Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management
Abstract
:1. Introduction
2. Rhizosphere, as the Zone of Interaction between Soil, Plant, and Microorganisms
3. Plant Growth-Promoting Rhizobacteria
4. Mycorrhizal Fungi
5. Categories of Microorganisms Used in the Production of Biofertilizers
5.1. Nitrogen-Fixing Microbes
5.2. Phosphorus Solubilizing Microbes
5.3. Potassium Solubilizing Microbes
5.4. Phosphorus Mobilizing Microbes
5.5. Sulphur Oxidizing Microbes
5.6. Zinc Solubilizing Microbes
6. Beneficial Role of Biofertilizers on Plant Yield, Photosynthesis and Soil Nutrient
7. Formulation of Biofertilizers for the Management of the Rhizosphere
8. Forms and Applications of Biofertilizer Formulations
9. Effect of Biofertilizers on the Production of Volatile Organic Compounds (VOCs) and Amino Acids
10. Effect of Biofertilizer on Phytopathogens and Pest
11. Challenges with Biofertilizer
12. Prospects and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- FAO; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2018: Building Climatic Resilience for Food Security and Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Glaser, B.; Lehr, V.-I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scient. rep. 2019, 9, 9338. [Google Scholar] [CrossRef] [Green Version]
- FAO; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security; FAO: Rome, Italy, 2017. [Google Scholar]
- Babalola, O.O. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 2010, 32, 1559–1570. [Google Scholar] [CrossRef]
- Yadav, K.K.; Sarkar, S. Biofertilizers, Impact on Soil Fertility and Crop Productivity under Sustainable Agriculture. Environ. Ecol. 2019, 37, 89–93. [Google Scholar]
- Zia, R.; Nawaz, M.S.; Siddique, M.J.; Hakim, S.; Imran, A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol. Res. 2020, 242, 126626. [Google Scholar] [CrossRef] [PubMed]
- Cruz, C.; Lips, S.H.; Martins-Loução, M.A. Interactions between nitrate and ammonium during uptake by carob seedlings and the effect of the form of earlier nitrogen nutrition. Physiol. Plant. 1993, 89, 544–551. [Google Scholar] [CrossRef]
- Babalola, O.O.; Glick, B.R. The Use of Microbial Inoculants in African Agriculture: Current Practice and Future Prospects. J. Food Agric. Environ. 2012, 10, 540–549. [Google Scholar]
- Reed, M.; Glick, B.R. Applications of plant growth-promoting bacteria for plant and soil systems. In Applications of Microbial Engineering; Taylor and Francis: Enfield, CT, USA, 2013; pp. 181–229. [Google Scholar]
- Glick, B.R. Introduction to plant growth-promoting bacteria. In Beneficial Plant-Bacterial Interactions; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–37. [Google Scholar]
- Okur, N. A review- biofertilizers- power of beneficial microorganisms in soils. Biomed. J. Sci. Tech. Res. 2018, 4, 4028–4029. [Google Scholar]
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A potential approach for sustainable agriculture development. Environ. Sci. Poll. Res. 2017, 24, 3315–3335. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Robert, C.A.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.; Manzo, D.; Chervet, N.; Steinger, T.; Van Der Heijden, M.G. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Comm. 2018, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Enagbonma, B.J.; Babalola, O.O. Environmental sustainability: A review of termite mound soil material and its bacteria. Sustainability 2019, 11, 3847. [Google Scholar] [CrossRef] [Green Version]
- Meena, M.; Swapnil, P.; Zehra, A.; Aamir, M.; Dubey, M.K.; Goutam, J.; Upadhyay, R. Beneficial microbes for disease suppression and plant growth promotion. In Plant-Microbe Interactions in Agro-Ecological Perspectives; Springer: Berlin/Heidelberg, Germany, 2017; pp. 395–432. [Google Scholar]
- Yadav, A.N.; Verma, P.; Singh, B.; Chauhan, V.; Suman, A.; Saxena, A.K. Plant growth promoting bacteria: Biodiversity and multifunctional attributes for sustainable agriculture. Adv. Biotechnol. Microbiol. 2017, 5, 1–16. [Google Scholar]
- Pervaiz, Z.H.; Contreras, J.; Hupp, B.M.; Lindenberger, J.H.; Chen, D.; Zhang, Q.; Wang, C.; Twigg, P.; Saleem, M. Root microbiome changes with root branching order and root chemistry in peach rhizosphere soil. Rhizosphere 2020, 16, 100249. [Google Scholar] [CrossRef]
- Meena, V.S.; Maurya, B.R.; Verma, J.P.; Meena, R.S. Potassium Solubilizing Microorganisms for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; p. 338. [Google Scholar]
- Kumar, A.; Singh, R.; Adholeya, A. Biotechnological advancements in industrial production of arbuscular mycorrhizal fungi: Achievements, challenges, and future prospects. In Developments in Fungal Biology and Applied Mycology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 413–431. [Google Scholar]
- Nath, C.P.; Das, T.K.; Rana, K.S.; Bhattacharyya, R.; Pathak, H.; Paul, S.; Meena, M.C.; Singh, S.B. Greenhouse gases emission, soil organic carbon and wheat yield as affected by tillage systems and nitrogen management practices. Arch. Agron. Soil Sci. 2017, 63, 1644–1660. [Google Scholar] [CrossRef]
- Verma, S.; Singh, A.; Pradhan, S.S.; Singh, R.; Singh, J. Bio-efficacy of organic formulations on crop production—A review. Int. J. Cur. Microbiol. Appl. Sci. 2017, 6, 648–665. [Google Scholar] [CrossRef] [Green Version]
- Glick, B.R. Bacterial ACC deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 2004, 56, 291–312. [Google Scholar] [PubMed]
