Bibliometric Analysis of Soil Nutrient Research between 1992 and 2020
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Publication Outputs Analysis over the Years
3.2. Analysis of Primary Journals
3.3. Analysis of Authors, Institutions, and Countries
3.4. Analysis of Keywords
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosolem, C.A.; Foloni, J.S.S.; Tiritan, C.S. Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil Till. Res. 2002, 65, 109–115. [Google Scholar] [CrossRef]
- Gao, D.; Zhou, X.; Duan, Y.; Fu, X.; Wu, F. Wheat cover crop promoted cucumber seedling growth through regulating soil nutrient resources or soil microbial communities? Plant Soil 2017, 418, 1–17. [Google Scholar] [CrossRef]
- Allen, A.S.; Schlesinger, W.H. Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biol. Biochem. 2004, 36, 581–589. [Google Scholar] [CrossRef]
- Alster, C.J.; German, D.P.; Lu, Y.; Allison, S.D. Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biol. Biochem. 2013, 64, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Finzi, A.C.; Austin, A.T.; Cleland, E.E.; Frey, S.D.; Houlton, B.Z.; Wallenstein, M.D. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Front. Ecol. Environ. 2011, 9, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Bell, C.W.; Tissue, D.T.; Loik, M.E.; Wallenstein, M.D.; Acosta Martinez, V.; Erickson, R.A.; Zak, J.C. Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland. Glob. Chang. Biol. 2014, 20, 1657–1673. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Huang, B.; Mao, M.; Yao, L.; Niedermann, S.; Hu, W.; Chen, Y. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China. Environ. Sci. Pollut. Res. Int. 2016, 23, 17287–17297. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.N.; Rani, R.; Yeo, J.-E.; Spencer, M.; Hu, S.; Lang, R.A. The Eyes Absent phosphatase-transactivator proteins promote proliferation, transformation, migration, and invasion of tumor cells. Oncogene 2010, 29, 3715–3722. [Google Scholar] [CrossRef] [Green Version]
- Jug, T.; Vesel, V. Migration of nutrients from soil to plant in olive orchards. Emir. J. Food Agric. 2015, 27, 215. [Google Scholar] [CrossRef] [Green Version]
- Ren, T.; Bu, R.; Liao, S.; Zhang, M.; Li, X.; Cong, R.; Lu, J. Differences in soil nitrogen transformation and the related seed yield of winter oilseed rape (Brassica napus L.) under paddy-upland and continuous upland rotations. Soil Tillage Res. 2019, 192, 206–214. [Google Scholar] [CrossRef]
- Entz, M.H.; Guilford, R.; Gulden, R. Crop yield and soil nutrient status on 14 organic farms in the eastern portion of the northern Great Plains. Can. J. Plant. Sci. 2001, 81, 351–354. [Google Scholar] [CrossRef]
- Liu, C.; Gong, X.; Dang, K.; Li, J.; Yang, P.; Gao, X.; Deng, X.; Feng, B. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environ. Res. 2020, 184, 109261. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Bai, Y.; Lv, M.; Tian, G.; Zhang, X.; Li, L.; Jiang, Y.; Ge, S. Soil Fertility, Microbial Biomass, and Microbial Functional Diversity Responses to Four Years Fertilization in an Apple Orchard in North China. Hortic. Plant J. 2020, 6, 223–230. [Google Scholar] [CrossRef]
- Matulich, K.L.; Weihe, C.; Allison, S.D.; Amend, A.S.; Berlemont, R.; Goulden, M.L.; Kimball, S.; Martiny, A.C.; Martiny, J.B.H. Temporal variation overshadows the response of leaf litter microbial communities to simulated global change. ISME J. 2015, 9, 2477–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, G.; Li, Z.; Wang, S.; Huang, K.; Luo, J. Migration and transformation of nitrogen in bioretention system during rainfall runoff. Chemosphere 2019, 232, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wang, X.; Li, Y.; Yang, J.; Wang, J.; Lü, X.; Han, X. Simulated nitrogen deposition decreases soil microbial diversity in a semiarid grassland, with little mediation of this effect by mowing. Pedobiologia 2020, 80, 150644. [Google Scholar] [CrossRef]
- Ahmadjian, V.; Hawksworth, D.L. Nitrogen and sulphur fertilization. Excess nitrates in the soil: A problem to be solved, and solutions under way. Taxon 1996, 99, 272–278. [Google Scholar]
