Response of Interspecific Geraniums to Waste Wood Fiber Substrates and Additional Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Location and Growth Conditions
2.3. Substrate Components
2.4. Experimental Design
2.5. Determination of Plant Growth Parameters
2.6. Determination of Nutrients
2.7. Statistical Analysis
3. Results
3.1. Effects of Waste Wood Fiber Substrates and Additional Fertilization on Plant Growth
3.2. Effects of Waste Wood Fiber Substrates and Additional Fertilization on Plant Flowering
3.3. Effects of Waste Wood Fiber Substrates and Additional Fertilization on Foliar Nutrient Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zawadzińska, A.; Salachna, P. Ivy pelargonium response to media containing sewage sludge and potato pulp. Plant Soil Environ. 2018, 64, 180–185. [Google Scholar]
- Norman, D.J.; Huang, Q.; Yuen, J.M.; Mangravita-Novo, A.; Byrne, D. Susceptibility of geranium cultivars to Ralstonia solanacearum. HortScience 2009, 44, 1504–1508. [Google Scholar] [CrossRef]
- García-Sogo, B.; Pineda, B.; Roque, E.; Antón, T.; Atarés, A.; Borja, M.; Beltrán, J.P.; Moreno, V.; Cañas, L.A. Production of engineered long-life and male sterile Pelargonium plants. BMC Plant Biol. 2012, 12, 156. [Google Scholar] [CrossRef] [Green Version]
- Orroño, D.; Lavado, R.S. Heavy metal accumulation in Pelargonium hortorum. Effects on growth and development. ΦYTON, Inter. J. Exp. Bot. 2009, 78, 75–82. [Google Scholar]
- Geranium Calliope Series. Available online: http://gpnmag.com/wp-content/uploads/09_CCR_GPN1212%20FINAL.pdf (accessed on 5 January 2021).
- Hanes, M.E.U.S. Patent Application No. 14/999,976. 2017. Available online: https://www.freepatentsonline.com/PP28709.pdf (accessed on 5 January 2021).
- Biermann, W.; Deiser, E.; Elsner, W.; Krebs, E.-K.; Loeser, H. Pelargonien. In Verlag Thalacker Medien; Haymarket Media: Brauschweig, Germany, 1995; pp. 51–142. ISBN 978-3878150671. (In German) [Google Scholar]
- Yan, J.; Yu, P.; Liu, C.; Li, Q.; Gu, M. Replacing peat moss with mixed hardwood biochar as container substrates to produce five types of mint (Mentha spp.). Ind. Crops Prod. 2020, 155, 112820. [Google Scholar] [CrossRef]
- La Bella, S.; Virga, G.; Iacuzzi, N.; Licata, M.; Sabatino, L.; Consentino, B.B.; Leto, C.; Tuttolomondo, T. Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary (Rosmarinus officinalis L.) Biotypes Grown in Pot. Agriculture 2021, 11, 13. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems–A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Schmilewski, G. Growing media constituents in the EU in 2013. Acta Hortic. 2017, 1168, 85–92. [Google Scholar] [CrossRef]
- Domeno, I.; Irigoyen, I.; Muro, J. New wood fibre substrates characterization and evaluation in hydroponic tomato culture. Eur. J. Hortic. Sci. 2010, 75, 89. [Google Scholar]
- Jackson, B.E.; Bragg, N.C. Wood components: A step towards a sustainable growing media. FloraCulture International 2016, 9, 30–31. Available online: https://woodsubstrates.cals.ncsu.edu/files/2020/02/global-perspective-wood-components.pdf (accessed on 5 January 2021).
