The Impacts of Micronutrient Fertility on the Mineral Uptake and Growth of Brassica carinata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Sow
2.2. Transplant and Micronutrient Fertility Treatments
2.3. Plant Harvest and Data Collection
2.4. Data Analysis
3. Results and Discussion
3.1. Boron (B)
3.1.1. B Deficiency Symptomology
3.1.2. Rosette-Stage B Rates
3.1.3. Bolting-Stage B Rates
3.1.4. Flowering-Stage B Rates
3.2. Iron (Fe)
3.2.1. Fe Deficiency Symptomology
3.2.2. Rosette-Stage Fe Rates
3.2.3. Bolting-Stage Fe Rates
3.2.4. Flowering-Stage Fe Rates
3.3. Copper
3.3.1. Cu Deficiency Symptomology
3.3.2. Rosette-Stage Cu Rates
3.3.3. Bolting-Stage Cu Rates
3.3.4. Flowering-Stage Cu Rates
3.4. Zinc (Zn)
3.4.1. Zn Deficiency Symptomology
3.4.2. Rosette-Stage Zn Rates
3.4.3. Bolting-Stage Zn Rates
3.4.4. Flowering-Stage Zn Rates
3.5. Molybdenum (Mo)
3.5.1. Mo Deficiency Symptoms
3.5.2. Rosette-Stage Mo Rates
3.5.3. Bolting-Stage Mo Rates
3.5.4. Flowering-Stage Mo Rates
3.6. Manganese (Mn)
3.6.1. Mn Deficiency Symptomatology
3.6.2. Rosette-Stage Mn Rates
3.6.3. Bolting-Stage Mn Rates
3.6.4. Flowering-Stage Mn Rates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Govardhan, G.; Satheesh, S.K.; Nanjundiah, R.; Moorthy, K.K.; Babu, S.S. Possible climatic implications of high-altitude black carbon emissions. Atmos. Chem. Phys. Discuss. 2017, 17, 9623–9644. [Google Scholar] [CrossRef] [Green Version]
- Satheesh, S.K. High Altitude emissions of black carbon aerosols: Potential climate implications. AGUFM 2017, 2017, U21D-01. [Google Scholar]
- Craig, H. The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea. Tellus 1957, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Friend, A.D.; Lucht, W.; Rademacher, T.T.; Keribin, R.; Betts, R.; Cadule, P.; Ciais, P.; Clark, D.B.; Dankers, R.; Falloon, P.D.; et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. In Proceedings of the National Academy of Sciences, Postdam, Germany, 4 March 2014; Volume 111, pp. 3280–3285. [Google Scholar]
- U.S. Energy Information Administration. Monthly Energy Review. 2016. Available online: http://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf (accessed on 8 November 2016).
- Seepaul, R.; George, S.; Wright, D.L. Comparative response of Brassica carinata and B. napus vegetative growth, development and photosynthesis to nitrogen nutrition. Ind. Crop. Prod. 2016, 94, 872–883. [Google Scholar] [CrossRef]
- United States Federal Aviation Administration; Pratt & Whitney. Evaluation of ARA Catalytic Hydrothermolysis (CH) Fuel. Continuous Lower Energy, Emissions and Noise (CLEEN) Program; Federal Aviation Administration: Washington, DC, USA, 2014.