- Brito, J.M.C.; Ferreira, D.; Guerrero, C.A.C.; Machado, A.V.; Beltrão, J. Soil pollution by nitrates using sewage sludge and mineral fertilizers. Improv. Crop Qual. Nutr. Manag. 1999, 86, 223–227. [Google Scholar]
- Vandenberghe, C.; Palm, R.; Lambert, R.; De Toffoli, M.; Marcoen, J.M. Implementation of the Nitrates Directive. analysis of the assessment’s methodology for the control of the soil nitrate nitrogen residue in the farm’s fields of Wallonia. Biotechnol. Agron. Soc. Environ. 2012, 16, 25–32. [Google Scholar]
- Shen, W.; Ni, Y.; Gao, N.; Bian, B.; Zheng, S.; Lin, X.; Chu, H. Bacterial community composition is shaped by soil secondary salinization and acidification brought on by high nitrogen fertilization rates. Appl. Soil Ecol. 2016, 108, 76–83. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, Z.; Sheng, Z.; Huang, M.; Zhang, Z. Effect of Surface Straw Incorporation Rate on Water–Salt Balance and Maize Yield in Soil Subject to Secondary Salinization with Brackish Water Irrigation. Agronomy 2019, 9, 341. [Google Scholar] [CrossRef] [Green Version]
- Osanai, Y.; Tissue, D.T.; Bange, M.P.; Anderson, I.C.; Braunack, M.V.; Singh, B.K. Plant-soil interactions and nutrient availability determine the impact of elevated CO2 and temperature on cotton productivity. Plant. Soil 2017, 410, 87–102. [Google Scholar] [CrossRef]
- Tian, X.; Li, C.; Min, Z.; Wan, Y.; Xie, Z.; Chen, B.; Li, W.; Jorge, P.F. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield. PLoS ONE 2018, 13, e189924. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, S.A.; Baloch, D.M.; Ahmed, N.; Hidayatullah, K. Role of coal-derived humic acid in the availability of nutreints and growth of sunflower under calcareous soil. JAPS J. Anim. Plant. Sci. 2014, 24, 1737–1742. [Google Scholar]
- Aziz, A.; Ashraf, M.; Sikandar, S.; Asif, M.; Akhtar, N.; Shahzad, S.M.; Wasaya, A.; Raza, A.; Babar, B.H. Optimizing sulfur for improving salt tolerance of sunflower (Helianthus annuus L.). Soil Environ. 2019, 38, 222–233. [Google Scholar] [CrossRef]
- Rajeshwar, M.; Khan, M.A.A. Effect of biofertilizers on crop yield and soil available nutrients of rice and maize in alfisols of Nagarjuna Sagar left canal command area of Andhra Pradesh, India. Asian J. Soil Sci. 2010, 22, 159–175. [Google Scholar]
- Tully, K.L.; Wood, S.A.; Almaraz, M.; Neill, C.; Palm, C. The effect of mineral and organic nutrient input on yields and nitrogen balances in western Kenya. Agric. Ecosyst. Environ. 2015, 214, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Oikeh, S.O.; Kling, J.G.; Okoruwa, A.E. Nitrogen Fertilizer Management Effects on Maize Grain Quality in the West African Moist Savanna. Crop. Sci. 1998, 38, 1056–1161. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Pasricha, N.S.; Sahota, N.S. Yield, nutrient concentration and quality of mustard crops as influenced by nitrogen and sulphur fertilizers. J. Agr. Sci.-Camb. 1980, 94, 545–549. [Google Scholar] [CrossRef]
- Nederhof, A.J. Bibliometric monitoring of research performance in the Social Sciences and the Humanities: A Review. Scientometrics 2006, 66, 81–100. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Yi, J.; Yang, X.; Wu, T.; He, Y.; Duan, H.; Liu, M.; Tian, P. Bibliometric Analysis of Research on Soil Water from 1934 to 2019. Water 2020, 12, 1631. [Google Scholar] [CrossRef]
- Mingze, W.; Dianfeng, L.; Jinglei, J.; Xiaoyi, Z. Global trends in soil monitoring research from 1999–2013: A bibliometric analysis. Acta Agric. Scand. 2015, 65, 483–495. [Google Scholar]
- Jian, W.; Min, W.; Jin, Z.; Wu, J.; Sha, C.; Hao, T.; Qi, X.; Huang, S. A Bibliometric Analysis of Researches on Polycyclic Aromatic Hydrocarbons in Soil Environment Based on Web of Science. Shanghai Environ. Sci. 2016, 302, 112482. [Google Scholar]
- Mao, G.; Shi, T.; Zhang, S.; Crittenden, J.; Guo, S.; Du, H. Bibliometric analysis of insights into soil remediation. J. Soil Sediment. 2018, 18, 2520–2534. [Google Scholar] [CrossRef]
- He, D.; Bristow, K.; Filipović, V.; Lv, J.; He, H. Microplastics in Terrestrial Ecosystems: A Scientometric Analysis. Sustainability 2020, 12, 8739. [Google Scholar] [CrossRef]
