Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture
Abstract
:1. Introduction
2. Current Status of Smallholder Farming in Ethiopia
2.1. Agricultural Productivity
2.2. Agricultural Land Size
2.3. Fertilizer Application and Organic Matter Management
2.4. Water Availability
3. Potential Climate-Smart Agriculture Practices for Smallholder Farming Systems in Ethiopia
3.1. Integrated Soil Fertility Management
3.1.1. Conservation Agriculture Practices
The Role of Conservation Agriculture | Implication for Climate-Smart Agriculture | References |
---|---|---|
Soil organic carbon increased by about 0.5% at a depth 0–30 cm by minimum tillage compared to conventional tillage in Akaki district. | Carbon sequestration | [9,97] |
Soil organic carbon increased from 2.2% to 2.6% at surface horizon by conservation tillage in the Tigray region. | Carbon sequestration | [98] |
Soil organic carbon increased by 33% due to conservation tillage compared to conventional tillage in Amhara. | Carbon sequestration | [99] |
Bean grain yield increased by 32% and soil organic matter by 0.4% due to minimum tillage at Melkassa research center. | Increased productivity Carbon sequestration | [76] |
Mulch increased grain yield of wheat by 28% in comparison to the control in the Tigray region. | Increased productivity | [100] |
Intercropped maize with crotalaria and lablab decreased emissions of GHG. | Lower emissions of GHG | [101] |
An increase of the crop diversity index by 10% reduced probability of poverty by 17.5%. | Increased productivity and resilience | [102] |
Hagarghe highlands with high diversity of cultivated crops had a higher dietary diversity status (73.9%) than in non-diversified areas (15.2%). | Increased productivity and food security | [103] |
3.1.2. Integrated Nutrient Management
Effects of Integrated Nutrient Management | Implication for Climate-Smart Agriculture | References |
---|---|---|
Integrated use of compost and NP (55/10 kg ha−1) resulted in higher maize yield (2.34 t ha−1) than sole application of NP (110/20 kg ha−1). | Increased productivity | [119] |
Integrated use of NP (30/10) and compost produced greater maize yield (3.25 t ha−1) than sole application of NP (60/20). | Increased productivity | [118] |
Mixed application organic and inorganic fertilizers increased content of soil organic carbon by about 0.5% in comparison to sole application of NP fertilizer. | Carbon sequestration | [116] |
Mixed application of manure and inorganic fertilizer produced 1.1 to 4.7 times higher maize grain yields than sole application of manure or inorganic fertilizer. | Increased productivity | [117] |
Compost application increased the soil organic matter by 3.8% and increased the availability of soil nutrients in the Amhara region. | Carbon sequestration Soil fertility | [120] |
Straw after compost application resulted in higher yields of cereal grains in the Amhara region. | Increased productivity | [121,122] |
3.2. Water Harvesting and Small-Scale Irrigation
The role of Water Harvesting and Small-Scale Irrigation | Implication for Climate-Smart Agriculture | References |
---|---|---|
Onion cultivation with water harvesting provided $2000 higher annual income compared to rain-fed teff and wheat cultivation in the Amhara region. | Increased productivity | [130,135] |
Securing adequate water availability for crops through water harvesting in Tigray. | Increased resilience of cropping systems | [136] |
In-situ rainwater harvesting provided higher maize yield (25%) than rain-fed crops in northern Tigray. | Increased productivity | [135,144] |
Farmers applying small-scale irrigation had a lower incidence of poverty (28%) than the non-irrigation users (67%). | Increased productivity | [137] |
Higher yield of teff (0.3–0.6 t ha−1), wheat (0.5–0.8 t ha−1), and barley (0.45–0.75 t ha−1) obtained with small-scale irrigation compared to rain-fed cropping in Tigray. | Increased productivity and resilience | [136] |
The annual income of irrigation beneficiaries in the Great Rift Valley of Ethiopia was at about 10,200 Birr per household about 34% higher than that of non-users. | Increased productivity and resilience | [139] |
In Ambo district about 60% of farmers without irrigation facilities but only about 35% of farmers with irrigation facilities were estimated to be below the poverty line, | Decreased poverty | [138] |
3.3. Agroforestry
The role of Agroforestry | Implication for Climate-Smart Agriculture | References |
---|---|---|
The land productivity of agroforestry adopters is 16.6% greater than non-adopters in the Amhara region. | Increased productivity | [150] |
Agroforestry with white acacia (Faiderbia albida) sequestered 9.7 Mg ha−1 of organic carbon more than rain-fed crop production in the Tigray region. | Carbon sequestration | [151] |
Soil organic carbon increased by 52% compared to annual cereal rotation. | Carbon sequestration | [149] |
Protection of native trees and increase of annual income by 7% could be achieved by farmland agroforestry in the Amhara region | Resilience to climate change Improved livelihood | [31] |
Aboveground and belowground carbon could be accumulated in the south-eastern Rift Valley escarpment while protecting native trees. | Carbon sequestration Resilience to climate change | [152] |
Restoration of degraded land in various regions of Ethiopia | Resilience to climate change Improved livelihood | [153,154,155] |
Promotion of ecosystem services in Southern Ethiopia | Resilience to climate change Improved livelihood | [156] |
4. Challenges for Adoption of Climate-Smart Agriculture Practices in Smallholder Farming Systems
4.1. Shrinking Cropland and Land Tenure Issues
4.2. Lack of Adequate Knowledge and Information Transfer
4.3. Slow Return of Benefit and Lack of Financial Support
5. Opportunities for Enhancing Climate-Smart Agriculture Practices in Smallholder Farming Systems
5.1. Utilization of Degraded and Marginal Lands
5.2. Providing Microfinance for the Adoption of Climate-Smart Agriculture Practices
5.3. Education, Empowerment, and Capacity-Building
5.4. Policy Support for the Implementation of Climate-Smart Agriculture Practices
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Temesgen, M.; Hoogmoed, W.B.; Rockstrom, J.; Savenije, H.H.G. Conservation Tillage Implements and Systems for Smallholder Farmers in Semi-Arid Ethiopia. Soil Tillage Res. 2009, 104, 185–191. [Google Scholar] [CrossRef]
- Stellmacher, T.; Kelboro, G. Family Farms, Agricultural Productivity, and the Terrain of Food (In)Security in Ethiopia. Sustainability 2019, 11, 4981. [Google Scholar] [CrossRef] [Green Version]