- Fritsche, U.R.; Sims, R.E.H.; Monti, A. Direct and indirect land-use competition issues for energy crops and their sustainable production—An overview. Biofuels Bioprod. Biorefining 2010, 4, 692–704. [Google Scholar] [CrossRef]
- Christ, B.; Bartels, W.-L.; Broughton, D.; Seepaul, R.; Geller, D. In pursuit of a homegrown biofuel: Navigating systems of partnership, stakeholder knowledge, and adoption of Brassica carinatain the Southeast United States. Energy Res. Soc. Sci. 2020, 70. [Google Scholar] [CrossRef]
- Gesch, R.W.; Isbell, T.A.; Oblath, E.A.; Allen, B.L.; Archer, D.W.; Brown, J.; Hatfield, J.L.; Jabro, J.D.; Kiniry, J.R.; Long, D.S.; et al. Comparison of several Brassica species in the north central US for potential jet fuel feedstock. Industrial crops and products. Ind. Crop. Prod. 2015, 75, 2–7. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press Inc.: San Diego, CA, USA, 1988. [Google Scholar]
- Gibson, J.L.; Nelson, P.V.; Pitchay, D.S.; Whipker, B.E. Identifying nutrient deficiencies of bedding plants. NC. State university floriculture research. Florex 2001, 4, 1–4. [Google Scholar]
- Grant, C.A.; Bailey, L.D. Fertility management in canola production. Can. J. Plant Sci. 1993, 73, 651–670. [Google Scholar] [CrossRef]
- Seepaul, R.; Small, I.M.; Marois, J.; George, S.; Wright, D.L. Brassica carinata and Brassica napus Growth, Nitrogen Use, Seed, and Oil Productivity Constrained by Post-Bolting Nitrogen Deficiency. Crop. Sci. 2019, 59, 2720–2732. [Google Scholar] [CrossRef]
- Harper, F.R.; Berkenkamp, B. Revised Growth-stage key for Brassica campestris and B. napus. Can. J. Plant Sci. 1975, 55, 657–658. [Google Scholar] [CrossRef] [Green Version]
- Matoh, T.B. Plant nutrition and cell wall development. In Plant Nutrient Acquisition; Ae, N., Arihara, J., Okada, K., Srinivasan, A., Eds.; Springer: Tokyo, Japan, 2001; pp. 227–250. [Google Scholar]
- Chebli, Y.; Geitmann, A. Cellular growth in plants requires regulation of cell wall biochemistry. Curr. Opin. Cell Biol. 2017, 44, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.-L.; Biswas, D.K.; Herath, A.W.; Whalen, J.K.; Ruan, S.Q.; Caldwell, C.; Earl, H.; Vanasse, A.; Scott, P.; Smith, D.L. Growth, yield, and yield components of canola as affected by nitrogen, sulfur, and boron application. J. Plant Nutr. Soil Sci. 2015, 178, 658–670. [Google Scholar] [CrossRef]
- Yang, M.; Shi, L.; Xu, F.-S.; Lu, J.-W.; Wang, Y.-H. Effects of B, Mo, Zn, and Their Interactions on Seed Yield of Rapeseed (Brassica napus L.). Pedosphere 2009, 19, 53–59. [Google Scholar] [CrossRef]
- Gardner, F.P.; Pearce, R.B.; Mitchell, R.L. Physiology of Crop Plants; Iowa State University Press: Ames, IA, USA, 2017. [Google Scholar]
- Shetty, A.S.; Miller, G.W. Influence of Fe chlorosis on pigment and protein metabolism in leaves of Nicotiana tabacum L. Plant Psychol. 1966, 41, 415–421. [Google Scholar]
- Terry, N.; Abadía, J. Function of Fe in chloroplasts. J. Plant Nutr. 1986, 9, 609–646. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, A.W. Photosystem II, the water-splitting enzyme. Trends Biochem. Sci. 1989, 14, 227–232. [Google Scholar] [CrossRef]