- Basu, S.; Rabara, R.C.; Negi, S. AMF: The future prospect for sustainable agriculture. Physiol. Mol. Plant Pathol. 2018, 102, 36–45. [Google Scholar] [CrossRef]
- Parihar, M.; Chitara, M.; Khati, P.; Kumari, A.; Mishra, P.K.; Rakshit, A.; Rana, K.; Meena, V.S.; Singh, A.K.; Choudhary, M. Arbuscular mycorrhizal fungi: Abundance, interaction with plants and potential biological applications. In Advances in Plant Microbiome and Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 105–143. [Google Scholar]
- Javeria, S.; Kumar, V.; Sharma, P.; Prasad, L.; Kumar, M.; Varma, A. Mycorrhizal symbiosis: Ways underlying plant–fungus interactions. In Mycorrhiza-Eco-Physiology, Secondary Metabolites, Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2017; pp. 183–207. [Google Scholar]
- Thijs, S.; Sillen, W.; Weyens, N.; Vangronsveld, J. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects. Int. J. Phytorem. 2017, 19, 23–38. [Google Scholar] [CrossRef]
- Kang, H.; Chen, X.; Kemppainen, M.; Pardo, A.G.; Veneault-Fourrey, C.; Kohler, A.; Martin, F.M. The small secreted effector protein MiSSP7. 6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. Environ. Microbiol. 2020, 22, 1435–1446. [Google Scholar] [CrossRef]
- Saha, B.; Saha, S.; Das, A.; Bhattacharyya, P.K.; Basak, N.; Sinha, A.K.; Poddar, P. Biological nitrogen fixation for sustainable agriculture. In Agriculturally Important Microbes for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2017; pp. 81–128. [Google Scholar]
- Ma, W.; Penrose, D.M.; Glick, B.R. Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can. J. Microbiol. 2002, 48, 947–954. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Yadav, A.N.; Yadav, N.; Kumar, M.; Kumar, V.; Vyas, P.; Dhaliwal, H.S.; Saxena, A.K. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal. Agric. Biotechnol. 2019, 23, 101487. [Google Scholar] [CrossRef]
- Wani, S.A.; Chand, S.; Wani, M.A.; Ramzan, M.; Hakeem, K.R. Azotobacter chroococcum—A potential biofertilizer in agriculture: An overview. In Soil Science: Agricultural and Environmental Prospectives; Springer: Berlin/Heidelberg, Germany, 2016; pp. 333–348. [Google Scholar]
- Zaidi, A.; Khan, M.S.; Saif, S.; Rizvi, A.; Ahmed, B.; Shahid, M. Role of nitrogen-fixing plant growth-promoting rhizobacteria in sustainable production of vegetables: Current perspective. In Microbial Strategies for Vegetable Production; Springer: Berlin/Heidelberg, Germany, 2017; pp. 49–79. [Google Scholar]
- Pereyra, M.A.; Creus, C.M. Modifying the rhizosphere of agricultural crops to improve yield and sustainability: Azospirillum as a model rhizotroph. In Rhizotrophs: Plant Growth Promotion to Bioremediation; Springer: Berlin/Heidelberg, Germany, 2017; pp. 15–37. [Google Scholar]
- Garcia, C.L.; Dattamudi, S.; Chanda, S.; Jayachandran, K. Effect of salinity stress and microbial inoculations on glomalin and plant growth parameters of snap bean (Phaseolus vulgaris). Agronomy 2019, 9, 545. [Google Scholar] [CrossRef] [Green Version]
- Alkurtany, A.; Ali, S.; Mahdi, W. The efficiency of prepared biofertilizer from local isolate of Bradyrhizobium sp on growth and yield of mungbean plant. Iraqi J. Agric. Sci. 2018, 49. [Google Scholar]
- Das, K.; Prasanna, R.; Saxena, A.K. Rhizobia: A potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol. 2017, 62, 425–435. [Google Scholar] [CrossRef]
- Mondal, M.; Skalicky, M.; Garai, S.; Hossain, A.; Sarkar, S.; Banerjee, H.; Kundu, R.; Brestic, M.; Barutcular, C.; Erman, M. Supplementing nitrogen in combination with rhizobium inoculation and soil mulch in peanut (Arachis hypogaea L.) production system: Part II. Effect on phenology, growth, yield attributes, pod quality, profitability and nitrogen use efficiency. Agronomy 2020, 10, 1513. [Google Scholar] [CrossRef]
- Igiehon, N.O.; Babalola, O.O.; Aremu, B.R. Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol. 2019, 19, 159. [Google Scholar] [CrossRef]
- Ali, M.A.; Ilyas, F.; Arshad, M.; Hussain, S.; Iqbal, M.; Ahmad, S.; Saboor, A.; Mustafa, G.; Ahmed, N. Microbial inoculation of seeds for better plant growth and productivity. In Priming and Pretreatment of Seeds and Seedlings; Springer: Berlin/Heidelberg, Germany, 2019; pp. 523–550. [Google Scholar]
- Rahman, M.; Sabir, A.A.; Mukta, J.A.; Khan, M.M.A.; Mohi-Ud-Din, M.; Miah, M.G.; Rahman, M.; Islam, M.T. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, B.; Zaidi, A.; Khan, M.S.; Rizvi, A.; Saif, S.; Shahid, M. Perspectives of plant growth promoting rhizobacteria in growth enhancement and sustainable production of tomato. In Microbial Strategies for Vegetablep Production; Springer: Berlin/Heidelberg, Germany, 2017; pp. 125–149. [Google Scholar]
- Gopalakrishnan, S.; Srinivas, V.; Samineni, S. Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 2017, 11, 116–123. [Google Scholar] [CrossRef]
- Curá, J.A.; Franz, D.R.; Filosofía, J.E.; Balestrasse, K.B.; Burgueño, L.E. Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms 2017, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Kandel, S.L.; Firrincieli, A.; Joubert, P.M.; Okubara, P.A.; Leston, N.D.; McGeorge, K.M.; Mugnozza, G.S.; Harfouche, A.; Kim, S.-H.; Doty, S.L. An in vitro study of bio-control and plant growth promotion potential of Salicaceae endophytes. Front. Microbiol. 2017, 8, 386. [Google Scholar] [CrossRef] [Green Version]
