Evaluation of the Effects of Spray Technology and Volume Rate on the Control of Grape Berry Moth in Mountain Viticulture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Vineyard and Experimental Design
2.2. Sprayers Used
- A high-volume sprayer (HVS) with spray gun (Honda GX 120, Hamamatsu, Japan) equipped with a 4.0 HP engine, with a hose length of 100 m, calibrated at a nominal volume of 1000 L ha−1. The HVS sprayer represents the current standard practice of grape farmers in Cyprus and in several other parts of the world.
- A conventional orchard sprayer (OS) equipped with a vertical tower (Arcadia Terra, Model Cronos, Greece) calibrated at a nominal volume of 500 L ha−1 (OS500), or 50% reduction compared to the HVS treatment.
- The same conventional orchard sprayer calibrated at a nominal volume of 250 L ha−1 (OS250), or 75% reduction compare to the HVS treatment.
- An untreated control.
2.3. Determination of Spray Coverage on Leaves
2.4. Pesticide Applications against the Grape Berry Moth
2.5. Assessment of Infestations by the Grape Berry Moth
2.6. Statistical Analyses
3. Results
3.1. Environmental Conditions during the Spraying Trials
3.2. Coverage of Water-Sensitive Papers
3.3. Infestation by the Grape Berry Moth
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farm to Fork Strategy. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; COM/2020/381 Final. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 15 October 2020).
- Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. OJ L 309/24/11/2009; pp. 71–86. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0128 (accessed on 31 August 2020).
- Barzman, M.; Dachbrodt–Saaydeh, S. Comparative analysis of pesticide action plans in five European countries. Pest. Manag. Sci. 2011, 67, 1481–1485. [Google Scholar] [CrossRef] [PubMed]
- BTSF. Available online: https://ec.europa.eu/chafea/food/index_en.htm (accessed on 30 July 2019).
- Grella, M.; Gil, E.; Balsari, P.; Marucco, P.; Gallart, M. Advances in developing a new test method to assess spray drift potential from air blast sprayers. Sp. J. Agric. Res. 2017, 15, e0207. [Google Scholar] [CrossRef] [Green Version]
- Gil, E.; Llorens, J.; Landers, A.; Llop, J.; Giralt, L. Field validation of DOSAVIÑA, a decision support system to determine the optimal volume rate for pesticide application in vineyards. Eur. J. Agron. 2011, 35, 33–46. [Google Scholar] [CrossRef]
- Balsari, P.; Gil, E.; Marucco, P.; van de Zande, J.C.; Nuyttens, D.; Herbst, A.; Gallart, M. Field-crop-sprayer potential drift measured using test bench: Effects of boom height and nozzle type. Biosyst. Eng. 2017, 154, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Gil, E.; Escola, A.; Rosell, J.R.; Planas, S.; Val, L. Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Prot. 2007, 26, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Llorens, J.; Gil, E.; Llop, J.; Escola, A. Variable rate dosing in precision viticulture: Use of electronic devices to improve application efficiency. Crop Prot. 2010, 29, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Wise, J.C.; Jenkins, P.E.; Schilder, A.M.C.; Vandervoort, C.; Isaacs, R. Sprayer type and water volume influence pesticide deposition and control of insect pests and diseases in juice grapes. Crop Prot. 2010, 29, 378–385. [Google Scholar] [CrossRef]
- Pascuzzi, S.; Cerruto, E.; Manetto, G. Foliar spray deposition in a “tendone” vineyard as affected by airflow rate, volume rate, and vegetative development. Crop Prot. 2017, 34–48. [Google Scholar] [CrossRef]
- Michael, C.; Gil, E.; Gallart, M.; Kanetis, L.; Stavirinides, M.C. Evaluating the effectiveness of low volume spray application using air-assisted knapsack sprayers in wine vineyards. Int. J. Pest. Manag. 2020. [Google Scholar] [CrossRef]