- Fei, D.I.; Wang, X.F.; Shi, Q.H.; Wang, M.L.; Yang, F.J.; Gao, Q.H. Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in Fe-deficient Chinese cabbage (Brassica chinensis L.). Agric. Sci. China 2008, 7, 168–179. [Google Scholar]
- Hopmans, P. Stem deformity in Pinus radiata plantations in south-eastern Australia. Plant Soil 1990, 122, 97–104. [Google Scholar] [CrossRef]
- Coleman, J.E. Zn proteins: Enzymes, storage proteins, transcription factors, and replication proteins. Ann. Rev. Biochem. 1992, 61, 897–946. [Google Scholar] [CrossRef]
- Moore, P.A., Jr.; Patrick, W.H., Jr. Effect of Zn deficiency on alcohol dehydrogenase activity and nutrient uptake in rice. Agron J. 1988, 80, 882–885. [Google Scholar] [CrossRef]
- Sandmann, G.; Boger, P. Enzymological function of heavy metals and their role in electron transfer processes of plants. In Inorganic Plant Nutrition Encyclopedia of Plant Physiology, New Series; Lauchli, A., Bieleski, R.L., Eds.; Springer: Bertin, Germany, 1983; Volume 15B, pp. 563–596. [Google Scholar]
- O’sullivan, M. Aldolase activity in plants as an indicator of Zn deficiency. J. Sci. Food Agric. 1970, 21, 607–609. [Google Scholar] [CrossRef]
- Cakmak, I.; Marschner, H. Enhanced superoxide radical production in roots of Zn-deficient plants. J. Exp. Bot. 1988, 39, 1449–1460. [Google Scholar] [CrossRef]
- Akmak, I.; Marschner, H. Zinc-dependent changes in ESR signals, NADPH oxidase and plasma membrane permeability in cotton roots. Physiol. Plant. 1988, 73, 182–186. [Google Scholar]
- Agarwala, S.C.; Hewitt, E.J. Mo as a Plant Nutrient: V. The interrelationships of molybdenum and nitrate supply in the concentration of sugars, nitrate and organic nitrogen in cauliflower plants grown in sand culture. J. Hortic. Sci. 1955, 30, 151–162. [Google Scholar] [CrossRef]
- Hewitt, E.J.; Bolle-Jones, E.W. Mo as a plant nutrient: I. The influence of Mo on the growth of some Brassica crops in sand culture. J. Hortic. Sci. 1952, 27, 245–256. [Google Scholar] [CrossRef]
- Eyster, C.; Brown, T.E.; Tanner, H.A.; Hood, S.L. Mn Requirement with Respect to Growth, Hill Reaction and Photosynthesis. Plant Physiol. 1958, 33, 235. [Google Scholar] [CrossRef]
- Nable, R.O.; Loneragan, J.F. Translocation of Mn in subterranean clover (Trifolium subterraneum L. Cv. Seaton Park) I. redistribution during vegetative growth. Funct. Plant Biol. 1984, 11, 101–111. [Google Scholar] [CrossRef]
- Kriedemann, P.E.; Graham, R.D.; Wiskich, J.T. Photosynthetic dysfunction and in vivo changes in chlorophyll a fluorescence from Mn-deficient wheat leaves. Aust. J. Agric. Res. 1985, 36, 157–169. [Google Scholar] [CrossRef]
- Constantopoulus, G. Lipid metabolism of Mn-deficient algae: I. Effect of Mn deficiency on the greening and the lipid composition of Euglena gracilis Z. Plant Physiol. 1970, 45, 76–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, D.O.; Boswell, F.C.; Ohki, K.; Parker, M.B.; Shuman, L.M.; Jellum, M.D. Changes in soybean seed oil and protein as influenced by Mn nutrition 1. Crop Sci. 1982, 22, 948–952. [Google Scholar] [CrossRef]