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Maher, M.; Prasad, M.; Raviv, M. Organic soilless media components. In Soilless Culture, Theory and Practice; Raviv, M., Lieth, J.H., Eds.; Elsevier: London, UK, 2008; pp. 459–504. [Google Scholar]
- Frangi, P.; Amoroso, G.; Ferrini, F.; Fini, A. Growth of Ornamental Shrubs in Wood Fibre-Based Growing Media. Acta Hortic. 2007, 801, 1571–1576. [Google Scholar] [CrossRef]
- Harris, C.N.; Dickson, R.W.; Fisher, P.R.; Jackson, B.E.; Poleatewich, A.M. Evaluating Peat Substrates Amended with Pine Wood Fiber for Nitrogen Immobilization and Effects on Plant Performance with Container-grown Petunia. HortTechnology 2020, 30, 107–116. [Google Scholar] [CrossRef]
- Fain, G.B.; Gilliam, C.H.; Sibley, J.L.; Boyer, C.R.; Witcher, A.L. Wholetree substrate and fertilizer rate in production of greenhouse-grown petunia (Petunia × hybrida Vilm.) and marigold (Tagetes patula L.). HortScience 2008, 43, 700–705. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.; Schnitzler, W.H. Physical properties of wood fiber substrates and effect on growth of lettuce seedlings (Lactuca sativa L. var capitata L.). Acta Hortic. 2001, 548, 29–41. [Google Scholar] [CrossRef]
- Gruda, N.; Schnitzler, W.H. Suitability of wood fiber substrates for production of vegetable transplants II.: The effect of wood fiber substrates and their volume weights on the growth of tomato transplants. Sci. Hortic. 2004, 100, 333–340. [Google Scholar] [CrossRef]
- Prasad, M. Nitrogen fixation of various material from a number of European countries by three nitrogen fixation tests. Acta Hortic. 1996, 450, 353–362. [Google Scholar] [CrossRef]
- Prasad, M. Physical, chemical, and biological properties of coir dust. Acta Hortic. 1996, 450, 21–30. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Muylle, H.; De Windt, I.; Van Acker, J.; Ameloot, N.; Moreaux, K.; Debode, J. Plant fibers for renewable growing media: Potential of defibration, acidification or inoculation with biocontrol fungi to reduce the N drawdown and plant pathogens. J. Clean. Prod. 2018, 203, 1143–1154. [Google Scholar] [CrossRef]
- Wright, R.D.; Jackson, B.E.; Browder, J.F.; Latimer, J.G. Growth of chrysanthemum in a pine tree substrate requires additional fertilizer. HortTechnology 2008, 18, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.; Tucher, S.V.; Schnitzler, W.H. N-Immobilization of wood fiber substrates in the production of tomato transplants (Lycopersicon lycopersicum (L.) Karst. Ex Farw.). J. Appl. Bot. 2000, 74, 32–37. [Google Scholar]
- Jackson, B.E.; Wright, R.D.; Alley, M.M. Comparison of fertilizer nitrogen availability, nitrogen immobilization, substrate carbon dioxide efflux, and nutrient leaching in peat-lite, pine bark, and pine tree substrates. HortScience 2009, 44, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Geisseler, D.; Horwath, W.R.; Joergensen, R.G.; Ludwig, B. Pathways of nitrogen utilization by soil microorganisms–a review. Soil Biol. Biochem. 2010, 42, 2058–2067. [Google Scholar] [CrossRef]
- Zheng, J.; Guo, R.; Li, D.; Zhang, J.; Han, S. Nitrogen addition, drought and mixture effects on litter decomposition and nitrogen immobilization in a temperate forest. Plant Soil 2017, 416, 165–179. [Google Scholar] [CrossRef]
- Kunka, M.; Nowak, J.S. Changes in the physical and chemical properties of substrates during the cultivation of plants in intensive green roofs. Zesz. Nauk. Inst. Sadow. Kwiac. im. Szczepana Pieniążka 2012, 20, 53–60. (In Polish) [Google Scholar]
- Smolinska, U.; Kowalska, B.; Kowalczyk, W.; Szczech, M. The use of agro-industrial wastes as carriers of Trichoderma fungi in the parsley cultivation. Sci. Hortic. 2014, 179, 1–8. [Google Scholar] [CrossRef]
- Boss, C.H.; Fredeen, K.J. Concepts, Instrumentation, and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry, 3rd ed.; Perkin Elmer: Shelton, CT, USA, 2004; Available online: https://www.perkinelmer.com/lab-solutions/resources/docs/GDE_Concepts-of-ICP-OES-Booklet.pdf (accessed on 5 January 2021).