- He, H.; Dyck, M.; Lv, J. The Heat Pulse Method for Soil Physical Measurements: A Bibliometric Analysis. Appl. Sci. 2020, 10, 6171. [Google Scholar] [CrossRef]
- Stoops, G. The “Fabric” of soil micromorphological research in the 20th century—A bibliometric analysis. Geoderma 2014, 213, 193–202. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Wen-Ru, L.U. Research Review and Prospect of Soil Heavy Metals Pollution—Bibliometric Analysis Based on Web of Science. Environ. Sci. Technol. 2010, 33, 105–111. [Google Scholar]
- Liu, Y.; Wu, K.; Zhao, R. Bibliometric analysis of research on soil health from 1999 to 2018. J. Soil Sediment. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Prasad, M.N.V.; Pershell, K.; Koelmel, J. Bibliometric Analysis of Phytotechnologies for Remediation: Global Scenario of Research and Applications. Int. J. Phytoremediat. 2015, 17, 145–153. [Google Scholar]
- Zhang, S.; Liu, X.; Huibin, D.; Guozhu, M.; Crittenden, J. Groundwater remediation from the past to the future: A bibliometric analysis. Water Res. J. Int. Water Assoc. 2017, 119, 114–125. [Google Scholar] [CrossRef]
- Ho, Y. Some comments on: Mao et al. (2018) “Bibliometric analysis of insights into soil remediation” Journal of Soils and Sediments, 18(7): 2520–2534. J. Soil Sediment. 2019, 19, 3657–3658. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.H.H.; Lei, S.; Ali, M.; Doronin, D.; Hussain, S.T. Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes 2019, 49, 1020–1045. [Google Scholar] [CrossRef]
- Niazi, M.A. Review of “CiteSpace: A Practical Guide For Mapping Scientific Literature” by Chaomei Chen. Complex. Adapt. Syst. Modeling 2016, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Jain, Y.K.; Bhandare, S.K. Min Max Normalization Based Data Perturbation Method for Privacy. Int. J. Comput. Commun. 2013, 4, 233–238. [Google Scholar]
- Raghunatha, R.R.L.; Shankarappa, T.H.; Shankar, R.K.; Satish, M.V. Review of Trends in Soil Fertility Research (2007–2016) using Scopus Database. Commun. Soil Sci. Plant. 2019, 50, 1063–1080. [Google Scholar]
- Nyborg, M.; Solberg, E.D.; Izaurralde, R.C.; Malhi, S.S.; Molina-Ayala, M. Influence of long-term tillage, straw and N fertilizer on barley yield, plant-N uptake and soil-N balance. Soil Till. Res. 1995, 36, 165–174. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J.T. Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize–alfalfa rotation in Michigan. Agric. Ecosyst. Environ. 2005, 108, 329–341. [Google Scholar] [CrossRef]
- Yadav, R.L.; Dwivedi, B.S.; Prasad, K.; Tomar, O.K.; Shurpali, N.J.; Pandey, P.S. Yield trends, and changes in soil organic-C and available NPK in a long-term rice–wheat system under integrated use of manures and fertilisers. Field Crop. Res. 2000, 68, 219–246. [Google Scholar] [CrossRef]
- Rahman, N.; Bruun, T.B.; Giller, K.E.; Magid, J.; Ven, G.W.J.; Neergaard, A. Soil greenhouse gas emissions from inorganic fertilizers and recycled oil palm waste products from Indonesian oil palm plantations. Gcb Bioenergy 2019, 11, 1056–1074. [Google Scholar] [CrossRef] [Green Version]
- Sida, T.S.; Baudron, F.; Ndoli, A.; Tirfessa, D.; Giller, K.E. Should fertilizer recommendations be adapted to parkland agroforestry systems? Case studies from Ethiopia and Rwanda. Plant. Soil 2020, 453, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Rurangwa, E.; Vanlauwe, B.; Giller, K.E. The response of climbing bean to fertilizer and organic manure in the Northern Province of Rwanda. Exp. Agric. 2020, 56, 722–737. [Google Scholar] [CrossRef]
- Giller, K.E.; Witter, E.; Mcgrath, S.P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 1998, 30, 1389–1414. [Google Scholar] [CrossRef]
- Meena, R.S.; Lal, R.; Yadav, G.S. Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 2020, 194, 104752. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, X.; Lal, R.; Gao, X.; Li, S.; Sun, L.; Wang, Y.; Li, M.; Bai, S.; Wang, J. Effect of soil fertility on the allocation of nitrogen derived from different maize residue parts in the soil-plant system. Geoderma 2020, 379, 114632. [Google Scholar] [CrossRef]
