Long-Term Yield Variability of Triticale (×Triticosecale Wittmack) Tested Using a CART Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data
- The amount of seeds (quantitative);
- The rate of nitrogen, phosphorus, potassium and foliar fertilization (quantitative);
- The amount of fungicides, herbicides, insecticides and growth regulators per hectare (quantitative);
- Climatic water balance (CWB), introduced by the Institute of Soil Science and Plant Cultivation (IUNG), is the basic indicator to estimate the water available for plants based on precipitation and potential evaporation [27]—in the analysis CWB was used for April and May, for May and June and for June and July during each growing season; variable was partitioned into 16 bins from sufficient water availability > −50 mm to extreme water deficiency −199 mm (quantitative);
- Cultivar (qualitative);
- Date of sowing (quantitative);
- The number of days from sowing to harvesting (quantitative);
- Pre-crop (cereal, legume, rapeseed, root crop) (qualitative).
2.2. Statistical Analysis
3. Results
3.1. Results for Winter Triticale
3.2. Results for Spring Triticale
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McGoverin, C.M.; Snyders, F.; Muller, N.; Botes, W.; Fox, G.; Manley, M. A review of triticale uses and the effect of growth environment on grain quality. J. Sci. Food Agric. 2011, 91, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Ayalew, H.; Kumssa, T.T.; Butler, T.J.; Ma, X.-F. Triticale Improvement for Forage and Cover Crop Uses in the Southern Great Plains of the United States. Front Plant Sci. 2018, 9, 1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennett, A.L.; Cooper, K.V.; Trethowan, R.M. The genotypic and phenotypic interaction of wheat and rye storage proteins in primary triticale. Euphytica 2013, 194, 235–242. [Google Scholar] [CrossRef]
- Blum, A. The abiotic stress response and adaptation of triticale—A review. Cereal Res. Commun. 2014, 42, 359–375. [Google Scholar] [CrossRef] [Green Version]
- Randhawa, H.; Bona, L.; Graf, R. Triticale Breeding—Progress and Prospect; Triticale, E.F., Ed.; Springer: New York, NY, USA, 2015; pp. 15–32. [Google Scholar]
- Kavanagh, V.; Hall, L. Biology and Biosafety; Triticale, E.F., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–13. [Google Scholar]
- Zhu, F. Triticale: Nutritional composition and food uses. Food Chem. 2018, 241, 468–479. [Google Scholar] [CrossRef]
- Glamoclija, N.; Starcevic, M.; Ćirić, J.; Sefer, D.; Glisic, M.; Baltic, M.; Markovic, R.; Spasic, M.; Glamoclija, D. The importance of triticale in animal nutrition VL 18 Veterinary. J. Repub. Srp. (Бања Лука-Banja Luka) 2018, 18, 73–94. [Google Scholar]
- Eudes, F. Canadian triticale biorefinery initiative. In Proceedings of the 6th International Triticale Symposium, Stellenbosch, South Africa, 3–7 September 2006; Botes, W.C., Boros, D., Darvey, N., Gustafson, R., Jessop, R., Marais, G.F., et al., Eds.; ITA & SU-PBL: Stellenbosch, South Africa, 2006; pp. 85–88. [Google Scholar]
- McKenzie, R.H.; Bremer, E.; Middleton, A.B.; Beres, B.; Yoder, C.; Hietamaa, C.; Pfiffner, P.; Kereliuk, G.; Pauly, D.; Henriquez, B. Agronomic practices for bioethanol production from spring triticale in Alberta. Can. J. Plant Sci. 2014, 94, 15–22. [Google Scholar] [CrossRef]
- Estrada-Campuzano, G.; Miralles, D.J.; Slafer, G.A. Genotypic variability and response to water stress of pre and post-anthesis phases in triticale. Eur. J. Agron. 2008, 28, 171–177. [Google Scholar] [CrossRef]
- Estrada-Campuzano, G.; Slafer, G.A.; Miralles, D.J. Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crops Res. 2012, 128, 167–179. [Google Scholar] [CrossRef]
- Ugarte, C.; Calderini, D.F.; Slafer, G.A. Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale. Field Crop. Res. 2007, 100, 240–248. [Google Scholar] [CrossRef]
- Wrigley, C.; Bushuk, W. Triticale: Grain Quality Characteristics and Management of Quality Requirements. In Cereal Grains Assessing and Managing Quality, 2nd ed.; Wrigley, C., Batey, I., Miskelly, D., Eds.; Elsevier Ltd.: Oxford, UK, 2017; pp. 179–194. [Google Scholar]
- Ballesteros-Rodríguez, E.; Martínez-Rueda, C.G.; Morales-Rosales, E.J.; Estrada-Campuzano, G. Changes in Number and Weight of Wheat and Triticale Grains to Manipulation in Source-Sink Relationship. Int. J. Agron. 2019. [Google Scholar] [CrossRef]
- Bezabih, A.G.; Girmay, A. Lakewu. Performance of triticale varieties for the marginal highlands of Wag-Lasta, Ethiopia. Cogent Food Agric. 2019, 5, 1–11. [Google Scholar]
- Laidig, F.; Piepho, H.P.; Rentel, D.; Drobek, T.; Meyer, U.; Huesken, A. Breeding progress, variation, and correlation of grain and quality traits in winter rye hybrid and population varieties and national on-farm progress in Germany over 26 years. Appl. Genet. 2017, 130, 981–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattunde, H.F.W.; Geiger, H.H.; Weipert, D. Variation and covariation of milling- and baking-quality characteristics among winter rye single-cross hybrids. Plant Breed. 1994, 113, 287–293. [Google Scholar] [CrossRef]
- Wójcik-Gront, E. Variables influencing yield-scaled Global Warming Potential and yield of winter wheat production. Field Crop. Res. 2018, 227, 19–29. [Google Scholar] [CrossRef]
- FAOSTAT. Statistics Division of Food and Agriculture Organization of the United Nations. Available online: http://faostat3.fao.org/browse/Q/QC/E (accessed on 8 February 2018).