- Miranda-Fuentes, A.; Llorens, J.; Rodríguez-Lizana, A.; Cuenca, A.; Gil, E.; Blanco-Roldán, G.L.; Gil-Ribes, J.A. Assessing the optimal liquid volume to be sprayed on isolated olive trees according to their canopy volumes. Sci. Total Environ. 2016, 568, 296–305. [Google Scholar] [CrossRef]
- Landers, A. Improving spray deposition and reducing drift–Air flow adjustment is the answer. N. Y. Fruit Q. 2011, 19, 1–6. [Google Scholar]
- Celen, I.H.; Arin, S.; Durgut, M.R. The effect of the air blast sprayer speed on the chemical distribution in vineyard. Pak. J. Biol. Sc. 2008, 11, 1472–1476. [Google Scholar] [CrossRef] [PubMed]
- Ambrogetti, A.O.; Uliarte, E.M.; Montoya, M.A.; Haist, W.; Monte, R.F. del. Evaluation of a drift recovery panel for phytosanitary treatments in vineyards. Rev. Fac. Cienc. Agric. 2016, 48, 83–94. [Google Scholar]
- Pergher, G.; Gubiani, R.; Tonetto, G. Foliar deposition and pesticide losses from three air-assisted sprayers in a hedgerow vineyard. Crop Prot. 1997, 16, 25–33. [Google Scholar] [CrossRef]
- Cross, J.V.; Walklate, P.J.; Murray, R.A.; Richardson, G.M. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer: 1. Effects of spray liquid flow rate. Crop Prot. 2001, 20, 13–30. [Google Scholar] [CrossRef]
- Siegfried, W.; Viret, O.; Huber, B.; Wohlhauser, R. Dosage of plant protection products adapted to leaf area index in viticulture. Crop Prot. 2007, 26, 73–82. [Google Scholar] [CrossRef]
- Salcedo, R.; Llop, J.; Campos, J.; Michael, C.; Gallart, M.; Ortega, P.; Gil, E. Evaluation of leaf deposit quality between electrostatic and conventional multi-row sprayers in a trellised vineyard. Crop Prot. 2020, 127, 104964. [Google Scholar] [CrossRef]
- Jeongeun, K.; Seungwon, K.; Chanyoung, J.; Hyoung, I.S. Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications. IEEE Access. 2019, 1. [Google Scholar] [CrossRef]
- OIV-International Organization of Vine and Wine 2018. OIV Statistical Report on World Vitiviniculture; OIV: Paris, France, 2018. [Google Scholar]
- Gil, E.; Campos, J.; Ortega, P.; Llop, J.; Gras, A.; Armengol, E.; Salcedo, R.; & Gallart, M. DOSAVIÑA: Tool to calculate the optimal volume rate and pesticide amount in vineyard spray applications based on a modified leaf wall area method. Comp. Electron. Agric. 2019, 160, 117–130. [Google Scholar] [CrossRef]
- Fermaud, M.; Le Menn, R. Transmission of Botrytis cinerea to grapes by grape berry moth larvae. Phytopathology 1992, 82, 1393–1398. [Google Scholar] [CrossRef]
- Koch, H. How to achieve conformity with the dose expression and sprayer function in high crops. Bayer Cropsci. J. 2007, 60, 71–84. [Google Scholar]
- Viret, O.; Siegfried, W.; Holliger, E.; Raisigl, U. Comparison of spray deposits and efficacy against powdery mildew of aerial and ground-based spraying equipment in viticulture. Crop Prot. 2003, 22, 1023–1032. [Google Scholar] [CrossRef]
- Mangado, J.; Arazuri, S.; Arnal, P.; Jarén, C.; López, A. Measuring the accuracy of a pesticide treatment by an image analyzer. Proc. Technol. 2013, 8, 498–502. [Google Scholar] [CrossRef]
- Chen, Y.; Ozkan, H.E.; Zhu, H.; Derksen, R.C.; Krause, C.R. Spray deposition inside tree canopies from a newly developed variable-rate air-assisted sprayer. Trans. ASABE 2013, 56, 1263–1272. [Google Scholar] [CrossRef]
- Meier, U. BBCH-Monograph. Growth Stages of Plants—Entwicklungsstadien von Pflanzen—Estadios de las Plantas—Developpement des Plantes. Blackwell Wissenschaftsverlag, Berlin und Wien. 1997. 622p. Available online: https://link.springer.com/chapter/10.1007/978-94-007-0632-3_17 (accessed on 10 February 2021).