- Henry, J.B.; Vann, M.; McCall, I.; Cockson, P.; Whipker, B.E. Nutrient disorders of burley and flue-cured tobacco. Crop. Soils 2018, 51, 44–52. [Google Scholar] [CrossRef]
- Taylor, D.C.; Barton, D.L.; Rioux, K.P.; MacKenzie, S.L.; Reed, D.W.; Underhill, E.W.; Pomeroy, M.K.; Weber, N. Biosynthesis of acyl lipids containing very-long chain fatty acids in microspore-derived and zygotic embryos of Brassica napus L. cv Reston. Plant Physiol. 1992, 99, 1609–1618. [Google Scholar] [CrossRef] [Green Version]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347. [Google Scholar]
- Barnes, J.; Whipker, B.; McCall, I.; Frantz, J. Nutrient disorders of ‘Evolution’ mealy-cup sage. HortTechnology 2012, 22, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Bariya, H.; Bagtharia, S.; Patel, A.B. A promising nutrient for increasing growth and yield of plants. In Nutrient Use Efficiency in Plants; Hawkesford, M.J., Kopriva, S., De Kot, L.J., Eds.; Springer: Cham, Switzerland, 2014; pp. 153–170. [Google Scholar]
- Henry, J.B. Beneficial and Adverse Effects of Low Phosphorus Fertilization of Floriculture Species; NCSU Library Repository: Raleigh, NC, USA, 2017. [Google Scholar]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.B., Jr.; Barker, A.V. Plant Analysis Handbook IV.; Micro-Macro Publ.: Athens, GA, USA, 2014. [Google Scholar]
- Matoh, T.; Kobayashi, M. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 1998, 111, 179–190. [Google Scholar] [CrossRef]
- Nuttall, W.F.; Ukrainetz, H.; Stewart, J.W.; Spurr, D.T. The effect of nitrogen, sulphur and B on yield and quality of rapeseed (Brassica napus L. and B. campestris L.). Can. J. Soil Sci. 1987, 67, 545–559. [Google Scholar] [CrossRef]
- Popper, Z.A.; Fry, S.C. Xyloglucan−pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. Planta 2008, 227, 781–794. [Google Scholar] [CrossRef]
- Yang, M.; Shi, L.; Xu, F.S.; Wang, Y.H. Effect of B on dynamic change of seed yield and quality formation in developing seed of Brassica napus. J. Plant Nutr. 2009, 32, 785–797. [Google Scholar] [CrossRef]
- Chen, G.; Clark, A.; Kremen, A.; Lawley, Y.; Price, A.; Stocking, L.; Weil, R. Brassicas and mustards. In Managing Cover Crops Profitably; USDA ARS: Washington, DC, USA, 2007; pp. 81–89. [Google Scholar]
- Wu, J.; Schat, H.; Sun, R.; Koornneef, M.; Wang, X.; Aarts, M.G. Characterization of natural variation for Zn, Fe and Mn accumulation and Zn exposure response in Brassica rapa L. Plant Soil 2007, 291, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Ayala, M.B.; Sandmann, G. Activities of Cu-containing proteins in Cu-depleted pea leaves. Physiol. Plant. 1988, 72, 801–806. [Google Scholar] [CrossRef]
- Khan, N.A.; Singh, S.; Nazar, R.; Lone, P.M. The source–sink relationship in mustard. Asian Aust. J. Plant Sci. Biotechnol. 2007, 1, 10–18. [Google Scholar]
- Vallee, B.L.; Auld, D.S. Zn coordination, function, and structure of Zn enzymes and other proteins. Biochemistry 1990, 29, 5647–5659. [Google Scholar] [CrossRef]
- Vallee, B.L.; Falchuk, K.H. The biochemical basis of Zn physiology. Physiol. Rev. 1993, 73, 79–118. [Google Scholar] [CrossRef] [PubMed]