- Njeru, E.; Grey, S.; Kilawe, E. Eastern Africa Climate-Smart Agriculture Scoping Study: Ethiopia, Kenya and Uganda; FAO: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Aweke, M. Gelaw Climate-Smart Agriculture in Ethiopia: CSA Country Profiles for Africa Series; International Center for Tropical Agriculture: Washington, DC, USA, 2017. [Google Scholar]
- Rapsomanikis, G. The Economic Lives of Smallholder Farmers; An Analysis Based on Household Surveys; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Ogato, G.S. Biophysical, Socio-Economic, and Institutional Constraints for Production and Flow of Cereals in Ethiopia. AJHE 2014, 3, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Gezie, M.; Tejada Moral, M. Farmer’s Response to Climate Change and Variability in Ethiopia: A Review. Cogent Food Agric. 2019, 5, 1613770. [Google Scholar] [CrossRef]
- Tessema, I.; Simane, B. Vulnerability Analysis of Smallholder Farmers to Climate Variability and Change: An Agro-Ecological System-Based Approach in the Fincha’a Sub-Basin of the Upper Blue Nile Basin of Ethiopia. Ecol. Process. 2019, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Nagothu, U.S. Climate Change and Agricultural Development: Improving Resilience through Climate Smart Agriculture; Agro Ecology and Conservation; Routledge (Taylor & Francis Group): London, UK, 2016; ISBN 9781138364080. [Google Scholar]
- McCarthy, N.; Lipper, L.; Branca, G. Climate Smart Agriculture: Smallholder Adoption and Implications for Climate Change Adaptation and Mitigation; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2011; p. 37. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-Smart Agriculture for Food Security. Nat. Clim Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Steenwerth, K.L.; Hodson, A.K.; Bloom, A.J.; Carter, M.R.; Cattaneo, A.; Chartres, C.J.; Hatfield, J.L.; Henry, K.; Hopmans, J.W.; Horwath, W.R.; et al. Climate-Smart Agriculture Global Research Agenda: Scientific Basis for Action. Agric. Food Secur. 2014, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Nciizah, A.D.; Wakindiki, I.I. Climate Smart Agriculture: Achievements and Prospects in Africa. J. Geosci. Environ. Prot. 2015, 3, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Zougmoré, R.; Partey, S.; Ouédraogo, M.; Omitoyin, B.; Thomas, T.; Ayantunde, A.; Ericksen, P.; Said, M.; Jalloh, A. Toward Climate-Smart Agriculture in West Africa: A Review of Climate Change Impacts, Adaptation Strategies and Policy Developments for the Livestock, Fishery and Crop Production Sectors. Agric. Food Secur. 2016, 5, 26. [Google Scholar] [CrossRef]
- Campbell, B.M.; Thornton, P.; Zougmoré, R.; van Asten, P.; Lipper, L. Sustainable Intensification: What Is Its Role in Climate Smart Agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Gjengedal, M. Conservation Agriculture; Food and Agriculture Organization of the United Nations (FAO): Ginbi, Ethiopia, 2016; p. 119. [Google Scholar]
- Bai, X.; Huang, Y.; Ren, W.; Coyne, M.; Jacinthe, P.; Tao, B.; Hui, D.; Yang, J.; Matocha, C. Responses of Soil Carbon Sequestration to Climate-smart Agriculture Practices: A Meta-analysis. Glob. Chang. Biol 2019, 25, 2591–2606. [Google Scholar] [CrossRef]
- Agegnehu, G.; Tilahun Amede, T. Integrated Soil Fertility and Plant Nutrient Management in Tropical Agro-Ecosystems: A Review. Pedosphere 2017, 27, 662–680. [Google Scholar] [CrossRef]
- Chiemela, S.N.; Noulekoun, F.; Zenebe, A.; Abadi, N.; Birhane, E. Transformation of Degraded Farmlands to Agroforestry in Zongi Village, Ethiopia. Agroforest Syst. 2018, 92, 1317–1328. [Google Scholar] [CrossRef]
- Headey, D.; Dereje, M.; Taffesse, A.S. Land Constraints and Agricultural Intensification in Ethiopia: A Village-Level Analysis of High-Potential Areas. Food Policy 2014, 48, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Mutyasira, V.; Hoag, D.; Pendell, D.; Yildiz, F. The Adoption of Sustainable Agricultural Practices by Smallholder Farmers in Ethiopian Highlands: An Integrative Approach. Cogent Food Agric. 2018, 4, 1552439. [Google Scholar] [CrossRef]
- Wassie, A.; Pauline, N. Evaluating Smallholder Farmers’ Preferences for Climate Smart Agricultural Practices in Tehuledere District, Northeastern Ethiopia: Evaluating Smallholder Farmers’ Preferences. Singap. J. Trop. Geogr. 2018, 39, 300–316. [Google Scholar] [CrossRef]
- Jirata, M.; Grey, S.; Kilawe, E. Ethiopia Climate-Smart Agriculture Scoping Study; FAO: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Abera, W.; Assen, M.; Budds, J. Determinants of Agricultural Land Management Practices among Smallholder Farmers in the Wanka Watershed, Northwestern Highlands of EthiopiaI. Land Use Policy 2020, 99, 104841. [Google Scholar] [CrossRef]
- Welteji, D. A Critical Review of Rural Development Policy of Ethiopia: Access, Utilization and Coverage. Agric. Food Secur. 2018, 7, 55. [Google Scholar] [CrossRef]
- Shikur, Z.H. Agricultural Policies, Agricultural Production and Rural Households’ Welfare in Ethiopia. Econ. Struct. 2020, 9, 50. [Google Scholar] [CrossRef]
- Beyene, A.D.; Mekonnen, A.; Randall, B.; Deribe, R. Household Level Determinants of Agroforestry Practices Adoption in Rural Ethiopia. For. Trees Livelihoods 2019, 28, 194–213. [Google Scholar] [CrossRef]
- Tsige, M.; Synnevåg, G.; Aune, J.B. Gendered Constraints for Adopting Climate-Smart Agriculture amongst Smallholder Ethiopian Women Farmers. Sci. Afr. 2020, 7, e00250. [Google Scholar] [CrossRef]
- Sain, G.; Loboguerrero, A.M.; Corner-Dolloff, C.; Lizarazo, M.; Nowak, A.; Martínez-Barón, D.; Andrieu, N. Costs and Benefits of Climate-Smart Agriculture: The Case of the Dry Corridor in Guatemala. Agric. Syst. 2017, 151, 163–173. [Google Scholar] [CrossRef]
- Stewart, Z.P.; Pierzynski, G.M.; Middendorf, B.J.; Prasad, P.V.V. Approaches to Improve Soil Fertility in Sub-Saharan Africa. J. Exp. Bot. 2020, 71, 632–641. [Google Scholar] [CrossRef] [Green Version]
- Amare, D.; Wondie, M.; Mekuria, W.; Darr, D. Agroforestry of Smallholder Farmers in Ethiopia: Practices and Benefits. Small Scale For. 2019, 18, 39–56. [Google Scholar] [CrossRef]
- Hadgu, K.M.; Bishaw, B.; Iiyama, M.; Birhane, E.; Negussie, A.; Davis, C.M.; Bernart, B. Climate-Smart Agriculture; FAO: Roma, Italy, 2019. [Google Scholar]
- Gebre-Selassie, A.; Bekele, T. A Review of Ethiopian Agriculture: Roles, Policy and Small-Scale Farming Systems. In Global Growing Casebook: Insights into African Agriculture; Global Growing Campaign, European Union: Brussels, Belgium, 2012; pp. 36–65. [Google Scholar]
- Chipeta, M.; Emana, B.; Chanyalew, D. Ethiopia’s Agriculture Sector Policy and Investment Framework (2010–2020) External Mid-Term Review; Governement of Ethiopia: Addis Ababa, Ethiopia, 2015; p. 84.
