature retrieval. Remote Sens. 2020, 12, 791. [Google Scholar] [CrossRef] [Green Version]
- Chronopoulos, K.; Tsiros, I.; Alvertos, N.; Dimopoulos, I. Estimation of microclimatic data in remote mountainous areas using an artificial neural network model-based approach. Glob. NEST J. 2010, 12, 384–389. [Google Scholar]
- Shi, G.; Sun, Z.; Qiu, X.; Zeng, Y.; Chen, P.; Liu, C. Comparison of two air temperature gridding methods over complex terrain in China. Theor. Appl. Climatol. 2018, 133, 1009–1019. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Feddema, J. Influence of spatially variable instrument networks on climatic averages. Geophys. Res. Lett. 1991, 18, 2249–2251. [Google Scholar] [CrossRef] [Green Version]
- Lipton, A.E.; Ward, J.M. Satellite-view biases in retrieved surface temperatures in mountain areas. Remote Sens. Environ. 1997, 60, 92–100. [Google Scholar] [CrossRef]
- Neteler, M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens. 2010, 2, 333–351. [Google Scholar] [CrossRef] [Green Version]
- Vogt, J.V.; Viau, A.A.; Paquet, F. Mapping regional air temperature fields using satellite-derived surface skin temperatures. Int. J. Climatol. 1997, 17, 1559–1579. [Google Scholar] [CrossRef]
- Han, S.; Shi, C.; Xu, B.; Sun, S.; Zhang, T.; Jiang, L.; Liang, X. Development and Evaluation of Hourly and Kilometer Resolution Retrospective and Real-Time Surface Meteorological Blended Forcing Dataset(SMBFD) in China. J. Meteorol. Res. 2019, 33, 1168–1181. [Google Scholar] [CrossRef]
- Yang, F.; Lu, H.; Yang, K.; He, J.; Wang, W.; Wright, J.S.; Li, C.; Han, M.; Li, Y. Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China. Hydrol. Earth Syst. Sci. 2017, 21, 5805–5821. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Pan, Y.; Gu, J.; Xu, B.; Han, S.; Zhu, Z.; Zhang, L.; Sun, S.; Jiang, Z. A review of multi-source meteorological data fusion products. Acta Meteorol. Sin. 2019, 77, 774–783. (In Chinese) [Google Scholar] [CrossRef]
- Xia, Y.; Hao, Z.; Shi, C.; Li, Y.; Meng, J.; Xu, T.; Wu, X.; Zhang, B. Regional and global land data assimilation systems: Innovations, challenges, and prospects. J. Meteorol. Res. 2019, 33, 159–189. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.; Fiorino, M.; Potter, G. Ncep–doe amip-ii reanalysis (r-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar]
- Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Heng, Y.; Konopka, P.; Müller, R.; Vogel, B. From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 2019, 19, 3097–3124. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data Discuss. 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Shi, C.; Xie, Z.; Qian, H.; Liang, M.; Yang, X. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci. 2011, 54, 1430–1440. [Google Scholar] [CrossRef]
- Han, S.; Shi, C.; Jiang, Z.; Xu, B.; Li, X.; Zhang, T.; Jiang, L.; Liang, X.; Zhu, Z.; Liu, J. Development and progress of high resolution CMA land surface data assimilation system. Adv. Meteorol. Sci. Technol. 2018, 8, 116. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, T.; Congbin, F. Applicability Evaluation of Surface Air Temperature from Several Reanalysis Datasets in China. Plateau Meteorol. 2009, 28, 594–606. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, T.; Fu, C.; Ke, Z.; Guo, W. Global atmosphere reanalysis datasets: Current status and recent advances. Adv. Earth Sci. 2010, 25, 241–254. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, S.; He, W.; Jiang, Y. Evaluation of NCEP-2 and CFSR reanalysis seasonal temperature data in China using detrended fluctuation analysis. Int. J. Climatol. 2018, 38, 252–263. [Google Scholar] [CrossRef]
- Xie, X.; He, J.; Qi, L. A review on applicability evaluation of four reanalysis datasets in China. J. Meteorol. Environ. 2011, 27, 58–65. (In Chinese) [Google Scholar]
- Jiang, Y.; Han, S.; Shi, C.; Gao, T.; Zhen, H.; Liu, X. Evaluation of HRCLDAS and ERA5 Datasets for Near-Surface Wind over Hainan Island and South China Sea. Atmosphere 2021, 12, 766. [Google Scholar] [CrossRef]
- He, W.-p.; Zhao, S.-s. Assessment of the quality of NCEP-2 and CFSR reanalysis daily temperature in China based on long-range correlation. Clim. Dyn. 2018, 50, 493–505. [Google Scholar] [CrossRef]
- Han, S.; Liu, B.; Shi, C.; Liu, Y.; Qiu, M.; Sun, S. Evaluation of CLDAS and GLDAS datasets for Near-surface Air Temperature over major land areas of China. Sustainability 2020, 12, 4311. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, F. Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Clim. 2013, 26, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.V.; Peters-Lidard, C.D.; Tian, Y.; Houser, P.R.; Geiger, J.; Olden, S.; Lighty, L.; Eastman, J.L.; Doty, B.; Dirmeyer, P. Land information system: An interoperable framework for high resolution land surface modeling. Environ. Model. Softw. 2006, 21, 1402–1415. [Google Scholar] [CrossRef]
- Hua-lan, R.; Beaudoing, H.J.G.D.; Greenbelt, M.D. README Document for Global Land Data Assimilation System Version 1 (GLDAS-1) Products. 2011. Available online: ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS_V1/README.GLDAS.pdf (accessed on 5 September 2021).