- Latimer, G., Jr. Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012; ISBN 978-0-935584-83-7. [Google Scholar]
- Jackson, E.J.; Bartley, P. Wood Substrates: The Plant’s Perspective. GrowerTalks 2017, 2, 54–56. [Google Scholar]
- Salachna, P.; Zawadzińska, A. Growth, flowering and bulb yield of Eucomis autumnalis (Mill.) Chitt. treated with plant growth regulators. Folia Hortic. 2017, 29, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.; Rau, B.J.; Wright, R.D. Laboratory bioassay and greenhouse evaluation of pine tree substrate used as a container substrate. Eur. J. Hort. Sci. 2009, 74, 73–78. [Google Scholar]
- Owen, W.G.; Jackson, B.E.; Fonteno, W.C. Pine wood chip aggregates for greenhouse substrates: Effect of age on plant growth. Acta Hortic. 2017, 1168, 269–276. [Google Scholar] [CrossRef]
- Jackson, B.E.; Wright, R.D.; Barnes, M.C. Pine tree substrate, nitrogen rate, particle size, and peat amendment affect poinsettia growth and substrate physical properties. HortScience 2008, 43, 2155–2161. [Google Scholar] [CrossRef] [Green Version]
- Biamonte, R.L.; Holcomb, E.J.; White, J.W. Fertilization. In Geraniums IV, 4th ed.; White, J.W., Ed.; Ball Publishing: Batavia, Geneva, IL, USA, 1993; pp. 39–54. [Google Scholar]
- Whipker, B.E.; Hammer, P.A. Determination of injurious phosphorus levels in poinsettias. HortScience 1994, 29, 85–87. [Google Scholar] [CrossRef] [Green Version]
- Krug, B.A.; Whipker, B.E.; McCall, I. Geranium leaf tissue nutrient sufficiency ranges by chronological age. J. Plant Nutr. 2010, 33, 39–350. [Google Scholar] [CrossRef]
- Jackson, E.J. Challenges and considerations of using wood substrates: Physical properties. Greenhouse Grower 2018, 11, 54–56. [Google Scholar]
- Jackson, B.E. The Evolution And Revolution Of Wood Substrates. Greenhouse Grower 2016, 11, 36–40. [Google Scholar]
Parameter | Wood Fiber | Sphagnum Peat |
---|---|---|
pH | 4.1 | 4.2 |
EC (mS cm−1) | 0.28 | 0.18 |
N (% DW) | 0.16 | 1.02 |
P (mg kg−1 DW) | 57 | 181 |
K (mg kg−1 DW) | 472 | 674 |
Mg (mg kg−1 DW) | 346 | 472 |
Ca (mg kg−1 DW) | 1574 | 3340 |
Fe (mg kg−1 DW) | 46.5 | 1210 |
Mn (mg kg−1 DW) | 123 | 34.4 |
Cu (mg kg−1 DW) | 2.66 | 2.9 |
Zn (mg kg−1 DW) | 17.1 | 20.1 |
B (mg kg−1 DW) | 41 | 5.64 |
Cd (mg kg−1 DW) | < 0.10 | 0.11 |
Pb (mg kg−1 DW) | 2.03 | 6.16 |
Cr (mg kg−1 DW) | 6.62 | 0.76 |
Ni (mg kg−1 DW) | < 0.5 | 0.53 |
Hg (mg kg−1 DW) | Bdl 1 | < 0.50 |
Parameter | Wood Fiber | Sphagnum Peat |
---|---|---|
Moisture (%) | 10.3 | 59.3 |
Organic matter (%) | 99.8 | 98.7 |
Ash content (%) | 0.15 | 1.3 |
Bulk density (g cm−3) | 37.9 | 123 |
Shrinkage 1 (%) | 0 | 27.4 |
Total pore space (%) | 97.5 | 92.1 |
Water-filled pore spaces (%) | 11.5 | 73 |
Air-filled pore space (%) | 86 | 19.1 |
Substrate (Wood Fiber Content %) | pH | EC | N | P | K | Mg | Ca | S | Na | Cl |
---|---|---|---|---|---|---|---|---|---|---|
0 | 5.8 | 0.04 | 7 | 19 | 115 | 72 | 420 | 6 | 39 | 10 |
10 | 5.9 | 0.04 | 5 | 17 | 166 | 69 | 431 | 6 | 41 | 13 |
20 | 5.9 | 0.06 | 4 | 24 | 164 | 84 | 415 | 1 | 37 | 13 |
30 | 5.7 | 0.07 | 4 | 27 | 171 | 89 | 474 | 6 | 21 | 14 |
40 | 5.6 | 0.22 | 4 | 53 | 200 | 75 | 366 | 5 | 27 | 33 |
Experimental Factors | N | P | K | Ca | Mg | S | Na | |
---|---|---|---|---|---|---|---|---|
Wood fiber content (%) | 0 | 1.32 c 1 | 0.70 d | 2.34 a | 1.42 c | 0.26 b | 0.16 ab | 12.6 b |
10 | 1.59 b | 0.78 c | 2.13 a | 1.66 a | 0.35 a | 0.18 a | 15.1 a | |
20 | 1.73 a | 0.93 a | 2.25 a | 1.61 ab | 0.32 a | 0.19 a | 15.8 a | |
30 | 1.43 c | 0.84 b | 1.84 b | 1.52 bc | 0.32 a | 0.18 a | 13.0 b | |
40 | 1.05 d | 0.74 cd | 1.43 c | 1.12 d | 0.26 b | 0.14 b | 10.3 c | |