- Paul, M.; Wa Gĩthĩnji, M. Small Farms, Smaller Plots: Land Size, Fragmentation, and Productivity in Ethiopia. J. Peasant Stud. 2017. [Google Scholar] [CrossRef]
- Taffesse, A.S.; Dorosh, P.; Gemessa, S.A. Crop Production in Ethiopia: Regional Patterns and Trends. Food Agric. Ethiop. Prog. Policy Chall. 2013, 97, 53–83. [Google Scholar]
- Central Statistical Agency (CSA). Report on Area and Production of Major Crops. Agricultural Sample Survey 2017/18 (2010 E.C); Central Statistical Agency: Addis Ababa, Ethiopia, 2018; Volume 1. [Google Scholar]
- Van Loon, M.P.; Nanyan Grassini, P.; Rattalino Edreira, J.I.; Wolde-Meskel, E.; Baijukya, F.; Marrou, H.; van Ittersum, M.K. Prospect for Increasing Grain Legume Crop Production in East Africa. Eur. J. Agron. 2018, 101, 140–148. [Google Scholar] [CrossRef]
- Central Statistical Agency (CSA). Report on Area and Production of Major Crops. Agricultural Sample Survey 2015/16 (2008 E.C); Central Statistical Agency: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Desalegn, T.; Alemu, G.; Adella, A.; Debele, T. Effect of Lime and Phosphorus Fertilizer on Acid Soils and Barley (Hordeum Vulgare L.) Performance in the Central Highlands of Ethiopia. Exp. Agric. 2017, 53, 432–444. [Google Scholar] [CrossRef]
- Berhane, A. Climate Change and Variability Impacts on Agricultural Productivity and Food Security. J. Climatol. Weather Forecast. 2018, 6, 1–6. [Google Scholar] [CrossRef]
- Berhanu, Y.; Olav, L.; Nurfeta, A.; Angassa, A.; Aune, J.B. Methane Emissions from Ruminant Livestock in Ethiopia: Promising Forage Species to Reduce CH4 Emissions. Agriculture 2019, 9, 130. [Google Scholar] [CrossRef] [Green Version]
- Berhanu, Y.; Angassa, A.; Aune, J.B. A System Analysis to Assess the Effect of Low-Cost Agricultural Technologies on Productivity, Income and GHG Emissions in Mixed Farming Systems in Southern Ethiopia. Agric. Syst. 2021, 187. [Google Scholar] [CrossRef]
- Tesfa, A.; Mekuriaw, S. The Effect of Land Degradation on Farm Size Dynamics and Crop-Livestock Farming System in Ethiopia: A Review. OJSS 2014, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Mekuria, W.; Mekonnen, K. Determinants of Crop–Livestock Diversification in the Mixed Farming Systems: Evidence from Central Highlands of Ethiopia. Agric. Food Secur. 2018, 7, 60. [Google Scholar] [CrossRef]
- Duncan, A.J.; Bachewe, F.; Mekonnen, K.; Valbuena, D.; Rachier, G.; Lule, D.; Bahta, M.; Erenstein, O. Crop Residue Allocation to Livestock Feed, Soil Improvement and Other Uses along a Productivity Gradient in Eastern Africa. Agric. Ecosyst. Environ. 2016, 228, 101–110. [Google Scholar] [CrossRef]
- Mengistu, H. Competitive Uses of Crop Residues Are Challenging Soil Fertility Management in Ethiopia. Int. J. Curr. Res. 2018, 10, 65139–65144. [Google Scholar]
- Assaminew, S.; Ashenafi, M. Assessment of Feed Formulation and Feeding Level of Urban and Periurban Dairy Cows Nexus with Economic Viability in Central Highland of Ethiopia. Available online: https://www.lrrd.cipav.org.co/lrrd27/7/assa27125.htm (accessed on 8 February 2021).
- Mekuria, W.; Aynekulu, E. Exclosure land management for restoration of the soils in degraded communal grazing lands in northern ethiopia: Exclosures restore degraded soil. Land Degrad. Dev. 2013, 24, 528–538. [Google Scholar] [CrossRef]
- Giday, K.; Humnessa, B.; Muys, B.; Taheri, F.; Azadi, H. Effects of Livestock Grazing on Key Vegetation Attributes of a Remnant Forest Reserve: The Case of Desa’a Forest in Northern Ethiopia. Glob. Ecol. Conserv. 2018, 14, e00395. [Google Scholar] [CrossRef]
- Kikoti, I.A.; Mligo, C. Impacts of Livestock Grazing on Plant Species Composition in Montane Forests on the Northern Slope of Mount Kilimanjaro, Tanzania. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Pistorius, T.; Carodenuto, S.; Wathum, G. Implementing Forest Landscape Restoration in Ethiopia. Forests 2017, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Bekele, A.E.; Drabik, D.; Dries, L.; Heijman, W. Large-Scale Land Investments, Household Displacement, and the Effect on Land Degradation in Semiarid Agro-Pastoral Areas of Ethiopia. Land Degrad. Dev. 2021, 32, 777–791. [Google Scholar] [CrossRef]
- Tesfaye, K.; Seid, J.; Getnet, M.; Mamo, G. Agriculture under a Changing Climate in Ethiopia: Challenges and Opportunities for Research. Ethiop. J. Agric. Sci. 2016, 6, 67–86. [Google Scholar]
- Kidane, M. The Impact of Land Use and Land Cover (LULC) Dynamics on Soil Erosion and Sediment Yield in Ethiopia. Heliyon 2019, 5, e02981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, E.; Thomas, T.S. Cropland Expansion in Ethiopia: Economic and Climatic Considerations for Highland Agriculture; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2018; Volume 127. [Google Scholar]
- Ethiopian Development Research Institute (EDRI). Preliminary Assessment by the EDRI of Impacts, Cost and Feasibility of Strategy Options–Climate Resilient Green Growth Initiative; Ethiopian Development Research Institute: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Mondal, M.A.H.; Bryan, E.; Ringler, C.; Mekonnen, D.; Rosegrant, M. Ethiopian Energy Status and Demand Scenarios: Prospects to Improve Energy Efficiency and Mitigate GHG Emissions. Energy 2018, 149, 161–172. [Google Scholar] [CrossRef]
- MoARD. Ethiopia Agricultural Sector Policy and Investment Framework 2010–2020; Ministry of Agriculture and Rural Development: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Tessema, Y.A.; Aweke, C.S.; Endris, G.S. Understanding the Process of Adaptation to Climate Change by Small-Holder Farmers: The Case of East Hararghe Zone, Ethiopia. Agric. Econ. 2013, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Dutch Ministry of Foreign Affairs (DMoFA). The Future of Work for Smallholder Farmers in Ethiopia. In Policy Paper by The West Wing Think Tank for the Dutch Ministry of Foreign Affairs.; 2019; p. 1. Available online: https://www.Government.Nl/Documents/Reports/2019/07/08/West-Wing (accessed on 13 June 2020).
- International Fertilizer Development Center (IFDC); Food and Agriculture Organization of the United Nations (FAO). Assessment of Fertilizer Consumption and Use by Crop in Ethiopia; International Fertilizer Development Center (IFDC): Muscle Shoals, AL, USA, 2016. [Google Scholar]
- Agricultural Transformation Agency (ATA). Ethiopian Agriculture and Strategies for Growth; Agricultural Transformation Agency (ATA): Addis Ababa, Ethiopia, 2017. [Google Scholar]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 Year Trends in Nitrogen Use Efficiency of World Cropping Systems: The Relationship between Yield and Nitrogen Input to Cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Nigussie, A.; Kuyper, T.W.; de Neergaard, A. Earthworms Change the Quantity and Composition of Dissolved Organic Carbon and Reduce Greenhouse Gas Emissions during Composting. Waste Manag. 2017, 62, 43–51. [Google Scholar] [CrossRef]
- Haileslassie, A.; Priess, J.A.; Veldkamp, E.; Lesschen, J.P. Smallholders’ Soil Fertility Management in the Central Highlands of Ethiopia: Implications for Nutrient Stocks, Balances and Sustainability of Agroecosystems. Nutr. Cycl. Agroecosyst. 2006, 75, 135–146. [Google Scholar] [CrossRef]
- Assefa, K. Biogas Residues as Source of Sulfur to Pak Choi Brassica Rapa Var. Chinensis (L.). J. Soil Sci. Environ. Manag. 2013, 4, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, E. Opportunities and Challenges for Adopting Conservation Agriculture at Smallholder Farmer’s Level: The Case of Emba Alage, Tigray, Northern Ethiopia; Addis Ababa University: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Gebrekidan, T.; Guo, Y.; Bi, S.; Wang, J.; Zhang, C.; Wang, J.; Lyu, K. Effect of Index-Based Livestock Insurance on Herd Offtake: Evidence from the Borena Zone of Southern Ethiopia. Clim. Risk Manag. 2019, 23, 67–77. [Google Scholar] [CrossRef]