- Rui, H.; Beaudoing, H. Readme Document for Global Land Data Assimilation System Version 2 (GLDAS-2) Products. GES DISC. 2011; Volume 2011, pp. 1–22. Available online: ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/GLDAS/README.GLDAS2.pdf (accessed on 5 September 2021).
- Wu, Z.; Feng, H.; He, H.; Zhou, J.; Zhang, Y. Evaluation of Soil Moisture Climatology and Anomaly Components Derived From ERA5-Land and GLDAS-2.1 in China. Water Resour. Manag. 2021, 35, 629–643. [Google Scholar] [CrossRef]
- Pelosi, A.; Terribile, F.; D’Urso, G.; Chirico, G.B. Comparison of ERA5-Land and UERRA MESCAN-SURFEX reanalysis data with spatially interpolated weather observations for the regional assessment of reference evapotranspiration. Water 2020, 12, 1669. [Google Scholar] [CrossRef]
- Camargo, L.R.; Schmidt, J. Simulation of multi-annual time series of solar photovoltaic power: Is the ERA5-land reanalysis the next big step? Sustain. Energy Technol. Assess. 2020, 42, 100829. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, Z.; Sun, C.; Liu, Y.; Li, J.; Ju, X.; Zhao, Y.; Li, Z.; Zhang, W.; Li, H. Development of Three-Step Quality Control System of Real-Time Observation Data from AWS in China. Meteorol. Mon. 2015, 41, 1268–1277. (In Chinese) [Google Scholar]
- Wang, Q.; Li, W.; Xiao, C.; Ai, W. Evaluation of High-Resolution Crop Model Meteorological Forcing Datasets at Regional Scale: Air Temperature and Precipitation over Major Land Areas of China. Atmosphere 2020, 11, 1011. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, H. Evaluation of nine sub-daily soil moisture model products over China using high-resolution in situ observations. J. Hydrol. 2020, 588, 125054. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, C.; Wang, H.; Han, S. Applicability assessment of CLDAS temperature data in China. Trans. Atmos. Sci. 2021, 44, 540–548. (In Chinese) [Google Scholar] [CrossRef]
- Ji, L.; Senay, G.B.; Verdin, J.P. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products. J. Hydrometeorol. 2015, 16, 2463–2480. [Google Scholar] [CrossRef]
- Cui, W.; Wang, W.; Wang, X.; Chen, X. Evaluation of GLDAS-1 and GLDAS-2 Forcing Data and Noah Model Simulations over China at the Monthly Scale. J. Hydrometeorol. 2016, 17, 2815–2833. [Google Scholar] [CrossRef]
- Kann, A.; Pistotnik, G.; Bica, B. Research. INCA-CE: A Central European initiative in nowcasting severe weather and its applications. Adv. Sci. Res. 2012, 8, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Haiden, T.; Kann, A.; Wittmann, C.; Pistotnik, G.; Bica, B.; Gruber, C.J.W. Forecasting. The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the Eastern Alpine region. Weather Forecast. 2011, 26, 166–183. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.; Ji, C.; Li, Y.; Deng, F.; Dong, M. Establishment and assessment of hourly high-resolution gridded air temperature data sets in Zhejiang, China. Meteorol. Appl. 2019, 26, 396–408. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Kang, S.; Pepin, N.; Flügel, W.-A.; Yan, Y.; Behrawan, H.; Huang, J.J.G. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob. Planet. Chang. 2010, 71, 124–133. [Google Scholar] [CrossRef]