- Anderson, K.; Aryal, N. Database of Regional, National and Global Winegrape Bearing Areas by Variety, 2000 and 2010. Wine Econ. Res. Centre, University of Adelaide. 2013. Available online: https://www.adelaide.edu.au/wine-econ/databases/winegrapes/ (accessed on 30 July 2020).
- Chrysargiris, A.; Xylia, P.; Litskas, V.; Stavrinides, M.; Heyman, L.; Demeestere, K.; Höfte, M.; Tzortzakis, N. Assessing the impact of drought stress and soil cultivation in Chardonnay and Xynisteri grape cultivars. Agronomy 2020, 10, 670. [Google Scholar] [CrossRef]
- Cyprus Statistical Service. Survey Results: Farm Structure Survey; Cyprus Statistical Service: Nicosia, Cyprus, 2016. [Google Scholar]
- TOPPS. Available online: http://www.topps-life.org/topps-prowadis-project.html (accessed on 29 October 2019).
- ISO. International Standard: Crop Protection Equipment-Field Measurement of Spray Distribution in Tree and Bush Crops; ISO 22522; ISO: London, UK, 2007. [Google Scholar]
- Rasband, W.S. (1997–2008). ImageJ, U.S. National Institutes of Health, Bethesda, MA, USA. Available online: https://imagej.nih.gov/ij/ (accessed on 12 July 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 17 July 2020).
- Wickham, H.; Francois, R.; Henry, L.; Muller, K. dplyr: A Grammar of Data Manipulation. R Package, 2020 Version 0.8.5. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 22 July 2020).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 13 July 2020).
- Brooks, E.M.; Kristensen, K.; van Benthem, J.K.; Magnusson, A.; Berg, W.C.; Nielsen, A.; Skaug, J.H.; Maechler, M.; Bolker, M.B. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Korner-Nievergelt, F.; Roth, T.; von Felten, S.; Guelat, J.; Almasi, B.; Korner-Nievergelt, P. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS and Stan; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package, 2020, Version 0.3.3.0. Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 22 July 2020).
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package, 2020, Version 1.5.1. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 3 September 2020).
- Manktelow, D.W.; Gurnsey, S.J.; MacGregor, A.M. Deposit variability and prediction in fruit crops: What use are label rates anyway? Asp. Appl. Biol. 2004, 71, 269–278. [Google Scholar]
- Michael, C.; Gil, E.; Gallart, M.; Stavirinides, M.C. Influence of spray technology and application rate on leaf deposit and ground losses in mountain viticulture. Agriculture 2020, 10, 615. [Google Scholar] [CrossRef]
- Rüegg, J.; Siegfried, W.; Raisigl, U.; Viret, O.; Steffek, R.; Reisenzein, H.; Persen, U. Registration of plant protection products in EPPO countries: Current status and possible approaches to harmonization. EPPO Bull. 2001, 31, 143–152. [Google Scholar] [CrossRef]
- Wohlhauser, R. Dose Rate Expression in Tree Fruits–the Need for Harmonization Approach from a Chemical Producer Industry Perspective. In Proceedings of the Tree Fruits Dose Adjustment Discussion Group Meeting—Wageningen, Amsterdam, The Netherlands, 29 September 2009. [Google Scholar]
- Toews R, B.; Huby J, P.; Pollmann, B.; Teichmann, M.; Schlotter, P.; Meier-Runge, F. Dose Rate Expression in Vertical Growing Crops—Need for Harmonization from the Perspective of the Plant Protection Product Industry. Workshop on Harmonized Dose Expression for the Zonal Evaluation of Plant Protection Products in High Growing Crops, Vienna, Austria. 2016. Available online: https://www.eppo.int/media/uploaded_images/MEETINGS/Conferences_2016/dose_expression/05_Meier-Runge_Teichmann.pdf (accessed on 10 February 2021).