- Komarek, A.M.; Thurlow, J.; Koo, J.; De Pinto, A. Economywide Effects of Climate-smart Agriculture in Ethiopia. Agric. Econ. 2019, 50, 765–778. [Google Scholar] [CrossRef]
- Abraha, R.; Alem H, H. Extensive Utilization of Inorganic Fertilizers in Ethiopian Agriculture and Its Possible Consequences on Soil Quality. World J. Agric. Sci. 2017, 13, 155–171. [Google Scholar]
- Teshome, A.; de Graaff, J.; Ritsema, C.; Kassie, M. Farmers’ Perceptions about the Influence of Land Quality, Land Fragmentation and Tenure Systems on Sustainable Land Management in the North Western Ethiopian Highlands: Sustainable land management in the north western ethiopian highlands. Land Degrad. Dev. 2016, 27, 884–898. [Google Scholar] [CrossRef]
- Abebe, G.; Debebe, S. Factors Affecting Use of Organic Fertilizer among Smallholder Farmers in Sekela District of Amhara Region, Northwestern Ethiopia. Cogent Food Agric. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- Palombi, L.; Sessa, R. Climate-Smart Agriculture: Sourcebook. Climate-Smart Agriculture; Sourcebook; FAO: Roma, Italy, 2013. [Google Scholar]
- Smith, J.H.; Nayak, D.; Albanito, F.; Balana, B.; Black, H.; Boke, S.; Phimister, E. Treatment of Organic Resources before Soil Incorporation in Semi-Arid Regions Improves Resilience to El Nino, and Increases Crop Production and Economic Returns. Environ. Res. Lett. 2019, 14, 085004. [Google Scholar] [CrossRef] [Green Version]
- Liben, F.M.; Tadesse, B.; Tola, Y.T.; Wortmann, C.S.; Kim, H.K.; Mupangwa, W. Conservation Agriculture Effects on Crop Productivity and Soil Properties in Ethiopia. Agron. J. 2018, 110, 758–767. [Google Scholar] [CrossRef]
- Binyam, A.Y.; Desale, K.A. Rainwater Harvesting: An Option for Dry Land Agriculture in Arid and Semi-Arid Ethiopia. Int. J. Water Resour. Environ. Eng. 2015, 7, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Shumetie, A.; Alemayehu, Y.M. Effect of Climate Variability on Crop Income and Indigenous Adaptation Strategies of Households. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 580–595. [Google Scholar] [CrossRef] [Green Version]
- Kelbore, Z.G. An Analysis of the Impact of Climate Change on Crop Yields and Yield Variability. Appl. Econ. 2012, 38, 835–844. [Google Scholar]
- Paul, C.J.; Weinthal, E. The Development of Ethiopia’s Climate Resilient Green Economy 2011–2014: Implications for Rural Adaptation. Clim. Dev. 2019, 11, 193–202. [Google Scholar] [CrossRef]
- Assefa, T.B.; Jordan, C.; Pytrik, R.; João, V.S.; Martin, K. Unravelling the Variability and Causes of Smallholder Maize Yield Gaps in Ethiopia. Food Secur. 2019, 12, 83–103. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.F.; Gergel, S.E.; Baudron, F. Forest Restoration Scenarios Produce Synergies for Agricultural Production in Southern Ethiopia. Agric. Ecosyst. Environ. 2020, 295, 106888. [Google Scholar] [CrossRef]
- Kassie, M.; Zikhali, P.; Pender, J.; Köhlin, G. Sustainable Agricultural Practices and Agricultural Productivity in Ethiopia: Does Agroecology Matter? Discussions Paper; Environment for the Development Initiative: Washington, DC, USA, 2009; pp. 9–12. [Google Scholar]
- Sime, G.; Aune, J.B. Sustainability of Improved Crop Varieties and Agricultural Practices: A Case Study in the Central Rift Valley of Ethiopia. Agriculture 2018, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Adimassu, Z.; Langan, S.; Johnston, R. Understanding Determinants of Farmers’ Investments in Sustainable Land Management Practices in Ethiopia: Review and Synthesis. Env. Dev. Sustain. 2016, 18, 1005–1023. [Google Scholar] [CrossRef]
- Annys, S.; Van Passel, S.; Dessein, J.; Ghebreyohannes, T.; Adgo, E.; Nyssen, J. Small-Scale Irrigation Expansion along the Dam-Regulated Tekeze River in Northern Ethiopia. Int. J. Water Resour. Dev. 2020, 1–22. [Google Scholar] [CrossRef]
- Birru, O.; Quraishi, S.; Bedadi, B. Effects of Straw Mulch and Farmyard Manure on Runoff, Erosion, in-Situ Water Conservation, and Yield and Yield Components of Wheat at the Highlands of Bale, South Eastern Ethiopia. Afr. J. Agric. Res. 2012, 7, 5879–5886. [Google Scholar]
- Vanlauwe, B.; Bationo, A.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Sanginga, N. Integrated Soil Fertility Management. Operational Definition and Consequences for Implementation and Dissemination. Outlook Agric. 2010, 39, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Yebo, B. Integrated Soil Fertility Management for Better Crop Production in Ethiopia. Int. J. Soil Sci. 2014, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Vanlauwe, B.; Bationo, A.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Sanginga, N. Integrated Soil Fertility Management in Sub-Saharan Africa: Unravelling Local Adaptation. Soil 2015, 1, 491–508. [Google Scholar] [CrossRef] [Green Version]
- Mugwe, J.; Ngetich, F.; Otieno, E.O. Integrated Soil Fertility Management in Sub-Saharan Africa: Evolving Paradigms Toward Integration. Zero Hunger. Encyclopedia of the UN Sustainable Development Goals; Springer: Cham, Germany, 2019. [Google Scholar] [CrossRef]
- Hörner, D.; Wollni, M. The Effects of Integrated Soil Fertility Management on Household Welfare in Ethiopia; University of Göttingen: Göttingen, Germany, 2020; p. 38. [Google Scholar]
- Habte Werede, M.; Smith, J.U.; Boke Ambaye, S.; Tejada Moral, M. Integrated Soil Fertility Management for Sustainable Teff (Eragrostistef) Production in Halaba, Southern Ethiopia. Cogent Food Agric. 2018, 4, 1519008. [Google Scholar] [CrossRef]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation Agriculture and Smallholder Farming in Africa: The Heretics’ View. Field Crop. Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Ram, B.S.; Andy, S.; Nyambilila, A.A.; Lars, O.E.; Bishal, K.S.; Rattan, L. Climate Impacts on Agricultural and Natural Resource Sustainability in Africa; Springer Nature Switzerland: Cham, Switzerland, 2020. [Google Scholar]
- Tsegaye, W.; LaRovere, R.; Mwabu, G.; Kassie, G.T. Adoption and Farm-Level Impact of Conservation Agriculture in Central Ethiopia. Environ. Dev. Sustain. 2017, 19, 2517–2533. [Google Scholar] [CrossRef]
- Wakayo, A.; Urgessa, T. Potential of Small Holder Farmers Agricultural Practices in Enhancing Soil Organic Carbon Stock and Other Selected Soil Physico Properties at Akaki District, Ethiopia. Agric. For. Fish. 2020, 8, 112. [Google Scholar] [CrossRef]
- Oicha, T.; Cornelis, W.M.; Verplancke, H.; Nyssen, J.; Govaerts, B.; Behailu, M.; Deckers, J. Soil Tillage Research Short-Term Effects of Conservation Agriculture on Vertisols under Tef (Eragrostistef (Zucc.) Trotter) in the Northern Ethiopian Highlands. Soil Tillage Res. 2010, 106, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Getnet, K.; Mekuria, W.; Langan, S.; Rivington, M.; Novo, P.; Black, H. Ecosystem-Based Interventions and Farm Household Welfare in Degraded Areas: Comparative Evidence from Ethiopia. Agric. Syst. 2017, 154, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Araya, A.; Stroosnijder, L. Effects of Tied Ridges and Mulch on Barley (Hordeum Vulgare) Rainwater Use Efficiency and Production in Northern Ethiopia. Agric. Water Manag. 2010, 97, 841–847. [Google Scholar] [CrossRef]
- Dessie, A.B.; Abate, T.M.; Mekie, T.M.; Liyew, Y.M. Crop Diversification Analysis on Red Pepper Dominated Smallholder Farming System: Evidence from Northwest Ethiopia. Ecol. Process. 2019, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Michler, J.D.; Josephson, A. To Specialize or Diversify: Agricultural Diversity and Poverty Dynamics in Ethiopia. World Dev. 2017, 89, 214–226. [Google Scholar] [CrossRef]
- Goshu, D.; Kassa, B.; Ketema, M. Does crop diversification enhance household food security? evidence from rural ethiopia. Adv. Agric. 2012, 2, 13. [Google Scholar]
- Milder, J.C.; Scherr, S.J. Performance and Potential of Conservation Agriculture for Climate Change Adaptation and Mitigation in Sub-Saharan Africa. Eco-Agriculture Discussion Paper 6. 2011. Available online: https://www.researchgate.net/publication/268524125 (accessed on 12 January 2019).