- Kochian, L.V. Mechanisms of Micronutrient Uptake and Translocation in Plants. Methods Biogeochem. Wetl. 2018, 4, 229–296. [Google Scholar]
- Ajisaka, H.; Kuginuki, Y.; Yui, S.; Enomoto, S.; Hirai, M. Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp. pekinensis syn. campestris L.) using bulked segregant analysis. Euphytica 2001, 118, 75–81. [Google Scholar]
- Cakmak, I.; Marschner, H. Increase in membrane permeability and exudation in roots of Zn deficient plants. J. Plant Physiol. 1988, 132, 356–361. [Google Scholar] [CrossRef]
- Cakmak, I.; Marschner, H. Decrease in nitrate uptake and increase in proton release in Zn deficient cotton, sunflower and buckwheat plants. Plant Soil 1990, 129, 261–268. [Google Scholar] [CrossRef]
- Vunkova-Radeva, R.; Schiemann, J.; Mendel, R.R.; Salcheva, G.; Georgieva, D. Stress and activity of Mo-containing complex (Mo cofactor) in winter wheat seeds. Plant Physiol. 1988, 87, 533–535. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.; Dench, J.; Moore, A.L.; Halliwell, B.; Foyer, C.H.; Hall, D.O. Subcellular Localisation and Identification of Superoxide Dismutase in the Leaves of Higher Plants. JBIC J. Biol. Inorg. Chem. 1978, 91, 339–344. [Google Scholar] [CrossRef]
- Osborne, G.J.; Pratley, J.E.; Stewart, W.P. The tolerance of subterranean clover (Trifolium subterreneum L.) to aluminium and manganese. Field Crops Res. 1980, 3, 347–358. [Google Scholar] [CrossRef]
- Brown, P.H.; Graham, R.D.; Nicholas, D.J. The effects of Mn and nitrate supply on the levels of phenolics and lignin in young wheat plants. Plant Soil 1984, 81, 437–440. [Google Scholar] [CrossRef]
Micronutrient Fertility Rate (%) 1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0 | 25.0 | 50.0 | 75.0 | 87.5 | 100.0 | |||||||
µmol·L−1 | ppm | µmol·L−1 | ppm | µmol·L−1 | ppm | µmol·L−1 | ppm | µmol·L−1 | ppm | µmol·L−1 | ppm | |
Iron (Fe) 2 | 0.00 | 0.00 | 18.00 | 1.01 | 36.00 | 2.01 | 54.00 | 3.02 | 63.00 | 3.52 | 72.00 | 4.02 |
Manganese (Mn) 2 | 0.00 | 0.00 | 4.50 | 0.25 | 9.00 | 0.50 | 13.50 | 0.74 | 15.75 | 0.87 | 18.00 | 0.99 |
Zinc (Zn) 2 | 0.00 | 0.00 | 0.75 | 0.05 | 1.50 | 0.10 | 2.25 | 0.15 | 2.63 | 0.18 | 3.00 | 0.20 |
Copper (Cu) 2 | 0.00 | 0.00 | 0.75 | 0.05 | 1.50 | 0.10 | 2.25 | 0.14 | 2.63 | 0.17 | 3.00 | 0.19 |
Boron (B) 2 | 0.00 | 0.00 | 11.25 | 0.12 | 22.50 | 0.25 | 33.75 | 0.37 | 39.38 | 0.43 | 45.00 | 0.49 |
Molybdenum (Mo) 2 | 0.00 | 0.00 | 0.025 | 0.0025 | 0.050 | 0.005 | 0.075 | 0.0075 | 0.088 | 0.0088 | 0.100 | 0.01 |
B Fertility (µmol·L−1) 1,2 | 0.0 | 11.25 | 22.50 | 33.75 | 39.38 | 45.0 |
---|---|---|---|---|---|---|
Plant Dry Weight (g) | ||||||
Rosette | 1.35 A *** | 5.44 B *** | 5.20 B *** | 5.55 B *** | 9.33 C *** | 8.53 C *** |
Bolting | 11.26 A ** | 26.28 AB ** | 38.21 B ** | 30.10 B ** | 35.56 B ** | 31.51 B ** |
Flowering | 3.73 A *** | 32.96 B *** | 39.10 B *** | 36.08 B *** | 36.73 B *** | 40.68 B *** |
B Leaf Tissue Nutrient Concentrations (mg·kg−1) | ||||||
Rosette | 9.39 A *** | 47.20 B *** | 48.46 B *** | 49.40 B *** | 49.45 B *** | 50.00 B *** |
Bolting | 3.63 A *** | 41.84 B *** | 59.82 C *** | 65.50 C *** | 92.52 D *** | 91.20 D *** |