- Ávila, J.S.; Ferreira, J.S.; Santos, J.S.; Rocha, P.A.d.; Baldani, V.L. Green manure, seed inoculation with Herbaspirillum seropedicae and nitrogen fertilization on maize yield. Rev. Bras. Eng. Agrícola Ambient. 2020, 24, 590–595. [Google Scholar] [CrossRef]
- Etesami, H.; Emami, S.; Alikhani, H.A. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects a review. J. Soil Sci. Plant Nutr. 2017, 17, 897–911. [Google Scholar] [CrossRef]
- Sangeeth, K.; Bhai, R.S.; Srinivasan, V. Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J. Spices Arom. Crops 2012, 21, 118–124. [Google Scholar]
- Dias, M.P.; Bastos, M.S.; Xavier, V.B.; Cassel, E.; Astarita, L.V.; Santarém, E.R. Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol. Biochem. 2017, 118, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Mandal, N.C. Use of plant growth–promoting Burkholderia species with rock phosphate–solubilizing potential toward crop improvement. In Microbial Services in Restoration Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 139–156. [Google Scholar]
- Kumar, H.; Dubey, R.; Maheshwari, D. Seed-coating fenugreek with Burkholderia rhizobacteria enhances yield in field trials and can combat Fusarium wilt. Rhizosphere 2017, 3, 92–99. [Google Scholar] [CrossRef]
- Xu, X.; Xu, M.; Zhao, Q.; Xia, Y.; Chen, C.; Shen, Z. Complete genome sequence of Cd (II)-resistant Arthrobacter sp. PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation. Curr. Microbiol. 2018, 75, 1231–1239. [Google Scholar] [CrossRef]
- Altuntaş, Ö. A comparative study on the effects of different conventional, organic and bio-fertilizers on broccoli yield and quality. Appl. Ecol. Environ. Res. 2018, 16, 1595–1608. [Google Scholar] [CrossRef]
- Breitkreuz, C.; Buscot, F.; Tarkka, M.; Reitz, T. Shifts between and among populations of wheat rhizosphere Pseudomonas, Streptomyces and Phyllobacterium suggest consistent phosphate mobilization at different wheat growth stages under abiotic stress. Front. Microbiol. 2020, 10, 3109. [Google Scholar] [CrossRef]
- Shinde, K.S.; Borkar, S. Seed bacterialization induced proline content in Sorghum bicolor crop under severe drought condition. Int. J. Chem. Stud. 2018, 6, 1191–1194. [Google Scholar]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Castillo, A.; Gerding, M.; Oyarzúa, P.; Zagal, E.; Gerding, J.; Fischer, S. Plant growth-promoting rhizobacteria able to improve NPK availability: Selection, identification and effects on tomato growth. Chilean J. Agric. Res. 2019, 79, 473–485. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.K.; Archana, G. Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 2017, 417, 99–116. [Google Scholar] [CrossRef]
- Ansari, M.H.; Hashemabadi, D.; Kaviani, B. Effect of Cattle Manure and Sulphur on Yield and Oil Composition of Pumpkin (Cucurbita pepo var. Styriaca) Inoculated with Thiobacillus thiooxidans in Calcareous Soil. Comm. Soil Sci. Plant Anal. 2017, 48, 2103–2118. [Google Scholar] [CrossRef]
- Macedo-Raygoza, G.M.; Valdez-Salas, B.; Prado, F.M.; Prieto, K.R.; Yamaguchi, L.F.; Kato, M.J.; Canto-Canché, B.B.; Carrillo-Beltrán, M.; Di Mascio, P.; White, J.F. Enterobacter cloacae, an endophyte that establishes a nutrient-transfer symbiosis with banana plants and protects against the black Sigatoka pathogen. Front. Microbiol. 2019, 10, 804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, P.; Agrawal, N.; Shahi, S.K. Effect of rhizobacterial strain Enterobacter cloacae strain pglo9 on potato plant growth and yield. Plant Arch. 2018, 18, 2528–2532. [Google Scholar]
- Paiter, A.; Freitas, G.; Pinto, L.; Hass, L.; Barreiros, M.; Oliveira, A.; Grange, L. IAA production and phosphate solubilization performed by native rhizobacteria in western Paraná. Agron. Sci. Biotechnol. 2019, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Sagar, A.; Thomas, G.; Rai, S.; Mishra, R.K.; Ramteke, P.W. Enhancement of growth and yield parameters of wheat variety AAI-W6 by an organic farm isolate of plant growth promoting Erwinia Species (KP226572). Int. J. Agric. Environ. Biotechnol. 2018, 11, 159–171. [Google Scholar]
- Hernández-Montiel, L.G.; Chiquito Contreras, C.J.; Murillo Amador, B.; Vidal Hernández, L.; Quiñones Aguilar, E.E.; Chiquito Contreras, R.G. Efficiency of two inoculation methods of Pseudomonas putida on growth and yield of tomato plants. J. Soil Sci. Plant Nutr. 2017, 17, 1003–1012. [Google Scholar] [CrossRef] [Green Version]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [Green Version]
- Billah, M.; Khan, M.; Bano, A.; Hassan, T.U.; Munir, A.; Gurmani, A.R. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiol. J. 2019, 36, 904–916. [Google Scholar] [CrossRef]
- Sattar, A.; Naveed, M.; Ali, M.; Zahir, Z.A.; Nadeem, S.M.; Yaseen, M.; Meena, V.S.; Farooq, M.; Singh, R.; Rahman, M. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Appl. Soil Ecol. 2019, 133, 146–159. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, M.; Yang, W.; Di, H.J.; Ma, L.; Liu, W.; Li, B. Effects of microbial inoculants on phosphorus and potassium availability, bacterial community composition, and chili pepper growth in a calcareous soil: A greenhouse study. J. Soils Sed. 2019, 19, 3597–3607. [Google Scholar] [CrossRef]
- Pandey, D.; Kehri, H.K.; Zoomi, I.; Akhtar, O.; Singh, A.K. Mycorrhizal fungi: Biodiversity, ecological significance, and industrial applications. In Recent Advancement in White Biotechnology through Fungi; Springer: Berlin/Heidelberg, Germany, 2019; pp. 181–199. [Google Scholar]