- Araya, T.; Cornelis, W.M.; Nyssen, J.; Govaerts, B.; Getnet, F.; Bauer, H.; Deckers, J. Medium-Term Effects of Conservation Agriculture Based Cropping Systems for Sustainable Soil and Water Management and Crop Productivity in the Ethiopian Highlands. Field Crop. Res. 2012, 132, 53–62. [Google Scholar] [CrossRef]
- Gadermaier, F.; Berner, A.; Fließbach, A.; Friedel, J.K.; Mäder, P. Impact of Reduced Tillage on Soil Organic Carbon and Nutrient Budgets under Organic Farming. Renew. Agric. Food Syst. 2012, 27, 68–80. [Google Scholar] [CrossRef] [Green Version]
- De Araújo, A.S.F.; Leite, L.F.C.; Miranda, A.R.L.; Nunes, L.A.P.L.; de Sousa, R.S.; de Araújo, F.F.; de Melo, W.J. Different Soil Tillage Systems Influence Accumulation of Soil Organic Matter in Organic Agriculture. Afr. J. Agric. Res. 2016, 11, 5109–5115. [Google Scholar]
- Mesfin, T.; Moeller, C.; Rodriguez, D.; Temesgen, M. Conservation Agriculture in Dryland Agro-Ecosystems of Ethiopia. In Proceedings of the 5th World Congress on Conservation Agriculture and Farming Systems Design, Brisbane, Australia, 26–29 September 2011. [Google Scholar]
- Gonzalez-Sanchez, E.J.; Veroz-Gonzalez, O.; Conway, G.; Moreno-Garcia, M.; Kassam, A.; Mkomwa, S.; Carbonell-Bojollo, R. Meta-Analysis on Carbon Sequestration through Conservation Agriculture in Africa. Soil Tillage Res. 2019, 190, 22–30. [Google Scholar] [CrossRef]
- Raji, S.G.; Dörsch, P. Effect of Legume Intercropping on N2O Emissions and CH4 Uptake during Maize Production in the Great Rift Valley, Ethiopia. Biogeosciences 2020, 17, 345–359. [Google Scholar] [CrossRef] [Green Version]
- Teklewold, H.; Kassie, M.; Shiferaw, B.; Köhlin, G. Cropping System Diversification, Conservation Tillage and Modern Seed Adoption in Ethiopia: Impacts on Household Income, Agrochemical Use and Demand for Labor. Ecol. Econ. 2013, 93, 85–93. [Google Scholar] [CrossRef]
- Lamessa, K. Integrated Nutrient Management for Food Security and Environmental Quality. Food Sci. Qual. Manag. 2016, 56, 2224–6088. [Google Scholar]
- Yigermal, H.; Kelemu, N.; Fenta, A. Effects of Integrated Nutrient Application on Phenological, Vegetative Growth and Yield-Related Parameters of Maize in Ethiopia: A Review. Cogent Food Agric. 2019, 5, 1567998. [Google Scholar] [CrossRef]
- Eichler-Loebermann, B.; Schiemenz, K.; Makadi, M.; Vágó, I.; Koeppen, D. Nutrient Cycling by Using Residues of Bio-Energy Production—Effects of Biomass Ashes on Plant and Soil Parameters. Cereal Res. Commun. 2008, 36, 1259–1262. [Google Scholar]
- Kim, D.G.; Thomas, A.D.; Pelster, D.; Rosenstock, T.S.; Sanz-Cobena, A. Greenhouse Gas Emissions from Natural Ecosystems and Agricultural Lands in Sub-Saharan Africa: Synthesis of Available Data and Suggestions for Further Research. Biogeosciences 2016, 13, 4789–4809. [Google Scholar] [CrossRef] [Green Version]
- Agegnehu, G.; vanbeek, C.; Bird, M.I. Influence of Integrated Soil Fertility Management in Wheat and Tef Productivity and Soil Chemical Properties in the Highland Tropical Environment. J. Soil Sci. Plant. Nutr. 2014, 14, 532–545. [Google Scholar] [CrossRef] [Green Version]
- Sileshi, G.W.; Jama, B.; Vanlauwe, B.; Negassa, W.; Harawa, R.; Kiwia, A.; Kimani, D. Nutrient Use Efficiency and Crop Yield Response to the Combined Application of Cattle Manure and Inorganic Fertilizer in Sub-Saharan Africa. Nutr. Cycl. Agroecosyst. 2019, 113, 181–199. [Google Scholar] [CrossRef]
- Biramo, G. The Role of Integrated Nutrient Management System for Improving Crop Yield and Enhancing Soil Fertility under Small Holder Farmers in Sub-Saharan Africa: A Review Article. Mod. Concepts Dev. Agron. 2018, 2, 1–9. [Google Scholar] [CrossRef]
- Negassa, W.; Getaneh, F.; Deressa, A.; Dinsa, B. Integrated Use of Organic and Inorganic Fertilizers for Maize Production; Tropentag: Witzenhausen, Germany, 2007. [Google Scholar]
- Adugna, G. A Review on Impact of Compost on Soil Properties, Water Use and Crop Productivity. Acad. Res. J. Agric. Sci. Res. 2016, 4, 93–104. [Google Scholar] [CrossRef]
- Edwards, S.; Arefayne, A. The Impact of Compost Use on Crop. Yields in Tigray, Ethiopia. International Conference on Organic Agriculture and Food Security; FAO: Rome, Italy, 2007; Available online: http://www.fao.org/3/a-ai434e.pdf (accessed on 20 June 2020).