Flowering | 11.41 A *** | 70.10 B *** | 79.20 BC *** | 86.70 BC *** | 111.64 D *** | 98.52 CD *** |
Comparison Boron Leaf Tissue Values (mg·kg−1) 3 | ||||||
Brassica carinata3 | Brassica napus4 | |||||
Rosette 3 | 13.4–26.2 | 15.0–54.0 | ||||
Bolting 3 | 10.0–18.8 | |||||
Flowering 3 | 6.5–19.1 |
Fe Fertility (µmol·L−1) 1 | 0.0 | 18.0 | 36.0 | 54.0 | 63.0 | 72.0 |
---|---|---|---|---|---|---|
Plant Dry Weight (g) | ||||||
Rosette 2 | 0.97 A *** | 5.80 B *** | 7.58 BC *** | 5.62 B *** | 8.92 C *** | 8.53 C *** |
Bolting 2 | 26.91 AB ** | 33.85 A ** | 13.00 B ** | 23.91 AB ** | 30.48 A ** | 31.51 A ** |
Flowering 2 | 31.47 A NS | 41.06 A NS | 27.16 A NS | 40.30 A NS | 36.82 A NS | 40.68 A NS |
Fe Leaf Tissue Nutrient Concentrations (mg·kg−1) | ||||||
Rosette 2 | 73.73 C *** | 60.64 A *** | 64.77 AB *** | 69.35 BC *** | 65.03 AB *** | 74.83 C *** |
Bolting 2 | 46.07 A *** | 49.19 A *** | 49.98 A *** | 59.18 A *** | 113.77 B *** | 66.00 A *** |
Flowering 2 | 43.67 A ** | 57.97 A ** | 53.57 A ** | 70.72 AB ** | 83.53 B ** | 56.40 A ** |
Comparison Fe Leaf Tissue Values (mg·kg−1) 3 | ||||||
Brassica carinata3 | Brassica napus4 | |||||
Rosette 3 | 67.6–595.3 | 30.0–200.0 | ||||
Bolting 3 | 51.9–226.0 | |||||
Flowering 3 | 38.4–172.2 |
Cu Fertility (µmol·L−1) 1 | 0.00 | 0.75 | 1.50 | 2.25 | 2.63 | 3.0 |
---|---|---|---|---|---|---|
Plant Dry Weight (g) | ||||||
Rosette | 7.26 BCD *** | 10.26 A *** | 9.38 AB *** | 6.63 CD *** | 5.67 D *** | 8.53 ABC *** |
Bolting | 22.89 A *** | 46.56 B *** | 37.22 BC *** | 29.14 AB *** | 33.51 ABC *** | 31.51 AB *** |
Flowering | 27.54 AB *** | 21.67 A *** | 48.29 C *** | 40.56 BC *** | 37.63 BC *** | 40.68 BC *** |
Cu Leaf Tissue Nutrient Concentrations (mg·kg−1) | ||||||
Rosette | 2.75 A *** | 5.91 B *** | 7.85 C *** | 6.06 B *** | 7.63 C *** | 8.03 C *** |
Bolting | 1.22 A *** | 3.91 B *** | 6.12 BC *** | 7.98 C *** | 6.62 C *** | 7.57 C *** |
Flowering | 4.14 A ** | 7.88 AB ** | 8.96 B ** | 10.92 B ** | 9.52 B ** | 10.37 B ** |
Comparison Cu Leaf Tissue Values (mg·kg−1) 3 | ||||||
Brassica carinata3 | Brassica napus4 | |||||
Rosette 3 | 1.9–3.2 | 4.0–25.0 | ||||
Bolting 3 | 3.4–3.6 | |||||
Flowering 3 | 2.3–3.2 |
Zn Fertility (µmol·L−1) 1,2 | 0.0 | 0.75 | 1.50 | 2.25 | 2.63 | 3.0 |
---|---|---|---|---|---|---|
Plant Dry Weight (g) | ||||||
Rosette | 5.84 A *** | 5.72 A *** | 6.74 AB *** | 7.46 BC *** | 5.61 A *** | 8.53 C *** |
Bolting | 32.21 A ** | 15.42 B ** | 24.96 AB ** | 32.91 A ** | 16.06 B ** | 31.51 A ** |
Flowering | 34.15 AB *** | 22.11 B *** | 37.40 AB *** | 38.03 AB *** | 36.80 AB *** | 40.68 AB *** |
Zn Leaf Tissue Nutrient Concentrations (mg·kg−1) | ||||||
Rosette | 14.66 A *** | 13.18 A *** | 19.07 B *** | 23.22 C *** | 21.02 BC *** | 22.65 C *** |
Bolting | 9.17 A *** | 27.47 B *** | 34.92 B *** | 39.61 B *** | 39.87 B *** | 29.10 B *** |
Flowering | 15.50 A * | 33.98 B * | 42.26 B * | 43.41 B * | 43.50 B * | 43.43 B * |
Comparison Zn Leaf Tissue Values (mg·kg−1) 3 | ||||||
Brassica carinata3 | Brassica napus4 | |||||
Rosette 3 | 21.9–25.3 | 22.0–49.0 | ||||
Bolting 3 | 20.9–25.7 | |||||