- You, Q.; Fraedrich, K.; Ren, G.; Pepin, N.; Kang, S. Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. Int. J. Climatol. 2013, 33, 1337–1347. [Google Scholar] [CrossRef] [Green Version]
- Xie, A.; Ren, J.; Qin, X.; Kang, S. Feasibility comparison of reanalysis data from NCEP-I and NCEP-II in the Himalayas. J. Mt. Sci. 2009, 6, 56–65. [Google Scholar] [CrossRef]
- Gao, L.; Bernhardt, M.; Schulz, K. Elevation correction of ERA-Interim temperature data in complex terrain. Hydrol. Earth Syst. Sci. 2012, 16, 4661–4673. [Google Scholar] [CrossRef] [Green Version]
- Frauenfeld, O.W.; Zhang, T.; Serreze, M.C. Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Kun, Z.; Yan, X.; Zhenfang, H.; Min, G. Topography features of Qilian Mountains nature reserve based on SRTM DEM. Arid Land Geogr. 2020, 43, 1559–1566. (In Chinese) [Google Scholar]
Datasets | Spatial Coverage | Spatial Resolution | Temporal Resolution 1 | Data Type | Unit |
---|---|---|---|---|---|
NAWS | Over major land areas of China | 2265 Stations | Hourly | Point | °C |
GLDAS | 180° W–180° E; 60° S–90° N | 0.25° | Every 3 Hours | Grid | K |
ERA5-Land | 180° W–180° E; 60° S–90° N | 0.1° | Hourly | Grid | K |
CLDAS | 70°–140° E; 0°–60° N | 0.05° | Hourly | Grid | K |
Gridded Dataset | Average (°C) | COR | BIAS (°C) | RMSE (°C) |
---|---|---|---|---|
CLDAS | 13.875 | 0.998 | −0.053 | 0.833 |
ERA5-Land | 13.221 | 0.976 | −0.706 | 2.717 |
GLDAS | 13.549 | 0.970 | −0.378 | 2.911 |
Area | CLDAS | ERA5-Land | GLDAS | ||||||
---|---|---|---|---|---|---|---|---|---|
COR | BIAS (°C) | RMSE (°C) | COR | BIAS (°C) | RMSE (°C) | COR | BIAS (°C) | RMSE (°C) | |
Ⅰ | 0.997 | 0.023 | 1.000 | 0.963 | −0.883 | 3.689 | 0.958 | −0.011 | 3.734 |
Ⅱ | 0.998 | 0.058 | 0.586 | 0.891 | −5.156 | 6.76 | 0.896 | −3.93 | 5.62 |
Ⅲ | 0.987 | −0.139 | 1.004 | 0.935 | −1.195 | 2.526 | 0.89 | −1.858 | 3.433 |
Ⅳ | 0.995 | −0.097 | 0.851 | 0.919 | −3.247 | 5.18 | 0.909 | −3.201 | 5.072 |
Ⅴ | 0.996 | −0.073 | 0.752 | 0.977 | −0.735 | 1.926 | 0.967 | −0.564 | 2.223 |
Ⅵ | 0.997 | −0.044 | 0.828 | 0.984 | −0.183 | 1.973 | 0.978 | 0.292 | 2.324 |
Ⅶ | 0.998 | −0.042 | 0.842 | 0.989 | 0.011 | 2.271 | 0.985 | 0.047 | 2.634 |
Ⅷ | 0.998 | −0.087 | 0.797 | 0.987 | −0.109 | 2.265 | 0.981 | 0.299 | 2.733 |
Province | CLDAS | ERA5-Land | GLDAS | ||||||
---|---|---|---|---|---|---|---|---|---|
COR | BIAS (°C) | RMSE (°C) | COR | BIAS (°C) | RMSE (°C) | COR | BIAS (°C) | RMSE (°C) | |
Anhui | 0.997 | −0.013 | 0.735 | 0.987 | −0.164 | 1.596 | 0.983 | 0.226 | 1.841 |
Beijing | 0.997 | 0.023 | 0.881 | 0.983 | −0.638 | 2.355 | 0.979 | 0.132 | 2.541 |
Chongqing | 0.994 | −0.115 | 0.924 | 0.973 | −0.79 | 2.101 | 0.954 | −0.49 | 2.556 |
Fujian | 0.996 | −0.136 | 0.731 | 0.974 | −1.113 | 2.066 | 0.96 | −1.296 | 2.495 |
Gansu | 0.996 | −0.06 | 0.947 | 0.963 | −1.13 | 3.216 | 0.956 | −0.426 | 3.228 |