- Bhale, U.; Bansode, S.; Singh, S. Multifactorial role of arbuscular mycorrhizae in agroecosystem. In Fungi and Their Role in Sustainable Development: Current Perspectives; Springer: Berlin/Heidelberg, Germany, 2018; pp. 205–220. [Google Scholar]
- Bhat, R.A.; Dervash, M.A.; Mehmood, M.A.; Skinder, B.M.; Rashid, A.; Bhat, J.I.A.; Singh, D.V.; Lone, R. Mycorrhizae: A sustainable industry for plant and soil environment. In Mycorrhiza-Nutrient Uptake, Biocontrol, Ecorestoration; Springer: Berlin/Heidelberg, Germany, 2017; pp. 473–502. [Google Scholar]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ahmed, N.; Ashraf, M.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Saha, B.; Saha, S.; Roy, P.D.; Padhan, D.; Pati, S.; Hazra, G.C. Microbial transformation of sulphur: An approach to combat the sulphur deficiencies in agricultural soils. In Role of Rhizospheric Microbes in Soil; Springer: Berlin/Heidelberg, Germany, 2018; pp. 77–97. [Google Scholar]
- Pourbabaee, A.A.; Koohbori Dinekaboodi, S.; Seyed Hosseini, H.M.; Alikhani, H.A.; Emami, S. Potential application of selected sulphur-oxidizing bacteria and different sources of sulphur in plant growth promotion under different moisture conditions. Commun. Soil Sci. Plant Analy. 2020, 51, 735–745. [Google Scholar] [CrossRef]
- Hejazirad, P.; Gholami, A.; Pirdashty, H.; Abbasiyan, A. Evaluation of Thiobacillus bacteria and mycorrhizal symbiosis on yield and yield components of garlic (Allium sativum) at different levels of sulphur. Agroecology 2017, 9, 76–87. [Google Scholar]
- da Silva Júnior, S.; Stamford, N.P.; Oliveira, W.S.; Silva, E.V.N.; de Rosalia e Silva Santos, C.E.; de Freitas, A.D.S.; da Silva, V.S.G. Microbial biofertilizer increases nutrient uptake on grape (Vitis labrusca L.) grown in an alkaline soil reclaimed by sulphur and’Acidithiobacillus’. Aust. J. Crop Sci. 2018, 12, 1695. [Google Scholar] [CrossRef]
- Mącik, M.; Gryta, A.; Frąc, M. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Adv. Agron. 2020, 160, 31. [Google Scholar]
- Dubey, R.; Gupta, D.K.; Sharma, G.K. Chemical stress on plants. In New Frontiers in Stress Management for Durable Agriculture; Springer: Berlin/Heidelberg, Germany, 2020; pp. 101–128. [Google Scholar]
- Rajput, V.; Minkina, T.; Sushkova, S.; Behal, A.; Maksimov, A.; Blicharska, E.; Ghazaryan, K.; Movsesyan, H.; Barsova, N. ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environ. Geochem. Health 2020, 42, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Ali, Q.; Ashraf, S.; Kamran, M.; Rehman, A. Development of future bioformulations for sustainable agriculture. In Microbiome in Plant Health and Disease; Springer: Berlin/Heidelberg, Germany, 2019; pp. 421–446. [Google Scholar]
- Hussain, A.; Zahir, Z.A.; Ditta, A.; Tahir, M.U.; Ahmad, M.; Mumtaz, M.Z.; Hayat, K.; Hussain, S. Production and implication of bio-activated organic fertilizer enriched with zinc-solubilizing bacteria to boost up maize (Zea mays L.) production and biofortification under two cropping seasons. Agronomy 2020, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Mumtaz, M.Z.; Ahmad, M.; Jamil, M.; Hussain, T. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol. Res. 2017, 202, 51–60. [Google Scholar] [CrossRef]
- Naz, I.; Ahmad, H.; Khokhar, S.N.; Khan, K.; Shah, A.H. Impact of zinc solubilizing bacteria on zinc contents of wheat. American Eurasian J. Agric. Environ. Sci. 2016, 16, 449–454. [Google Scholar]
- Bhatt, K.; Maheshwari, D.K. Zinc solubilizing bacteria (Bacillus megaterium) with multifarious plant growth promoting activities alleviates growth in Capsicum annuum L. 3 Biotech 2020, 10, 36. [Google Scholar] [CrossRef]
- El Maaloum, S.; Elabed, A.; Alaoui-Talibi, Z.E.; Meddich, A.; Filali-Maltouf, A.; Douira, A.; Ibnsouda-Koraichi, S.; Amir, S.; El Modafar, C. Effect of arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria consortia associated with phospho-compost on phosphorus solubilization and growth of tomato seedlings (Solanum lycopersicum L.). Commun. Soil Sci. Plant Analy. 2020, 51, 622–634. [Google Scholar] [CrossRef]
- Xu, H.; Shao, H.; Lu, Y. Arbuscular mycorrhiza fungi and related soil microbial activity drive carbon mineralization in the maize rhizosphere. Ecotoxicol. Environ. Saf. 2019, 182, 109476. [Google Scholar] [CrossRef]
- Chiomento, J.L.T.; Stürmer, S.L.; Carrenho, R.; da Costa, R.C.; Scheffer-Basso, S.M.; Antunes, L.E.C.; Nienow, A.A.; Calvete, E.O. Composition of arbuscular mycorrhizal fungi communities signals generalist species in soils cultivated with strawberry. Sci. Horticul. 2019, 253, 286–294. [Google Scholar] [CrossRef]
- Tohidi Moghadam, H.; Heydarian, A.; Donath, T.; Sohrabi, M. Study of effect of arbuscular mycorrhiza (Glomus intraradices) fungus on wheat under nickel stress. Agron. Res. 2018, 16, 1660–1667. [Google Scholar]
- Krishnamoorthy, R.; Kim, K.; Subramanian, P.; Senthilkumar, M.; Anandham, R.; Sa, T. Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agric. Ecosys. Environ. 2016, 231, 233–239. [Google Scholar] [CrossRef]
- Boyer, L.R.; Brain, P.; Xu, X.-M.; Jeffries, P. Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: Effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 2015, 25, 215–227. [Google Scholar] [CrossRef]