- EPPO Activities. Available online: https://www.eppo.int/ACTIVITIES/plant_protection_products/harmonized_dose_expression (accessed on 10 November 2020).
- Barani, A.; Franchi, A.; Bugiani, R.; Montermini, A. Efficacy of unit canopy row spraying system for control of European vine moth (Lobesia botrana) in vineyards. Agric. Eng. Int. CIGR J. 2008, 10. [Google Scholar]
- Gil, E.; Bernat, C.; Queralto, M.; Lopez, A.; Planas, S.; Rosell, J.R.; Val, L. Pesticide Dose Adjustment in Vineyard: Relationship between Crop Characteristics and Quality of the Application. In Proceedings of the VIII Workshop on Spray Application Techniques in Fruit Growing, Barcelona, Spain, 29 July–1 August 2005; Gil, E., Solanelles, F., Planas, S., Rosell, J.R., Val, L., Eds.; Universitat Politecnica de Catalunya:Catalunya, Spain. Generalitat de Catalunya i Universitat de Lleida: Lleida, Spain, 2005; pp. 19–20. [Google Scholar]
- Gil, E.; Salcedo, R.; Soler, A.; Ortega, P.; Llop, J.; Campos, J.; Oliva, J. Relative efficiencies of experimental and conventional foliar sprayers and assessment of optimal LWA spray volumes in trellised wine grapes. Pest Manag. Sci. 2021. [Google Scholar] [CrossRef] [PubMed]
- Cabús, A.; Pellini, M.; Zanzotti, R.; Devigili, L.; Maines, R.; Giovannini, O.; Mattedi, L.; Mescalchin, E. Efficacy of reduced copper dosages against Plasmopara viticola in organic agriculture. Crop Prot. 2017, 96, 103–108. [Google Scholar] [CrossRef]
No | Variety | Training System | Vine Spacing (m) | Average Canopy Height × Width (m) | Size (ha−1) | Age (Years) | |
---|---|---|---|---|---|---|---|
BBCH 65 | BBCH 85 | ||||||
1 | Palomino | Trellis | 2.4 × 2.4 | 0.72 × 0.66 | 1.05 × 1.01 | 0.3 | 6 |
2 | Xynisteri | Trellis | 2.4 × 2.4 | 0.76 × 0.81 | 1.12 × 1.08 | 0.3 | 16 |
3 | Carignan | Goblet | 2.4 × 2.4 | 0.68 × 0.86 | 1.18 × 1.28 | 1.6 | 21 |
Date | Active Ingredient | Commercial Name | Recommended Dose (mL or gr/100 L) | L ha−1 | Actual Dose Used/100 L | Insect/Disease |
---|---|---|---|---|---|---|
24 May 2017 | Indoxacarb 30% | Steward 30WG | 15 | 500–1500 | 15 | Grape berry moth |
Proquinazid 20% | Talendo EC | 20–25 | 300–1000 | 20 | Powdery mildew | |
14 June 2017 | Spinosad 48% | Tracer 48 SC | 10–15 | 400–1200 | 15 | Grape berry moth |
Difenoconazole 6% Cyflufenamid 3% | Dynali 60/30 DC | 50–65 | 1000 | 60 | Powdery mildew | |
13 July 2017 | Esfenvalerate 2.5% | Plinto 2,5 EC | 40–120 | 500–1000 | 40 | Grape berry moth |
Boscalid 20% Kresoxim-methyl 10% | ENTOL 20/10SC | 40 | 1000 | 40 | Powdery mildew | |
14 August 2017 | Alpha cypermethrin 10% | Fastac 10 SC | 10–15 | 500–1500 | 15 | Grape berry moth |
18 May 2018 | Indoxacarb 30% | Steward 30WG | 15 | 500–1500 | 15 | Grape berry moth |
Proquinazid 20% | Talendo EC | 20–25 | 300–1000 | 20 | Powdery mildew | |