- Gill, K.S.; Mokanye, A.T. Spring triticale varieties forage yield, nutrients composition and suitability for beef cattle production. J. Agric. Sci. 2016, 8, 1–14. [Google Scholar] [CrossRef]
- Dumbravă, M.; Ion, V.; Epure, L.I.; Băşa, A.G.; Ion, N.; Duşa, E.M. Grain yield and yield components at triticale under different technological conditions. Agric. Agric. Sci. Procedia 2016, 10, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Kreyling, J. Winter Climate Change: A Critical Factor for Temperate Vegetation Performance. Ecology 2010, 91, 1939–1948. [Google Scholar] [CrossRef]
- Głąb, T.; Ścigalska, B.; Łabuz, B. Effect of crop rotation on the root system morphology and productivity of triticale (×Triticosecale Wittm). J. Agric. Sci. 2014, 152, 642–654. [Google Scholar] [CrossRef]
- Wójcik-Gront, E.; Bloch-Michalik, M. Assessment of greenhouse gas emission from life cycle of basic cereals production in Poland. Zemdirb. Agric. 2016, 103, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.G. Classification and Regression Trees; Wadsworth International Group: Belmont, CA, USA, 1984. [Google Scholar]
- Szewczak, K.; Łoś, H.; Pudełko, R.; Doroszewski, A.; Gluba, Ł.; Łukowski, M.; Rafalska-Przysucha, A.; Słomiński, J.; Usowicz, B. Agricultural Drought Monitoring by MODIS Potential Evapotranspiration Remote Sensing Data Application. Remote Sens. 2020, 12, 3411. [Google Scholar] [CrossRef]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification, 6th edition principles, classification scheme and correlations. Soil Sci. Annu. 2019, 70, 71–97. [Google Scholar] [CrossRef] [Green Version]
- CM. Regulation of the Council of Ministers on soil quality classes. Dz.U.2012.0.1246 Rozporządzenie Rady Ministrów z dnia 12 września 2012 r. w sprawie gleboznawczej klasyfikacji gruntów, 2012. Issuing authority: Polish Council Of Ministers, Issuing date: 29 December 2012.
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 12. Available online: www.statsoft.com (accessed on 10 December 2020).