- Mora-Romero, G.; Cervantes-Gámez, R.; Galindo-Flores, H.; González-Ortíz, M.; Félix-Gastélum, R.; Maldonado-Mendoza, I.E.; Pérez, R.S.; León-Félix, J.; Martínez-Valenzuela, M.; Lopez-Meyer, M. Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis 2015, 66, 55–64. [Google Scholar] [CrossRef]
- Tognon, G.B.; Sanmartín, C.; Alcolea, V.; Cuquel, F.L.; Goicoechea, N. Mycorrhizal inoculation and/or selenium application affect post-harvest performance of snapdragon flowers. Plant Growth Regulat. 2016, 78, 389–400. [Google Scholar] [CrossRef]
- Mota, R.M.A.; Fernández, A.d.J.R.; Trejo, J.B.; de la Cruz Elizondo, Y. Inoculación de hongos solubilizadores de fósforo y micorrizas arbusculares en plantas de jitomate. Rev. Mex. Cienc. Agrícolas 2019, 10, 1747–1757. [Google Scholar] [CrossRef] [Green Version]
- Bharti, N.; Pandey, S.S.; Barnawal, D.; Patel, V.K.; Kalra, A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 2016, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Alori, E.T.; Dare, M.O.; Babalola, O.O. Microbial inoculants for soil quality and plant health. In Sustainable Agriculture Reviews; Springer: Berlin/Heidelberg, Germany, 2017; pp. 281–307. [Google Scholar]
- Pathak, D.; Kumar, M. Microbial inoculants as biofertilizers and biopesticides. In Microbial Inoculants in Sustainable Agricultural Productivity; Springer: Berlin/Heidelberg, Germany, 2016; pp. 197–209. [Google Scholar]
- Verma, D.K.; Pandey, A.K.; Mohapatra, B.; Srivastava, S.; Kumar, V.; Talukdar, D.; Yulianto, R.; Zuan, A.; Jobanputra, A.H.; Asthir, B. Plant growth-promoting rhizobacteria: An eco-friendly approach for sustainable agriculture and improved crop production. In Microbiology for Sustainable Agriculture, Soil Health, and Environmental Protection; Apple Academic Press: Canada, 2019; pp. 3–80. [Google Scholar]
- Enebe, M.C.; Babalola, O.O. The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: A survival strategy. Appl. Microbiol. Biotechnol. 2018, 102, 7821–7835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmaprakash, G.; Sahu, P.K.; Lavanya, G.; Nair, S.S.; Gangaraddi, V.K.; Gupta, A. Microbial functions of the rhizosphere. In Plant-Microbe Interactions in Agro-Ecological Perspectives; Springer: Singerpore, 2017; pp. 177–210. [Google Scholar]
- Khalid, M.; Hassani, D.; Bilal, M.; Asad, F.; Huang, D. Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L. Bot. Stud. 2017, 58, 35. [Google Scholar] [CrossRef] [Green Version]
- Arora, M.; Saxena, P.; Abdin, M.; Varma, A. Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua L. plants grown under in vitro conditions. Symbiosis 2018, 75, 103–112. [Google Scholar] [CrossRef]
- Kapoor, R.; Singh, N. Arbuscular mycorrhiza and reactive oxygen species. In Arbuscular Mycorrhizas and Stress Tolerance of Plants; Springer: Berlin/Heidelberg, Germany, 2017; pp. 225–243. [Google Scholar]
- Hassen, A.I.; Bopape, F.; Sanger, L. Microbial inoculants as agents of growth promotion and abiotic stress tolerance in plants. In Microbial Inoculants in Sustainable Agricultural Productivity; Springer: Berlin/Heidelberg, Germany, 2016; pp. 23–36. [Google Scholar]
- Alori, E.T.; Babalola, O.O. Microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol. 2018, 9, 2213. [Google Scholar] [CrossRef] [Green Version]
- Dicko, A.H.; Babana, A.H.; Kassogué, A.; Fané, R.; Nantoumé, D.; Ouattara, D.; Maiga, K.; Dao, S. A Malian native plant growth promoting Actinomycetes based biofertilizer improves maize growth and yield. Symbiosis 2018, 75, 267–275. [Google Scholar] [CrossRef]
- Win, K.T.; Okazaki, K.; Ookawa, T.; Yokoyama, T.; Ohwaki, Y. Influence of rice-husk biochar and Bacillus pumilus strain TUAT-1 on yield, biomass production, and nutrient uptake in two forage rice genotypes. PLoS ONE 2019, 14, e0220236. [Google Scholar] [CrossRef] [Green Version]
- Fathi, A. Effect of phosphate solubilization microorganisms and plant growth promoting rhizobacteria on yield and yield components of corn. Sci. Agric. 2017, 18, 66–69. [Google Scholar]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.; Qiao, S.; Huang, G. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, O.S.; Ayangbenro, A.S.; Glick, B.R.; Babalola, O.O. Plant health: Feedback effect of root exudates-rhizobiome interactions. Appl. Microbiol. Biotechnol. 2019, 103, 1155–1166. [Google Scholar] [CrossRef] [Green Version]
- Soumare, A.; Boubekri, K.; Lyamlouli, K.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L. From isolation of phosphate solubilizing microbes to their formulation and use as biofertilizers: Status and needs. Front. Bioengin. Biotechnol. 2019, 7, 425. [Google Scholar] [CrossRef] [PubMed]
- Berninger, T.; González López, Ó.; Bejarano, A.; Preininger, C.; Sessitsch, A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb. Biotechnol. 2018, 11, 277–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choube, G.; Karadbhajne, D.V.; Johi, D.Y.; Jambhekar, D.H.; Dhargave, T. A pilot scale process for the production of high shelf life multi-functional liquid bio-fertilizer. Int. J. Biotechnol. Res. 2018, 8, 1–10. [Google Scholar]
- Lesueur, D.; Deaker, R.; Herrmann, L.; Bräu, L.; Jansa, J. The production and potential of biofertilizers to improve crop yields. In Bioformulations: For Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2016; pp. 71–92. [Google Scholar]