15 June 2018 | Spinosad 48% | Tracer 48 SC | 10–15 | 400–1200 | 15 | Grape berry moth |
Difenoconazole 6% Cyflufenamid 3% | Dynali 60/30 DC | 50–65 | 1000 | 60 | Powdery mildew | |
13 July 2018 | Esfenvalerate 2.5% | Plinto 2,5 EC | 40–120 | 500–1000 | 40 | Grape berry moth |
Boscalid 20% Kresoxim-methyl 10% | ENTOL 20/10SC | 40 | 1000 | 40 | Powdery mildew | |
17 August 2018 | Alpha cypermethrin 10% | Fastac 10 SC | 10–15 | 500–1500 | 15 | Grape berry moth |
Fixed Effects * | df | LRT | p-Value | LRT | p-Value | LRT | p-Value |
---|---|---|---|---|---|---|---|
Carignan | Palomino | Xynisteri | |||||
Sprayer | 2 | 21.53 | <0.001 | 28.44 | <0.001 | 25.00 | <0.001 |
Stage | 1 | 1.59 | 0.21 | 1.14 | 0.29 | 5.29 | 0.02 |
Sprayer: Stage | 2 | 0.56 | 0.75 | 2.31 | 0.32 | 2.32 | 0.31 |
Random effect for vine (st. deviation) | 0.28 | 4.84 × 10−5 | 6.24 × 10−5 | ||||
Overdispersion parameter for betabinomial family | 4.79 | 3.41 | 3.09 | ||||
Residual degrees of freedom | 154 | 154 | 154 |
Fixed Effects * | df | LRT | p-Value | LRT | p-Value | LRT | p-Value |
---|---|---|---|---|---|---|---|
Carignan | Palomino | Xynisteri | |||||
Sprayer | 3 | 13.26 | 0.004 | 64.65 | <0.001 | 31.28 | <0.001 |
Year | 1 | 0.09 | 0.76 | 1.65 | 0.20 | 2.30 | 0.13 |
Sprayer: Year | 3 | 1.87 | 0.60 | 0.71 | 0.87 | 9.45 | 0.02 |
Random effect for vine (st. deviation) | 0.71 | 0.86 | 0.84 | ||||
Dispersion parameter | 0.87 | 0.83 | 0.88 | ||||
Residual degrees of freedom | 151 | 151 | 151 |
Variety | Treatment | Year 1 | Year 2 |
---|---|---|---|
Carignan | HVS | 74% | 62% |
OS250 | 58% | 56% | |
OS500 | 71% | 57% | |
Palomino | HVS | 96% | 94% |
OS250 | 78% | 77% | |
OS500 | 82% | 83% | |
Xynisteri | HVS | 71% | 73% |
OS250 | 83% | 60% | |
OS500 | 91% | 79% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michael, C.; Gil, E.; Gallart, M.; Stavrinides, M.C. Evaluation of the Effects of Spray Technology and Volume Rate on the Control of Grape Berry Moth in Mountain Viticulture. Agriculture 2021, 11, 178. https://doi.org/10.3390/agriculture11020178
Michael C, Gil E, Gallart M, Stavrinides MC. Evaluation of the Effects of Spray Technology and Volume Rate on the Control of Grape Berry Moth in Mountain Viticulture. Agriculture. 2021; 11(2):178. https://doi.org/10.3390/agriculture11020178
Chicago/Turabian StyleMichael, Costas, Emilio Gil, Montserrat Gallart, and Menelaos C. Stavrinides. 2021. "Evaluation of the Effects of Spray Technology and Volume Rate on the Control of Grape Berry Moth in Mountain Viticulture" Agriculture 11, no. 2: 178. https://doi.org/10.3390/agriculture11020178
APA StyleMichael, C., Gil, E., Gallart, M., & Stavrinides, M. C. (2021). Evaluation of the Effects of Spray Technology and Volume Rate on the Control of Grape Berry Moth in Mountain Viticulture. Agriculture, 11(2), 178. https://doi.org/10.3390/agriculture11020178