- Agegnehu, G.; Tsigie, A.; Tesfaye, A. Evaluation of Crop Residue Retention, Compost and Inorganic Fertilizer Application on Barley Productivity and Soil Chemical Properties in the Central Ethiopian Highlands. Ethiop. J. Agric. Sci. 2012, 22, 45–61. [Google Scholar]
- Krey, T.; Vassilev, N.; Baum, C.; Eichler-Löbermann, B. Effects of Long-Term Phosphorus Application and Plant Growth Promoting Rhizobacteria on Maize Phosphorus Nutrition under Field Conditions. Eur. J. Soil Biol. 2013, 55, 124–130. [Google Scholar] [CrossRef]
- Requejo, M.I.; Eichler-Löbermann, B. Organic and Inorganic Phosphorus Forms in Soil as Affected by Long-Term Application of Organic Amendments. Nutr. Cycl. Agroecosyst. 2014, 100, 245–255. [Google Scholar] [CrossRef]
- Kassie, M.; Zikhali, P.; Manjur, K.; Edwards, S. Adoption of Organic Farming Technologies: Evidence from Semi-Arid Regions of Ethiopia. J. Agric. Econ. 2008, 33, 189–198. [Google Scholar]
- Haile, W. Review of Soil Fertility Interventions in Ethiopia. Ph.D. Thesis, Soil Science College of Agriculture, Hawassa University, Awassa, Ethiopia, 2017. [Google Scholar] [CrossRef]
- Asfaw, S.; Shiferaw, B.; Simtowe, F.; Lipper, L. Impact of Modern Agricultural Technologies on Smallholder Welfare: Evidence from Tanzania and Ethiopia. Food Policy 2012, 37, 283–295. [Google Scholar] [CrossRef] [Green Version]
- Devi, R.; Kumar, A.; Deboch, B. Organic Farming and Sustainable Development in Ethiopia. Sci. Res. Essays 2007, 2, 199–203. [Google Scholar]
- Alem, G. Rainwater Harvesting in Ethiopia: An Overview. In Integrated Development for Water Supply and Sanitation: Proceedings of the 25th WEDC Conference, Addis Ababa, Ethiopia, 30 August–2 September 1999; Water, Engineering and Development Centre (WEDC): Loughborough, UK, 2000; pp. 387–390. [Google Scholar]
- Mengistie, D.; Kidane, D. Assessment of the Impact of Small-Scale Irrigation on Household Livelihood Improvement at Gubalafto District, North Wollo, Ethiopia. Agriculture 2016, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Awulachew, S.B.; Ayana, M. Performance of irrigation: An assessment at different scales in ethiopia. Exp. Agric. 2011, 47, 57–69. [Google Scholar] [CrossRef]
- Tesfay, G.; Mitiku, H.; Girmay, G.; Araya, A.; Daniel, T.; Wubetu, B.; Dereje, A. On-Farm. Water Harvesting for Rainfed Agriculture Development and Food Security in Tigray, Northern Ethiopia; Drylands Coordination Group Report, 61; FAO: Oslo, Norway, 2011. [Google Scholar]
- Dile, Y.T.; Karlberg, L.; Temesgen, M.; Rockström, J. The Role of Water Harvesting to Achieve Sustainable Agricultural Intensification and Resilience against Water Related Shocks in Sub-Saharan Africa. Agric. Ecosyst. Environ. 2013, 181, 69–79. [Google Scholar] [CrossRef]
- Mourad, K.A.; Yimer, S.M. Socio-Economic Potential of Rainwater Harvesting in Ethiopia. Sustain. Agric. Res. 2016, 6, 73. [Google Scholar] [CrossRef]
- Teshome, A.; Adgo, E.; Mati, B. Impact of Water Harvesting Ponds on Household Incomes and Rural Livelihoods in Minjar Shenkora District of Ethiopia. Ecohydrol. Hydrobiol. 2010, 10, 315–322. [Google Scholar] [CrossRef]
- Gebremeskel, G.; Gebremicael, T.G.; Girmay, A. Economic and Environmental Rehabilitation through Soil and Water Conservation, the Case of Tigray in Northern Ethiopia. J. Arid Environ. 2018, 151, 113–124. [Google Scholar] [CrossRef]
- Adela, F.A.; Aurbacher, J.; Abebe, G.K. Small-Scale Irrigation Scheme Governance—Poverty Nexus: Evidence from Ethiopia. Food Sec. 2019, 11, 897–913. [Google Scholar] [CrossRef]
- Bacha, D.; Namara, R.; Bogale, A.; Tesfaye, A. Impact of Small-Scale Irrigation on Household Poverty: Empirical Evidence from the Ambo District in Ethiopia. Irrig. Drain. 2011, 60, 1–10. [Google Scholar] [CrossRef]
- Adugna, E.; Ermias, A.; Mekonnen, A.; Mihret, D. The Role of Small Scale Irrigation in Poverty Reduction. J. Dev. Agric. Econ. 2014, 6, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Haile, G.G. Irrigation in Ethiopia, a Review. Acad. J. Agric. Res. 2015, 3, 264–269. [Google Scholar]
- Asrat, D.; Anteneh, A.; Yildiz, F. The Determinants of Irrigation Participation and Its Impact on the Pastoralist and Agro-Pastoralists Income in Ethiopia: A Review Study. Cogent Food Agric. 2019, 5, 1679700. [Google Scholar] [CrossRef]
- You, L.; Ringler, C.; Wood-Sichra, U.; Robertson, R.; Wood, S.; Zhu, T.; Nelson, G.; Guo, Z.; Sun, Y. What Is the Irrigation Potential for Africa? A Combined Biophysical and Socioeconomic Approach. Food Policy 2011, 36, 770–782. [Google Scholar] [CrossRef] [Green Version]
- Amede, T. Technical and Institutional Attributes Constraining the Performance of Small-Scale Irrigation in Ethiopia. Water Resour. Rural Dev. 2015, 6, 78–91. [Google Scholar] [CrossRef]
- Tadesse, A.; Gebrelibanos, T.; Geberehiwot, M. Characterization and Impact Assessment of Water Harvesting Techniques: A Case Study of Abreha Weatsbeha Watershed, Tigray, Ethiopia. 2016, pp. 1–28. Available online: https://www.saide.org.za/resources/AgshareII/Water%20Harvesting%20Systems%20Case%20Study%20Final.pdf (accessed on 15 October 2020).
- Alemu, M.M. Indigenous Agroforestry Practices in Southern Ethiopia: The Case of Lante, Arba Minch. Open Access Libr. J. 2016, 3. [Google Scholar] [CrossRef]
- Mucheru-Muna, M.; Pypers, P.; Mugendi, D.; Kung’u, J.; Mugwe, J.; Merckx, R.; Vanlauwe, B. A Staggered Maize–Legume Intercrop Arrangement Robustly Increases Crop Yields and Economic Returns in the Highlands of Central Kenya. Field Crop. Res. 2010, 115, 132–139. [Google Scholar] [CrossRef]
- Wato, T.; Amare, M. Opportunities and Challenges of Scaling up Agroforestry Practices in Sub-Saharan Africa: A Review. AG 2020, 41. [Google Scholar] [CrossRef]
- Hassan, M.; Hadgu, K.; Birhane, E.; Muthuri, C.; Sinclair, F.; Mowo, J.; Mwangi, A. Agroforestry in Ethiopia: Using Trees on Farms to Boost Crop. Productivity and Strengthen Food Security; ICRAF Policy Brief No. 30; World Agroforestry Center India: New Delhi, India, 2016. [Google Scholar]
- Meragiaw, M. Role of Agroforestry and Plantation on Climate Change Mitigation and Carbon Sequestration in Ethiopia. J. Tree Sci. 2017, 36, 1. [Google Scholar] [CrossRef]
- Kassie, G.W. Agroforestry and Land Productivity: Evidence from Rural Ethiopia. Cogent Food Agric. 2016, 2. [Google Scholar] [CrossRef]
- Gelaw, A.; Singh, B.R.; Lal, R. Soil Organic Carbon and Total Nitrogen Stocks under Different Land Uses in a Semi-Arid Watershed in Tigray, Northern Ethiopia. Agric. Ecosyst. Environ. 2014, 188, 256–263. [Google Scholar] [CrossRef]
- Negash, M.; Starr, M. Biomass and Soil Carbon Stocks of Indigenous Agroforestry Systems on the South-Eastern Rift Valley Escarpment, Ethiopia. Plant. Soil 2015, 393, 95–107. [Google Scholar] [CrossRef]
- Duriaux-Chavarría, J.-Y.; Baudron, F.; Gergel, S.E.; Yang, K.F.; Eddy, I.M.S.; Sunderland, T. More People, More Trees: A Reversal of Deforestation Trends in Southern Ethiopia. Land Degrad. Dev. 2021, 32, 1440–1451. [Google Scholar] [CrossRef]
- Duriaux Chavarría, J.-Y.; Baudron, F.; Sunderland, T. Retaining Forests within Agricultural Landscapes as a Pathway to Sustainable Intensification: Evidence from Southern Ethiopia. Agric. Ecosyst. Environ. 2018, 263, 41–52. [Google Scholar] [CrossRef]
- Baudron, F.; Duriaux Chavarría, J.-Y.; Remans, R.; Yang, K.; Sunderland, T. Indirect Contributions of Forests to Dietary Diversity in Southern Ethiopia. Ecol. Soc. 2017, 22. [Google Scholar] [CrossRef] [Green Version]
- Ango, T.G.; Börjeson, L.; Senbeta, F.; Hylander, K. Balancing Ecosystem Services and Disservices: Smallholder Farmers’ Use and Management of Forest and Trees in an Agricultural Landscape in Southwestern Ethiopia. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef] [Green Version]
- Onyekwelu, J.C.; Olusola, J.A.; Stimm, B.; Mosandl, R.; Agbelade, A.D. Farm-Level Tree Growth Characteristics, Fruit Phenotypic Variation and Market Potential Assessment of Three Socio-Economically Important Forest Fruit Tree Species. For. Trees Livelihoods 2015, 24, 27–42. [Google Scholar] [CrossRef]
- Bishaw, B.; Neufeldt, H.; Mowo, J.; Abdelkadir, A.; Muriuki, J.; Dalle, G.; Assefa, T.; Guillozet, K.; Kassa, H.; Dawson, I.K.; et al. Farmers’ Strategies for Adapting to and Mitigating Climate Variability and Change through Agroforestry in Ethiopia and Kenya. p. 96. Available online: https://www.worldagroforestry.org/publication/farmers-strategies-adapting-and-mitigating-climate-variability-and-change-through (accessed on 25 September 2020).