- Datta, A.; Ullah, H.; Ferdous, Z. Utilization of by-products from food processing as biofertilizers and biopesticides. In Food Processing By-Products and their Utilization; Asian Institute of Technology: Pathumthani, Thailand, 2017; pp. 175–193. [Google Scholar]
- Vassilev, N.; Vassileva, M.; Lopez, A.; Martos, V.; Reyes, A.; Maksimovic, I.; Eichler-Löbermann, B.; Malusa, E. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl. Microbiol. Biotechnol. 2015, 99, 4983–4996. [Google Scholar] [CrossRef]
- Devi, T.S.; Gupta, S.; Kapoor, R. Arbuscular mycorrhizal fungi in alleviation of cold stress in plants. In Advancing Frontiers in Mycology & Mycotechnology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 435–455. [Google Scholar]
- Gryndler, M.; Šmilauer, P.; Püschel, D.; Bukovská, P.; Hršelová, H.; Hujslová, M.; Gryndlerová, H.; Beskid, O.; Konvalinková, T.; Jansa, J. Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: A microbiome perspective. Mycorrhiza 2018, 28, 435–450. [Google Scholar] [CrossRef]
- Mishra, S.; Keswani, C.; Abhilash, P.; Fraceto, L.F.; Singh, H.B. Integrated approach of agri-nanotechnology: Challenges and future trends. Front. Plant Sci. 2017, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Veronica, N.; Guru, T.; Thatikunta, R.; Reddy, S.N. Role of Nano fertilizers in agricultural farming. Int. J. Environ. Sci. Technol. 2015, 1, 1–3. [Google Scholar]
- Kumari, R.; Singh, D.P. Nano-biofertilizer: An emerging eco-friendly approach for sustainable agriculture. In Proceedings of the National Academy of Sciences, India Section B: Biological Sciences; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–9. [Google Scholar]
- Paliya, S.; Mandpe, A.; Kumar, S.; Kumar, M.S. Enhanced nodulation and higher germination using sludge ash as a carrier for biofertilizer production. J. Environ. Manag. 2019, 250, 109523. [Google Scholar] [CrossRef]
- Bharathi, R.; Vivekananthan, R.; Harish, S.; Ramanathan, A.; Samiyappan, R. Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Prot. 2004, 23, 835–843. [Google Scholar] [CrossRef]
- Saravanakumar, G.; Choi, K.Y.; Yoon, H.Y.; Kim, K.; Park, J.H.; Kwon, I.C.; Park, K. Hydrotropic hyaluronic acid conjugates: Synthesis, characterization, and implications as a carrier of paclitaxel. Int. J. Pharm. 2010, 394, 154–161. [Google Scholar] [CrossRef]
- Herrmann, L.; Lesueur, D. Challenges of formulation and quality of biofertilizers for successful inoculation. Appl. Microbiol. Biotechnol. 2013, 97, 8859–8873. [Google Scholar] [CrossRef] [PubMed]
- Thirumal, G.; Reddy, R.S.; Triveni, S.; Damodarachari, K.; Bhavya, K. Evaluate the shelf life of Rhizobium carrier based biofertilizer stored at different temperatures at different intervals. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 753–759. [Google Scholar] [CrossRef] [Green Version]
- Roychowdhury, D.; Paul, M.; Kumar Banerjee, S. Isolation identification and characterization of phosphate solubilizing bacteria from soil and the production of biofertilizer. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 808–815. [Google Scholar]
- Wang, H.-y.; Shen, L.; Zhai, L.-m.; Zhang, J.-z.; Ren, T.-z.; Fan, B.-q.; LIU, H.-b. Preparation and utilization of phosphate biofertilizers using agricultural waste. J. Integr. Agric. 2015, 14, 158–167. [Google Scholar] [CrossRef]
- Hassan, T.U.; Bano, A. Biofertilizer: A novel formulation for improving wheat growth, physiology and yield. Pak. J. Bot. 2016, 48, 2233–2241. [Google Scholar]
- Rodrigues, K.; Rodrigues, B. Development of carrier based in vitro produced arbuscular mycorrhizal (AM) fungal inocula for organic agriculture. Annals Advan. Agric. Sci. 2017, 1, 26–37. [Google Scholar]
- Shravani, K. Evaluation of shelf life and quality of carrier and liquid based biofertilizers. Int. J. Microbiol. Res. 2019, 11, 1598–1601. [Google Scholar]
- Lee, S.-K.; Lur, H.-S.; Lo, K.-J.; Cheng, K.-C.; Chuang, C.-C.; Tang, S.-J.; Yang, Z.-W.; Liu, C.-T. Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Appl. Microbiol. Biotechnol. 2016, 100, 7977–7987. [Google Scholar] [CrossRef]
- Poorniammal, R.; Prabhu, S.; Kannan, J.; Janaki, D. Liquid biofertilizer-A boon to sustainable agriculture. Biot. Res. Tod. 2020, 2, 915–918. [Google Scholar]
- Sahu, P.K.; Gupta, A.; Singh, M.; Mehrotra, P.; Brahmaprakash, G. Bioformulation and fluid bed drying: A new approach towards an improved biofertilizer formulation. In Eco-Friendly Agro-Biological Techniques for Enhancing Crop Productivity; Springer: Berlin/Heidelberg, Germany, 2018; pp. 47–62. [Google Scholar]
- Lawal, T.E.; Babalola, O.O. Relevance of biofertilizers to agriculture. J. Hum. Ecol. 2014, 47, 35–43. [Google Scholar] [CrossRef]
- Raimi, A.; Adeleke, R.; Roopnarain, A. Soil fertility challenges and Biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cog. Food Agric. 2017, 3, 1400933. [Google Scholar] [CrossRef]
- Raza, W.; Shen, Q. Volatile organic compounds mediated plant-microbe interactions in soil. In Molecular aspects of plant beneficial microbes in agriculture; Elsevier: Amsterdam, The Netherlands, 2020; pp. 209–219. [Google Scholar]
- Bailly, A.; Weisskopf, L. Mining the volatilomes of plant-associated microbiota for new biocontrol solutions. Front. Microbiol. 2017, 8, 1638. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.V.; Bogino, P.C.; Nocelli, N.; Cappellari, L.d.R.; Giordano, W.F.; Banchio, E. Analysis of plant growth-promoting effects of fluorescent Pseudomonas strains isolated from Mentha piperita rhizosphere and effects of their volatile organic compounds on essential oil composition. Front. Microbiol. 2016, 7, 1085. [Google Scholar] [CrossRef]