Flowering 3 | 22.7–28.0 |
Mo Fertility (µmol·L−1) 1,2 | 0.0 | 0.025 | 0.050 | 0.075 | 0.088 | 0.10 |
---|---|---|---|---|---|---|
Plant Dry Weight (g) | ||||||
Rosette | 5.62 A *** | 7.59 AB *** | 7.06 AB *** | 6.54 AB *** | 12.18 C *** | 8.53 B *** |
Bolting | 42.78 A ** | 19.99 B ** | 33.17 AB ** | 30.74 AB ** | 30.02 AB ** | 31.51 AB ** |
Flowering | 50.69 A NS | 30.51 A NS | 44.26 A NS | 38.00 A NS | 55.52 A NS | 40.68 A NS |
Mo Leaf Tissue Nutrient Concentrations (mg·kg−1) | ||||||
Rosette | 0.39 A *** | 0.31 A *** | 1.61 A *** | 1.21 A *** | 1.03 A *** | 14.53 B *** |
Bolting | 0.31 A *** | 1.17 AB *** | 1.28 AB *** | 1.93 BC *** | 2.21 BC *** | 3.15 C *** |
Flowering | 0.80 A *** | 1.59 AB *** | 2.89 C *** | 3.00 C *** | 3.23 C *** | 2.42 C *** |
Comparison Mo Leaf Tissue Values (mg·kg−1) 3 | ||||||
Brassica carinata3 | Brassica napus4 | |||||
Rosette 3 | N/A 3 | 0.25–0.60 | ||||
Bolting 3 | N/A 3 | |||||
Flowering 3 | N/A 3 |
Mn Fertility Rate (µmol·L−1) 1,2 | 0.0 | 4.50 | 9.0 | 13.50 | 15.75 | 18.0 |
---|---|---|---|---|---|---|
Plant Dry Weight (g) | ||||||
Rosette | 6.29 CD *** | 8.71 AB *** | 10.65 A *** | 5.81 D *** | 6.41 BCD *** | 8.53 ABC *** |
Bolting | 23.34 A NS | 29.85 A NS | 33.30 A NS | 24.93 A NS | 25.94 A NS | 31.51 A NS |
Flowering | 24.33 A NS | 49.08 A NS | 51.16 A NS | 30.45 A NS | 39.00 A NS | 40.68 A NS |
Mn Leaf Tissue Nutrient Concentrations (mg·kg−1) | ||||||
Rosette | 14.70 A *** | 74.31 B *** | 112.11 C *** | 149.36 D *** | 155.93 D *** | 103.25 C *** |
Bolting | 8.77 A *** | 65.21 B *** | 117.03 C *** | 149.87 C *** | 137.09 C *** | 161.63 C *** |
Flowering | 6.90 A *** | 61.56 B *** | 105.20 C *** | 132.17 CD *** | 139.14 CD *** | 145.70 D *** |
Comparison Mn Leaf Tissue Values (mg·kg−1) 3 | ||||||
Brassica carinata3 | Brassica napus4 | |||||
Rosette | 17.1–22.6 | 25.0–250.0 | ||||
Bolting | 9.5–17.1 | |||||
Flowering | 11.6–18.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cockson, P.; Veazie, P.; Davis, M.; Barajas, G.; Post, A.; Crozier, C.R.; Leon, R.G.; Patterson, R.; Whipker, B.E. The Impacts of Micronutrient Fertility on the Mineral Uptake and Growth of Brassica carinata. Agriculture 2021, 11, 221. https://doi.org/10.3390/agriculture11030221
Cockson P, Veazie P, Davis M, Barajas G, Post A, Crozier CR, Leon RG, Patterson R, Whipker BE. The Impacts of Micronutrient Fertility on the Mineral Uptake and Growth of Brassica carinata. Agriculture. 2021; 11(3):221. https://doi.org/10.3390/agriculture11030221
Chicago/Turabian StyleCockson, Paul, Patrick Veazie, Matthew Davis, Gabby Barajas, Angela Post, Carl R. Crozier, Ramon G. Leon, Robert Patterson, and Brian E. Whipker. 2021. "The Impacts of Micronutrient Fertility on the Mineral Uptake and Growth of Brassica carinata" Agriculture 11, no. 3: 221. https://doi.org/10.3390/agriculture11030221
APA StyleCockson, P., Veazie, P., Davis, M., Barajas, G., Post, A., Crozier, C. R., Leon, R. G., Patterson, R., & Whipker, B. E. (2021). The Impacts of Micronutrient Fertility on the Mineral Uptake and Growth of Brassica carinata. Agriculture, 11(3), 221. https://doi.org/10.3390/agriculture11030221