- Strobl, C.; Malley, J.; Tutz, G. An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods 2009, 14, 323–348. [Google Scholar] [CrossRef] [Green Version]
- Dacko, M.; Zając, T.; Synowiec, A.; Oleksy, A.; Klimek-Kopyra, A.; Kulig, B. New approach to determine biological and environmental factors influencing mass of a single pea (Pisum sativum L.) seed in Silesia region in Poland using a CART model. Eur. J. Agron. 2016, 74, 29–37. [Google Scholar] [CrossRef]
- Krupnik, T.J.; Ahmed, Z.U.; Timsina, J.; Yasmina, S.; Hossain, F.; Mamun, A.A.; Mridha, A.I.; McDonald, A.J. Untangling crop management and environmental influences on wheat yield variability in Bangladesh: An application of non-parametric approaches. Agric. Syst. 2015, 139, 166–179. [Google Scholar] [CrossRef]
- Mézière, D.; Colbach, N.; Dessaint, F.; Granger, S. Which cropping systems to reconcile weed-related biodiversity and crop production in arable crops? An approach with simulation-based indicators. Eur. J. Agron. 2015, 68, 22–37. [Google Scholar] [CrossRef]
- Aman, M.N.; Bhatti, A.U. Comparison of regression models to predict potential yield of wheat from some measured soil properties. Pak. J. Agri. Sci. 2015, 52, 239–256. [Google Scholar]
- Aouadia, N.; Aubertotb, J.N.; Caneillc, J.; Munier-Jolaina, N. Analyzing the impact of the farming context and environmental factors on cropping systems: A regional case study in Burgundy. Eur. J. Agron. 2015, 66, 21–29. [Google Scholar] [CrossRef]
- Andrianasolo, F.N.; Casadebaig, P.; Maza, E.; Champolivier, L.; Maury, P.; Debaeke, P. Prediction of sunflower grain oil concentration as a function of variety, crop management and environment using statistical models. Eur. J. Agron. 2014, 54, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Cheshkova, A.; Stepochkin, P.; Aleynikov, A.; Grebennikova, I.; Chanyshev, D. A comparative study of spring triticale varieties in the Western Siberian forest-steppe zone under different conditions of vegetation. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov. J. Genet. Breed. 2018, 22, 304–309. [Google Scholar]
- Schwarte, A.J.; Gibson, L.R.; Karlen, D.L.; Dixon, P.M.; Liebman, M.; Jannink, J.-L. Planting Date Effects on Winter Triticale Grain Yield and Yield Components. Crop Sci. 2006, 46, 1218–1224. [Google Scholar] [CrossRef]
- Iwańska, M.; Oleksy, A.; Dacko, M.; Skowera, B.; Oleksiak, T.; Wójcik-Gront, E. Use of classification and regression trees (CART) for analyzing determinants of winter wheat yield variation among fields in Poland. Biom. Lett. 2018, 55, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Studnicki, M.; Derejko, A.; Wójcik-Gront, E.; Kosma, M. Adaptation patterns of winter wheat cultivars in agro-ecological regions. Sci. Agr. 2019, 76, 148–156. [Google Scholar] [CrossRef]
- Deepak, G.P.; Yogeshvari, K.J. Soil Fertility Management for Sustainable Development; Editors Springer Nature Singapore Pte Ltd.: Singapore, 2019. [Google Scholar]
- Cudney, D.; Orloff, S.; Canevari, W.M.; Orr, J.P. Cereals (Wheat, Triticum Aestivum, Barley, Hordeum Vulgare, and Oat, Avena Sativa); Principles of weed control; Kurtz, E., Colbert, F., Eds.; California Weed Science Society: Salinas, CA, USA, 2001; pp. 302–311. [Google Scholar]
- Ramesh, K.; Matloob, A.; Aslam, F.; Florentine, S.K.; Chauhan, B.S. Weeds in a Changing Climate: Vulnerabilities, Consequences, and Implications for Future Weed Management. Front. Plant Sci. 2017, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Mondici, S.; Fritea, T.; Popescu, A.; Brejea, R. Influence of the herbicides treatments at wheat crops on three types of soil in North-West of Romania. Rom. Agric. Res. 2019, 36, 195–199. [Google Scholar]
- Kukal, M.S.; Irmak, S. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the US Great Plains Agricultural Production. Sci. Rep. 2018, 8, 3450. [Google Scholar] [CrossRef] [Green Version]
- Urruty, N.; Guyomard, H.; Tailliez-Lefebvre, D.; Huyghe, C. Variability of winter wheat yield in France under average and unfavourable weather conditions. Field Crop. Res. 2017, 213, 29–37. [Google Scholar] [CrossRef]
- Oral, E. Effect of nitrogen fertilization levels on grain yield and yield components in triticale based on AMMI and GGE biplot analysis. Appl. Ecol. Environ. Res. 2018, 16, 4865–4878. [Google Scholar] [CrossRef]
- Roques, S.E.; Kindred, D.R.; Clarke, S. Triticale out-performs wheat on range of UK soils with a similar nitrogen requirement. J. Agric. Sci. 2017, 155, 261–281. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J.T. Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize-alfalfa rotation in Michigan. Agr. Ecosyst. Environ. 2005, 108, 329–341. [Google Scholar] [CrossRef]