- Park, Y.-S.; Dutta, S.; Ann, M.; Raaijmakers, J.M.; Park, K. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem. Biophys. Res. Commun. 2015, 461, 361–365. [Google Scholar] [CrossRef]
- del Rosario Cappellari, L.; Chiappero, J.; Santoro, M.V.; Giordano, W.; Banchio, E. Inducing phenolic production and volatile organic compounds emission by inoculating Mentha piperita with plant growth-promoting rhizobacteria. Scien. Horticul. 2017, 220, 193–198. [Google Scholar] [CrossRef]
- Hassan, M.K.; McInroy, J.A.; Kloepper, J.W. The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: A review. Agriculture 2019, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Pesticides in the urban environment: A potential threat that knocks at the door. Sci. Total Environ. 2020, 711, 134612. [Google Scholar] [CrossRef]
- Sammauria, R.; Kumawat, S.; Kumawat, P.; Singh, J.; Jatwa, T.K. Microbial inoculants: Potential tool for sustainability of agricultural production systems. Arch. Microbiol. 2020, 202, 677–693. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Zaidi, A.; Ehtram, A.; Khan, M.S. In vitro investigation to explore the toxicity of different groups of pesticides for an agronomically important rhizosphere isolate Azotobacter vinelandii. Pest. Biochem. Physiol. 2019, 157, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Naseer, I.; Ahmad, M.; Nadeem, S.M.; Ahmad, I.; Zahir, Z.A. Rhizobial inoculants for sustainable agriculture: Prospects and applications. In Biofertilizers for Sustainable Agriculture and Environment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 245–283. [Google Scholar]
- Suresh, A.; Abraham, J. Harnessing the microbial interactions in rhizosphere and microbiome for sustainable agriculture. In Microbial Interventions in Agriculture and Environment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 497–515. [Google Scholar]
- Deja-Sikora, E.; Kowalczyk, A.; Trejgell, A.; Szmidt-Jaworska, A.; Baum, C.; Mercy, L.; Hrynkiewicz, K. Arbuscular mycorrhiza changes the impact of Potato virus Y on growth and stress tolerance of Solanum tuberosum L. in vitro. Front. Microbiol. 2020, 10, 2971. [Google Scholar] [CrossRef] [Green Version]
- Beris, D.; Vassilakos, N. Plant beneficial microbes: Do they have a role as antiviral agents in agriculture? In Molecular aspects of plant beneficial microbes in agriculture; Elsevier: Amsterdam, The Netherlands, 2020; pp. 19–33. [Google Scholar]
- Igiehon, N.O.; Babalola, O.O. Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. Int. J. Environ. Res. Pub. Health 2018, 15, 574. [Google Scholar] [CrossRef] [Green Version]
- Devi, R.; Thakur, R.; Gupta, M. Isolation and molecular characterization of bacterial strains with antifungal activity from termite mound soil. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Yasmin, S.; Hafeez, F.Y.; Mirza, M.S.; Rasul, M.; Arshad, H.M.; Zubair, M.; Iqbal, M. Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol. 2017, 8, 1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alaux, P.-L.; César, V.; Naveau, F.; Cranenbrouck, S.; Declerck, S.J.C.p. Impact of Rhizophagus irregularis MUCL 41833 on disease symptoms caused by Phytophthora infestans in potato grown under field conditions. Crop Protect. 2018, 107, 26–33. [Google Scholar] [CrossRef]
- Timmusk, S.; Behers, L.; Muthoni, J.; Muraya, A.; Aronsson, A.-C. Perspectives and challenges of microbial application for crop improvement. Front. Plant Sci. 2017, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Naveed, M.; Mehboob, I.; Shaker, M.A.; Hussain, M.B.; Farooq, M. Biofertilizers in Pakistan: Initiatives and limitations. Int. J. Agric. Biol. 2015, 17, 411–420. [Google Scholar] [CrossRef]
Microbial Strains | Plant Growth-Promoting Traits | Biocontrol Traits | Effect on Plant Productivity | References |
---|---|---|---|---|
Bradyrhizobium sp. | Production of siderophore, production of indole acetic acid, nitrogen fixation, and phosphate solubilization | Production of antibiotics, secretion of an enzyme that can degrade the cell wall of plant–pathogen, production of hydrogen cyanide and, production of siderophore | Increases growth parameters and seed yield in mungbeans plant | [34,35] |
Rhizobium meliloti | Production of siderophore and nitrogen fixation | Production of antibiotics against phytopathogens and production of chitinases | Increases peanuts growth, yield attributes, quality of pods, and efficiency in the use of nitrogen | [36,37] |
R. leguminosarum | Phosphate solubilization | Production of antibiotics, secretion of an enzyme that can degrade the cell wall of plant pathogens and enhances the production of phytoalexins in plant | Increases growth of soybean and yield performance under drought stress | [38] |
Bacillus spp. | Production of phytohormone, such as auxin, phosphate solubilization | Formation of endospore and biochemical compound against phytopathogens, induces systemic resistance and competition in plant | Increases strawberry fresh and dry weight parameters, increases yield over the control plant | [39,40] |
Chryseobacterium sp. | Production of siderophore, phosphate solubilization | Production of proteases | Increases grain yield, shoot mass, and nodule mass in chickpea | [10,41,42] |