- Harvey, C.A.; Chacón, M.; Donatti, C.I.; Garen, E.; Hannah, L.; Andrade, A.; Bede, L.; Brown, D.; Calle, A.; Chará, J.; et al. Climate-Smart Landscapes: Opportunities and Challenges for Integrating Adaptation and Mitigation in Tropical Agriculture. Conserv. Lett. 2014, 7, 77–90. [Google Scholar] [CrossRef]
- Josephson, A.L.; Ricker-Gilbert, J.; Florax, R.J.G.M. How Does Population Density Influence Agricultural Intensification and Productivity? Evidence from Ethiopia. Food Policy 2014, 48, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Ellis-Jones, J.; Mekonnen, K.; Gebreselassie, S.; Schulz, S. Challenges and Opportunities to the Intensification of Farming Systems in the Highlands of Ethiopia: Results of a Participatory Community Analysis; International Livestock Research Institute: Addis Ababa, Ethiopia, 2013. [Google Scholar]
- Nigussie, A.; Kuyper, T.W.; Neergaard, A. de Agricultural Waste Utilisation Strategies and Demand for Urban Waste Compost: Evidence from Smallholder Farmers in Ethiopia. Waste Manag. 2015, 44, 82–93. [Google Scholar] [CrossRef]
- Zeng, D.; Alwang, J.; Norton, G.; Jaleta, M.; Shiferaw, B.; Yirga, C. Land Ownership and Technology Adoption Revisited: Improved Maize Varieties in Ethiopia. Land Use Policy 2018, 72, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, B.; Swinton, S.M. Investment in Soil Conservation in Northern Ethiopia: The Role of Land Tenure Security and Public Programs. Agric. Econ. 2003, 29, 69–84. [Google Scholar] [CrossRef]
- Deressa, T.T. Factors Affecting the Choices of Coping Strategies for Climate Extremes: The case of farmers in the Nile Basin of Ethiopia; IFPRI Discussion Paper, 1032; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2010; p. 36. [Google Scholar]
- Zerga, B.; Gebeyehu, G. Climate Change in Ethiopia Variability, Impact, Mitigation, and Adaptation. J. Soc. Sci. Humanit. Res. 2016, 2, 66–84. [Google Scholar]
- Kassie, M.; Zikhali, P.; Pender, J.; Köhlin, G. The Economics of Sustainable Land Management Practices in the Ethiopian Highlands: Economics of Sustainable Land Management Practices. J. Agric. Econ. 2010, 61, 605–627. [Google Scholar] [CrossRef]
- Belay, A.; Recha, J.W.; Woldeamanuel, T.; Morton, J.F. Smallholder Farmers’ Adaptation to Climate Change and Determinants of Their Adaptation Decisions in the Central Rift Valley of Ethiopia. Agric. Food Secur. 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Zerssa, G.W.; Feyssa, D.H. Natural Resource Use Conflicts: Gender Opportunities and Constraints in Conflict Management: A Review. J. Biol. Chem. Res. 2016, 33, 12. [Google Scholar]
- Sibanda, L.M.; Mwamakamba, S.N.; Mentz, M.; Mthunzi, T. Policies and Practices for Climate-Smart Agriculture in Sub-Saharan Africa: A Comparative Assessment of Challenges and Opportunities across 15 Countries; Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN): Pretoria, South Africa, 2017. [Google Scholar]
- Wakeyo, M.; Gardebroek, C. Share of Irrigated Land and Farm Size in Rainwater Harvesting Irrigation in Ethiopia. J. Arid Environ. 2017, 139, 85–94. [Google Scholar] [CrossRef]
- Branca, G.; Tennigkeit, T.; Mann, W.; Lipper, L. Identifying Opportunities for Climate-Smart Agriculture Investments in Africa; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; p. 102. [Google Scholar]
- Deresse, M.; Zerihun, A. Financing Challenges of Smallholder Farmers: A Study on Members of Agricultural Cooperatives in Southwest Oromia Region, Ethiopia. Afr. J. Bus. Manag. 2018, 12, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Gebreselassie, S.; Kirui, O.K.; Mirzabaev, A. Economics of Land Degradation and Improvement in Ethiopia. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 401–430. ISBN 978-3-319-19167-6. [Google Scholar]
- Howell, J. Chapter 6 Rural Electrification and Renewable Energy in Ethiopia. In Environmental Policy Review 2011: Rural Electrification & RenewableEnergy in Ethiopia; The Environmental Policy Group in the Environmental Studies Program at Colby College: Waterville, ME, USA, 2011; p. 129. [Google Scholar]
- Guta, D.D. Assessment of Biomass Fuel Resource Potential And Utilization in Ethiopia: Sourcing Strategies for Renewable Energies. Int. J. Renew. Energy Res. 2012, 2, 9. [Google Scholar]
- Bekele, K.; Hager, H.; Mekonnen, K. Woody and non-woody biomass utilisation for fuel and implications on plant nutrients availability in the Mukehantuta watershed in Ethiopia. Afr. Crop. Sci. J. 2013, 21, 625–636. [Google Scholar]
- Dresen, E.; DeVries, B.; Herold, M.; Verchot, L.; Müller, R. Fuelwood Savings and Carbon Emission Reductions by the Use of Improved Cooking Stoves in an Afromontane Forest, Ethiopia. Land 2014, 3, 1137–1157. [Google Scholar] [CrossRef] [Green Version]
- Gizachew, B.; Tolera, M. Adoption and Kitchen Performance Test of Improved Cook Stove in the Bale Eco-Region of Ethiopia. Energy Sustain. Dev. 2018, 45, 186–189. [Google Scholar] [CrossRef]
- Fikadu Lemma, B.; Woldeamanuel, T. Emissions and Fuel Use Performance of Two Improved Stoves and Determinants of Their Adoption in Dodola, Southeastern Ethiopia. Sustain. Environ. Res. 2018, 28, 32–38. [Google Scholar] [CrossRef]
- Tefera, T. Determinants of Coffee Husk Manure Adoption: A Case Study from Southern Ethiopia. Indian J. Agric. Econ. 2010, 65, 1–14. [Google Scholar]
- Shemekite, F.; Gómez-Brandón, M.; Franke-Whittle, I.H.; Praehauser, B.; Insam, H.; Assefa, F. Coffee Husk Composting: An Investigation of the Process Using Molecular and Non-Molecular Tools. Waste Manag. 2014, 34, 642–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rameshwar, M.Y.; Argaw, A. Manurial Value of Khat Waste Vermicompost from Awday, Harar Town, Ethiopia. Int J. Recycl Org. Waste Agric. 2016, 5, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Gezahegn, D.; Seyoum, M.; Jorge, D. Vermicomposting as a Sustainable Practice to Manage Coffee Husk, Enset Waste (Ensetverticosum), Khat Waste (Catha Edulis) and Vegetable Waste Amended with Cow Dung Using an Epigeic Earthworm Eiseniaandrei (Bouch’ 1972). Int. J. Pharm Tech. Res. 2012, 4, 15–24. [Google Scholar]
- Bekele, A.; Kibret, K.; Bedadi, B.; Yli-Halla, M.; Balemi, T. Effects of Lime, Vermicompost, and Chemical P Fertilizer on Selected Properties of Acid Soils of Ebantu District, Western Highlands of Ethiopia. Appl. Environ. Soil Sci. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Gebrehiwot, K.A. A Review on Waterlogging, Salinization and Drainage in Ethiopian Irrigated Agriculture. Sustain. Water Resour. Manag. 2018, 4, 55–62. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Mohammed, M.; Daba, A.W.; Hailu, B.; Belay, G.; Tesfaye, A.; Ertebo, T.M. Improving Agricultural Productivity on Salt-Affected Soils in Ethiopia: Farmers’ Perceptions and Proposals. Afr. J. Agric. Res. 2019, 14, 897–906. [Google Scholar]