- Li, X.; Hu, C.; Delgado, J.A.; Zhang, Y.; Ouyang, Z. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north China plain. Agr. Water Manag. 2007, 89, 137–147. [Google Scholar] [CrossRef]
- Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark. Eur. J. Agron. 2015, 62, 55–64. [Google Scholar] [CrossRef]
- Villegas, D.; Casadesus, J.; Atienza, S.G.; Martos, V.; Maalouf, F.; Karam, F.; Aranjuelo, I.; Nogues, S. Tritordeum, wheat and triticale yield components under multi-local Mediterranean drought conditions. Field Crop. Res. 2010, 116, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.R.; Nance, C.D.; Karlen, D.L. Winter triticale response to nitrogen fertilization when grown after corn or soybean. Agron. J. 2007, 99, 49–58. [Google Scholar] [CrossRef]
- Márton, L. Impact of Rainfall, Liming, Nitrogen (N), Phosphorus (P2O5), Potassium (K2O), Calcium (CaO), Magnesium (MgO) Mineral Fertilization on Triticale (×Triticosecale Wittmack) Yield in a Monoculture in Hungary. Cereal Res. Commun. 2008, 36, 333–341. [Google Scholar] [CrossRef]
- Bolenius, E.; Stenberg, B.; Arvidsson, J. Within field cereal yield variability as affected by soil physical properties and weather variations–A case study in east central Sweden. Geoderma Reg. 2017, 11, 96–103. [Google Scholar] [CrossRef]
- Szwed, M.; Karg, G.; Pińskwar, I.; Radziejewski, M.; Graczyk, D.; Kędziora, A.; Kundzewicz, Z.W. Climate change and its effect on agriculture, water resources and human health sectors in Poland. Nat. Hazards Earth Syst. Sci. 2010, 10, 1725–1737. [Google Scholar] [CrossRef]
- Hill, T.; Lewicki, P. Statistics: Methods and Applications a Comprehensive Reference for Science; Industry and Data Mining. StatSoft, Inc.: Tulsa, OK, USA, 2006. [Google Scholar]
- Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased Recursive Partitioning: A Conditional Inference Framework. J. Comput. Graph. Stat. 2006, 15, 651–674. [Google Scholar] [CrossRef] [Green Version]
- Studnicki, M.; Wijata, M.; Sobczynski, G.; Samborski, S.; Gozdowski, D.; Rozbicki, J. Effect of genotype, environment and crop management on yield and quality traits in spring wheat. J. Cereal Sci. 2016, 72, 30–37. [Google Scholar] [CrossRef]
- Arseniuk, E.; Góral, T. Triticale Biotic Stresses—Known and Novel Foes. In Triticale; Eudes, F., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 83–108. [Google Scholar]
- Directive 2009/128/EC of the European Parlament and of the Council Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02009L0128-20091125&from=EN (accessed on 30 September 2020).
Winter Triticale (kg ha −1) | Spring Triticale (kg ha −1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | max | min | Median | Q1 | Q3 | max | min | |
yield | 8284.4 | 6888.0 | 9760.0 | 14,063.7 | 2486.7 | 6857.8 | 5839.9 | 7900.2 | 11,037.6 | 2722.4 |
seeds | 162.0 | 141.8 | 162.0 | 202.5 | 121.5 | 182.3 | 182.3 | 202.5 | 243.0 | 121.5 |
N | 120.0 | 98.0 | 140.0 | 214.0 | 45.0 | 90.0 | 70.0 | 110.0 | 186.5 | 40 |
P2O2 | 50.0 | 40.0 | 60.0 | 90.0 | 0 | 60.0 | 38.0 | 60.0 | 109.0 | 0 |
K2O | 90.0 | 70.0 | 90.0 | 150.0 | 0 | 90.0 | 75.0 | 96.0 | 161.0 | 24 |
foliar fertilizer | 0 | 0 | 3.2 | 80.0 | 0 | 0 | 0 | 1.6 | 24.7 | 0 |
herbicides | 1.1 | 0.5 | 1.4 | 5.2 | 0 | 0.8 | 0.3 | 1.2 | 2.8 | 0 |
insecticides | 0.1 | 0 | 0.2 | 1.6 | 0 | 0.1 | 0.1 | 0.2 | 1.2 | 0 |
fungicides | 0 | 0 | 1.6 | 4.0 | 0 | 0 | 0 | 1.3 | 3.2 | 0 |
growth regulators | 0 | 0 | 0.8 | 1.9 | 0 | 0 | 0 | 0 | 0.6 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik-Gront, E.; Studnicki, M. Long-Term Yield Variability of Triticale (×Triticosecale Wittmack) Tested Using a CART Model. Agriculture 2021, 11, 92. https://doi.org/10.3390/agriculture11020092
Wójcik-Gront E, Studnicki M. Long-Term Yield Variability of Triticale (×Triticosecale Wittmack) Tested Using a CART Model. Agriculture. 2021; 11(2):92. https://doi.org/10.3390/agriculture11020092
Chicago/Turabian StyleWójcik-Gront, Elżbieta, and Marcin Studnicki. 2021. "Long-Term Yield Variability of Triticale (×Triticosecale Wittmack) Tested Using a CART Model" Agriculture 11, no. 2: 92. https://doi.org/10.3390/agriculture11020092
APA StyleWójcik-Gront, E., & Studnicki, M. (2021). Long-Term Yield Variability of Triticale (×Triticosecale Wittmack) Tested Using a CART Model. Agriculture, 11(2), 92. https://doi.org/10.3390/agriculture11020092