Herbaspirillum spp. | Synthesis of indole acetic acid, nitrogen fixation | Production of siderophore | Enhances mineral uptake in maize plant and increases yield | [43,44,45] |
Paenibacillus glucanolyticus | Synthesis of indole acetic acid | Production of chitinases and glucanases | Increases tissue dry weight and nutrient uptake in black pepper | [46,47] |
Streptomyces spp. | Production of siderophore and synthesis of indole acetic acid | Production of glucanases | Increases tomato growth parameter and modulates metabolic activity | [48] |
Burkholderia spp. | Solubilization of phosphate | Production of antibiotic pyrrolnitrin | Increases fenugreek growth and yield performance | [49,50] |
Athrobacter | Solubilization of phosphate | Production of chitinases | Increases broccoli growth and yield | [51,52] |
Phyllobacterium | Production of siderophore | NA | Increases grain yield in sorghum | [53,54] |
Acinetobacter spp. | Production of ACC deaminase, Indole acetic acid synthesis, and phosphate solubilization | Production of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase | Promotes wheat growth in a greenhouse experiment | [55,56,57] |
Acidothiobacillus ferooxidans | Potassium solubilization | NA | Increases pumpkin growth parameters, yield, and oil composition | [46,58] |
Enterobacter cloacae | Nitrogen fixation, phosphate solubilization, siderophore production | Production of the lytic enzyme for chitinolytic activity, production of ACC deaminase | Enhances potato growth and promotes yield performance | [59,60] |
Erwinia | Phosphate solubilization | Ethylene synthesis | Promotes growth and yield parameters in wheat | [61,62] |
Pseudomonas spp. | Production of ACC deaminase phosphate solubilization, ammonia production, production of IAA | Production of hydrogen cyanide, siderophore production, production of cell wall degrading enzymes, such as chitinase and laminarinase, production of ACC deaminase, quorum sensing, and quenching | Enhances growth and yields in tomato plants | [10,63] |
Mycorrhizal Fungi | Plants | Effect on Plant | Effect on Soil | References |
---|---|---|---|---|
Glomus versiforme Glomus mosseae | Tomato | Promotes growth and yield under water stress and more efficient conditions | Increases phosphorus concentration in the soil | [84] |
Glomus etunicatum | Maize | Improves chlorophyll content and nutrient uptake in maize | Increases soil quality | [85] |
Acaulospora lacunosa | Strawberry | Enhances nutrient uptake in strawberry | Increases soil nutrient for horticultural crops productivity | [86] |
Rhizophagus irregularis | Wheat | Improves tolerance to stress, enhances plant growth, and increases seed yield | Increases soil nutrient needed for wheat production | [87] |
R. irregularis | Maize | Enhances tolerance to salt stress, improves growth parameters | Reduces the concentration of salt in the soil for better plant development | [88] |
G. mosseae and G. geosporus | Strawberry | Enhances growth and improves its tolerance to water stress | Increases soil nutrient to enhance its colonization on the plant root system | [89] |
Rhizophagus irregularis | Tomato | Protects plants against pathogens (Sclerotinia sclerotiorum) and improves nutrient uptake in plants | Increases soil micronutrient, triggers the defense of the plant against pathogens | [90] |
Glomus deserticola | Snapdragon | Increases the total dry matter, chlorophyll content and improves Snapdragon tolerance to water stress | Increases soil nutrients needed for plant growth promotion | [91] |
Glomus spp. and Mortierella spp. | Seashore mallow | Increases shoot and root weight under salt stress | Increases soil nutrient and enhances its absorption by plants | [92] |
Glomus versiforme | Mentha arvensis L. | Increases dry weight and improves nutrient uptake in salt stress conditions | Increases soil nutrient and enhances its absorption by the plant to enhance its tolerance to salinity | [93] |
Categories of Carrier Material | Carrier Materials | References |
---|---|---|
Natural materials | Peat, lignite, coal, clay, and organic soil | [120] |
Inert materials | Talc, vermiculite, perlite kaolin, bentonite, silicate, rock phosphate, calcium sulfate, and zeolite | [121,122] |
Synthetic polymers | Polyacrylamide, polystyrene, and polyurethane | [123] |
Natural polymers | Xanthan gum, carrageenan, agar agar, and agarose | [124] |
Organic materials | Charcoal, biochar, composts, farmyard manure, sawdust, maize straw, vermicompost, cow dung, corn cob, and wheat husk | [125,126,127,128] |
Agro-industry by-product | Sludge ash, jagerry | [120,129] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fasusi, O.A.; Cruz, C.; Babalola, O.O. Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management. Agriculture 2021, 11, 163. https://doi.org/10.3390/agriculture11020163
Fasusi OA, Cruz C, Babalola OO. Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management. Agriculture. 2021; 11(2):163. https://doi.org/10.3390/agriculture11020163
Chicago/Turabian StyleFasusi, Oluwaseun Adeyinka, Cristina Cruz, and Olubukola Oluranti Babalola. 2021. "Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management" Agriculture 11, no. 2: 163. https://doi.org/10.3390/agriculture11020163
APA StyleFasusi, O. A., Cruz, C., & Babalola, O. O. (2021). Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management. Agriculture, 11(2), 163. https://doi.org/10.3390/agriculture11020163