- Kidia, K.G. Salinity Prediction and Mitigation Measures to Reduce Soil Salinity on Irrigated Land in Awash Basin, Ethiopia; Institute of Hydraulics and Rural Water Management: Vienna, Austria, 2019. [Google Scholar] [CrossRef]
- Erkossa, T.; Gizaw, A.; Stahr, K. Land Preparation Methods Efficiency on the Highland Vertisols of Ethiopia. Irrig. Drain. 2004, 53, 69–75. [Google Scholar] [CrossRef]
- Saguye, T.S. Determinants of Adoption of Sustainable Land Management (SLM) Practices among Smallholder Farmers’ in Jeldu District, West Shewa Zone, Oromia Region, Ethiopia. Glob. J. Sci. Front. Res. H Environ. Earth Sci. 2017, 17, 111–127. [Google Scholar]
- Munroe, J.W.; Isaac, M.E. N2-Fixing Trees and the Transfer of Fixed-N for Sustainable Agroforestry: A Review. Agron. Sustain. Dev. 2014, 34, 417–427. [Google Scholar] [CrossRef]
- Reed, J.; van Vianen, J.; Foli, S.; Clendenning, J.; Yang, K.; MacDonald, M.; Petrokofsky, G.; Padoch, C.; Sunderland, T. Trees for Life: The Ecosystem Service Contribution of Trees to Food Production and Livelihoods in the Tropics. For. Policy Econ. 2017, 84, 62–71. [Google Scholar] [CrossRef]
- Woldegiorgis, B. A History and Policy Analyses of Forest Governance in Ethiopia and REDD+. Master’s Thesis, Uppsala Universitet, Uppsala, Sweden, 2020. [Google Scholar] [CrossRef]
- Getahun, E. Ethiopia to Grow 5 Billion Trees in the Second Green Legacy Campaign. 2020. Available online: https://www.cgiar.org/news-events/news/ethiopia-to-grow-5-billion-trees-in-the-second-green-legacy-campaign/ (accessed on 2 January 2021).
- Tura, E.G.; Kenea, T.; Kaso, T. Determinants of Demand for Credit among Wheat and Teff Smallholder Farmers in Central of Ethiopia (Arsi and South West Shewa). Am. Res. J. Bus. Manag. 2017, 3. [Google Scholar] [CrossRef]
- Eshetu, Z.; Simane, B.; Tebeje, G.; Negatu, W. Climate Finance in Ethiopia; Overseas Development Institute: London, UK; Climate Science Centre: Addis Ababa, Ethiopia, 2014; p. 113. [Google Scholar]
- Bartlett, A. No More Adoption Rates! Looking for Empowerment in Agricultural Development Programmes. Dev. Pract. 2008, 18, 524–538. [Google Scholar] [CrossRef]
- Tsige, M. Who Benefits from Production Outcomes? Gendered Production Relations among Climate-Smart Agriculture Technology Users in Rural Ethiopia. Rural Sociol. 2019, 84, 799–825. [Google Scholar] [CrossRef]
- Bartlett, A. Entry Points for Empowerment; CARE’s Rural Livelihoods Programme (RLP); CARE: Mohakhali, Dhaka, Bangladesh, 2004. [Google Scholar]
- Hariharan, V.K.; Mittal, S.; Rai, M.; Agarwal, T.; Kalvaniya, K.C.; Stirling, C.M.; Jat, M.L. Does Climate-Smart Village Approach Influence Gender Equality in Farming Households? A Case of Two Contrasting Ecologies in India. Clim. Chang. 2020, 158, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Ashango, A.; Mesene, M. Clean Development Mechanisms (CDM) and Climate Smart Agriculture (CSA): Role and Implication for Sustainable Natural Resource Management: Ethiopian Context. Civ. Environ. Res. 2019, 11, 27–40. [Google Scholar]
- Haile, T. G Comparative Analysis for the SDPRP, PASDEP and GTP of the FDR of Ethiopia. Glob. J. Bus. Econ. Manag. 2015, 5, 13–24. [Google Scholar] [CrossRef]
- Dube, A.K.; Fawole, W.O.; Govindasamy, R.; Ozkan, B. Agricultural development led industrialization in Ethiopia: Structural break analysis. Int. J. Agric. For. Life Sci. 2019, 3, 193–201. [Google Scholar]
- Woolf, D.; Solomon, D.; Lehmann, J. Land Restoration in Food Security Programmes: Synergies with Climate Change Mitigation. Clim. Policy 2018, 18, 1260–1270. [Google Scholar] [CrossRef] [Green Version]
- Negra, C. Integrated National Policy Approaches to Climate-Smart Agriculture; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2014; p. 32. [Google Scholar]
- Federal Democratic Republic of Ethiopia. Forest Development, Conservation, and Utilization Proclamation; Proclamation No. 1065/2018; FDRE: Addis Ababa, Ethiopia, 2018. [Google Scholar]
- Rebecca, M.; Habtemariam, K.; Steven, L.; Belay, Y. Fostering Tenure Security for Forest Landscape Restoration in Ethiopia: Creating Enabling Conditions for the 2018 Forest Proclamation; Center for International Forestry Research (CIFOR): Bogor Indonesia, 2019. [Google Scholar]
CSA Practices | Main Components | Why It Is CSA |
---|---|---|
Conservation agriculture * | Reduced tillage Crop residue management Crop rotation/intercropping with cereals and legumes Diversifying cropping systems | Sequesters soil carbon and reduces greenhouse gas (GHG) emissions Improves soil fertility Enhances resilience to dry and hot spells |
Integrated nutrient management * | Compost and manure management, including green manuring Efficient fertilizer application techniques (time, place, method) Combined use of inorganic fertilizers, locally available organic matter, and soil amendments | Sequesters soil carbon Increases soil resilience to drought Improves soil fertility Reduces nutrient leaching Reduces GHG emissions Increases agricultural productivity |
Agroforestry (AF) | Tree-based conservation agriculture Traditionally practiced AF Improved types of AF | Sequesters soil and biomass carbon Supports resilience to drought Increases agricultural productivity |
Water harvesting and irrigation | Rainwater and runoff harvesting Small-scale irrigation Traditional irrigation systems | Increases water availability Enhances resilience to dry and hot spells Increases agricultural productivity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerssa, G.; Feyssa, D.; Kim, D.-G.; Eichler-Löbermann, B. Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture. Agriculture 2021, 11, 192. https://doi.org/10.3390/agriculture11030192
Zerssa G, Feyssa D, Kim D-G, Eichler-Löbermann B. Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture. Agriculture. 2021; 11(3):192. https://doi.org/10.3390/agriculture11030192
Chicago/Turabian StyleZerssa, Gebeyanesh, Debela Feyssa, Dong-Gill Kim, and Bettina Eichler-Löbermann. 2021. "Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture" Agriculture 11, no. 3: 192. https://doi.org/10.3390/agriculture11030192
APA StyleZerssa, G., Feyssa, D., Kim, D.-G., & Eichler-Löbermann, B. (2021). Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture. Agriculture, 11(3), 192. https://doi.org/10.3390/agriculture11030192