p value | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | |
Additional fertilization | - | 1.17 b | 0.81 a | 2.06 a | 1.37 b | 0.28 b | 0.15 b | 12.5 b |
+ | 1.68 a | 0.79 a | 1.94 a | 1.57 a | 0.32 a | 0.19 a | 14.3 a | |
p value | 0.001 | 0.657 | 0.399 | 0.033 | 0.042 | 0.001 | 0.001 |
Experimental Factors | N | P | K | Ca | Mg | S | Na | |
---|---|---|---|---|---|---|---|---|
Wood Fiber Content (%) | Additional Fertilization | |||||||
0 | - | 1.22 c 1 | 0.67 d | 2.27 ab | 1.29 c | 0.26 a | 0.14 a | 0.30 de |
10 | - | 1.28 c | 0.79 bc | 2.27 ab | 1.72 a | 0.33 a | 0.16 a | 0.32 de |
20 | - | 1.37 c | 0.87 b | 2.23 ab | 1.32 c | 0.29 a | 0.17 a | 0.33 de |
30 | - | 1.20 c | 0.97 a | 2.05 ab | 1.50 b | 0.31 a | 0.17 a | 0.25 ef |
40 | - | 0.78 d | 0.75 cd | 1.47 c | 1.03 d | 0.24 a | 0.12 a | 0.21 f |
0 | + | 1.42 c | 0.73 cd | 2.41 a | 1.56 ab | 0.27 a | 0.19 a | 0.35 d |
10 | + | 1.89 ab | 0.78 bc | 2.00 b | 1.61 ab | 0.37 a | 0.20 a | 0.73 a |
20 | + | 2.09 a | 0.99 a | 2.28 ab | 1.90 a | 0.36 a | 0.21 a | 0.60 b |
30 | + | 1.67 bc | 0.72 cd | 1.63 c | 1.55 ab | 0.33 a | 0.19 a | 0.65 ab |
40 | + | 1.32 c | 0.73 cd | 1.39 c | 1.21 c | 0.27 a | 0.15 a | 0.49 c |
p value | 0.001 | 0.001 | 0.005 | 0.001 | 0.348 | 0.428 | 0.001 |
Experimental Factors | Fe | Mn | Cu | Zn | B | |
---|---|---|---|---|---|---|
Wood fiber content (%) | 0 | 156 a 1 | 118 d | 4.52 d | 20.7 b | 47.3 d |
10 | 139 b | 135 c | 5.55 a | 20.0 c | 62.9 b | |
20 | 152 ab | 149 b | 5.35 b | 22.2 a | 62.7 b | |
30 | 148 ab | 164 a | 5.41 b | 22.5 a | 67.9 a | |
40 | 122 c | 133 c | 4.94 c | 19.0 d | 54.7 c | |
p value | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | |
Additional fertilization | - | 130 b | 129 b | 4.64 b | 19.3 b | 56.3 b |
+ | 157 a | 151 a | 5.66 a | 22.4 a | 61.9 a | |
p value | 0.001 | 0.005 | 0.001 | 0.001 | 0.043 |
Experimental Factors | Fe | Mn | Cu | Zn | B | |
---|---|---|---|---|---|---|
Wood Fiber Content (%) | Additional Fertilization | |||||
0 | - | 147 cd 1 | 116 ef | 3.91 g | 17.7 f | 44.0 a |
10 | - | 130 ef | 129 de | 5.26 bc | 19.4 e | 60.4 a |
20 | - | 124 f | 125 def | 4.66 e | 19.9 de | 60.7 a |
30 | - | 143 cde | 164 ab | 4.97 d | 22.5 b | 65.3 a |
40 | - | 106 g | 112 f | 4.42 f | 17.0 f | 51.1 a |
0 | + | 165 ab | 121 ef | 5.14 cd | 23.6 a | 50.6 a |
10 | + | 149 cd | 140 cd | 5.85 a | 20.6 cd | 65.3 a |
20 | + | 179 a | 173 a | 6.03 a | 24.5 a | 64.7 a |
30 | + | 153 bc | 165 ab | 5.85 a | 22.5 b | 70.6 a |
40 | + | 138 def | 154 bc | 5.45 b | 20.9 c | 58.3 a |
p value | 0.001 | 0.001 | 0.001 | 0.001 | 0.230 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadzińska, A.; Salachna, P.; Nowak, J.S.; Kowalczyk, W. Response of Interspecific Geraniums to Waste Wood Fiber Substrates and Additional Fertilization. Agriculture 2021, 11, 119. https://doi.org/10.3390/agriculture11020119
Zawadzińska A, Salachna P, Nowak JS, Kowalczyk W. Response of Interspecific Geraniums to Waste Wood Fiber Substrates and Additional Fertilization. Agriculture. 2021; 11(2):119. https://doi.org/10.3390/agriculture11020119
Chicago/Turabian StyleZawadzińska, Agnieszka, Piotr Salachna, Jacek S. Nowak, and Waldemar Kowalczyk. 2021. "Response of Interspecific Geraniums to Waste Wood Fiber Substrates and Additional Fertilization" Agriculture 11, no. 2: 119. https://doi.org/10.3390/agriculture11020119
APA StyleZawadzińska, A., Salachna, P., Nowak, J. S., & Kowalczyk, W. (2021). Response of Interspecific Geraniums to Waste Wood Fiber Substrates and Additional Fertilization. Agriculture, 11(2), 119. https://doi.org/10.3390/agriculture11020119