Guangdong | 0.996 | 0.187 | 0.612 | 0.97 | −0.842 | 1.823 | 0.955 | −0.231 | 2.039 |
Guangxi | 0.996 | 0.03 | 0.66 | 0.968 | −0.856 | 2.009 | 0.958 | −0.507 | 2.127 |
Guizhou | 0.99 | −0.107 | 0.992 | 0.933 | −1.678 | 3.035 | 0.896 | −2.481 | 4.053 |
Hainan | 0.991 | −0.311 | 0.725 | 0.948 | −0.965 | 1.807 | 0.932 | −1.202 | 2.15 |
Hebei | 0.998 | −0.039 | 0.858 | 0.987 | 0.1 | 2.023 | 0.982 | 0.67 | 2.408 |
Heilongjiang | 0.999 | 0.029 | 0.863 | 0.99 | 0.124 | 2.282 | 0.987 | 0.085 | 2.592 |
Henan | 0.997 | −0.149 | 0.782 | 0.985 | 0.083 | 1.876 | 0.982 | 0.554 | 2.093 |
Hubei | 0.996 | −0.098 | 0.812 | 0.981 | −0.497 | 1.933 | 0.97 | −0.36 | 2.337 |
Hunan | 0.997 | −0.151 | 0.746 | 0.983 | −0.43 | 1.75 | 0.973 | −0.323 | 2.109 |
Inner Mongolia | 0.999 | −0.107 | 0.717 | 0.989 | 0.093 | 2.202 | 0.983 | 0.506 | 2.727 |
Jiangsu | 0.998 | 0.114 | 0.656 | 0.99 | −0.237 | 1.42 | 0.987 | 0.203 | 1.63 |
Jiangxi | 0.997 | −0.113 | 0.716 | 0.983 | −0.219 | 1.661 | 0.976 | −0.17 | 1.954 |
Jilin | 0.998 | −0.122 | 0.866 | 0.988 | −0.186 | 2.317 | 0.983 | −0.092 | 2.731 |
Liaoning | 0.998 | −0.041 | 0.884 | 0.988 | −0.025 | 2.121 | 0.983 | 0.191 | 2.528 |
Ningxia | 0.997 | 0.039 | 0.97 | 0.983 | −0.031 | 2.131 | 0.974 | 0.931 | 2.805 |
Qinghai | 0.996 | 0.1 | 0.901 | 0.94 | −2.986 | 4.948 | 0.944 | −1.697 | 3.896 |
Shaanxi | 0.996 | 0.038 | 0.906 | 0.975 | −0.455 | 2.399 | 0.963 | −0.151 | 2.895 |
Shandong | 0.998 | −0.055 | 0.744 | 0.989 | 0.028 | 1.652 | 0.986 | 0.515 | 1.942 |
Shanghai | 0.999 | 0.001 | 0.442 | 0.991 | −0.448 | 1.339 | 0.986 | 0.769 | 1.704 |
Shanxi | 0.996 | 0.021 | 1.012 | 0.98 | −0.25 | 2.365 | 0.974 | 0.165 | 2.72 |
Sichuan | 0.996 | −0.153 | 0.782 | 0.932 | −2.536 | 4.49 | 0.915 | −2.127 | 4.423 |
Tianjing | 0.998 | 0.088 | 0.766 | 0.99 | −0.131 | 1.72 | 0.987 | 0.879 | 2.131 |
Tibet | 0.998 | −0.013 | 0.61 | 0.865 | −6.112 | 7.856 | 0.883 | −4.638 | 6.292 |
Xinjiang | 0.997 | 0.011 | 1.088 | 0.973 | 0.25 | 3.292 | 0.966 | 0.95 | 3.796 |
Yunnan | 0.995 | −0.097 | 0.813 | 0.974 | −1.133 | 2.155 | 0.962 | −0.913 | 2.401 |
Zhejiang | 0.996 | −0.212 | 0.867 | 0.981 | −0.861 | 1.936 | 0.972 | −1.09 | 2.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Han, S.; Shi, C. Multiscale Assessments of Three Reanalysis Temperature Data Systems over China. Agriculture 2021, 11, 1292. https://doi.org/10.3390/agriculture11121292
Huang X, Han S, Shi C. Multiscale Assessments of Three Reanalysis Temperature Data Systems over China. Agriculture. 2021; 11(12):1292. https://doi.org/10.3390/agriculture11121292
Chicago/Turabian StyleHuang, Xiaolong, Shuai Han, and Chunxiang Shi. 2021. "Multiscale Assessments of Three Reanalysis Temperature Data Systems over China" Agriculture 11, no. 12: 1292. https://doi.org/10.3390/agriculture11121292
APA StyleHuang, X., Han, S., & Shi, C. (2021). Multiscale Assessments of Three Reanalysis Temperature Data Systems over China. Agriculture, 11(12), 1292. https://doi.org/10.3390/agriculture11121292