- Fan, M.; Lal, R.; Zhang, H.; Margenot, A.J.; Wu, J.; Wu, P.; Zhang, L.; Yao, J.; Chen, F.; Gao, C. Variability and determinants of soil organic matter under different land uses and soil types in eastern China. Soil Till. Res. 2020, 198, 104544. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Arpenter, S.R.C.; Araco, N.F.C.; Orrell, D.L.C.; Owarth, R.W.H.; Harpley, A.N.S.; Mith, V.H.S. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Chapra, S.C.; Wedepohl, R.; Sims, J.T.; Daniel, T.C.; Reddy, K.R. Managing Agricultural Phosphorus for Protection of Surface Waters: Issues and Options. J. Environ. Qual. 1994, 23, 437–451. [Google Scholar] [CrossRef]
- Brennan, R.B.; Murnane, J.G.; Sharpley, A.N.; Herron, S.; Brye, K.R.; Simmons, T. Soil phosphorus dynamics following land application of unsaturated and partially saturated red mud and water treatment residuals. J. Environ. Manag. 2019, 248, 109296. [Google Scholar] [CrossRef] [PubMed]
- Dodd, R.J.; Sharpley, A.N.; Berry, L.G. Organic Phosphorus Can Make an Important Contribution to Phosphorus Loss from Riparian Buffers. Agric. Environ. Lett. 2018, 3, 180002. [Google Scholar] [CrossRef] [Green Version]
- Bolster, C.H.; Baffaut, C.; Nelson, N.O.; Osmond, D.L.; Cabrera, M.L.; Ramirez-Avila, J.J.; Sharpley, A.N.; Veith, T.L.; McFarland, A.M.S.; Senaviratne, A.G.M.M.; et al. Development of PLEAD: A Database Containing Event-based Runoff Phosphorus Loadings from Agricultural Fields. J. Environ. Qual. 2019, 48, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Geng, R.; Yin, P.; Sharpley, A.N. A coupled model system to optimize the best management practices for nonpoint source pollution control. J. Clean Prod. 2019, 220, 581–592. [Google Scholar] [CrossRef]
- Ying, Z.; Shengyan, P.; Xue, L.; Ya, G.; Long, G. Global trends and prospects in microplastics research: A bibliometric analysis. J. Pre-Proof 2020, 400, 123110. [Google Scholar]
- Khan, S.A.; Mulvaney, R.L.; Ellsworth, T.R.; Boast, C.W. The Myth of Nitrogen Fertilization for Soil Carbon Sequestration. J. Environ. Qual. 2007, 36, 1821–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycles 1999, 13, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Crews, T.E.; Peoples, M.B. Legume versus fertilizer sources of nitrogen: Ecological tradeoffs and human needs. Agric. Ecosyst. Environ. 2004, 102, 279–297. [Google Scholar] [CrossRef]
- Jaynes, D.B.; Colvin, T.S.; Karlen, D.L.; Cambardella, C.A.; Meek, D.W. Nitrate Loss in Subsurface Drainage as Affected by Nitrogen Fertilizer Rate. Surf. Water Qual. 2001, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Lambers, H.; Raven, J.; Shaver, G.; Smith, S. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 2008, 23, 95–103. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G. Effects of Exotic Plant Invasions on Soil Nutrient Cycling Processes. Ecosystems 2003, 6, 503–523. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant. Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Andre, B.; Job, K.; Vanlauwe, B.; Waswa, B.; Kimetu, J. Soil organic carbon dynamics, functions and management in West African agro-ecosystems. SienceDirect 2005, 94, 13–25. [Google Scholar]
- Wezel, A.J.; Rajot, L.; Herbrig, H. Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger. J. Arid Environ. 2000, 44, 383–398. [Google Scholar] [CrossRef]
- Bationo, A.; Baethgen, W.E.; Christianson, C.B.; Mokwunye, A.U. Comparison of five soil testing methods to establish phosphorus sufficiency levels in soil fertilized with water-soluble and sparingly soluble-P sources. Fertil. Res. 1991, 28, 271–279. [Google Scholar] [CrossRef]
- Bationoa, A.; Lompob, F.; Koala, S. Research on nutrient ows and balances in west Africa: State-of-the-art. Agric. Ecosyst. Environ. 1998, 71, 19–35. [Google Scholar]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Chandra, S.; Singh, R.; Kudu, S.; Srivastva, A.; Gupta, H. Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat–soybean rotation. Soil Till. Res. 2007, 94, 386–396. [Google Scholar] [CrossRef]
- Hammesfahr, U.; Heuer, H.; Manzke, B.; Smalla, K.; Thiele-Bruhn, S. Impact of the antibiotic sulfadiazine and pig manure on the microbial community structure in agricultural soils. Soil Biol. Biochem. 2008, 40, 1583–1591. [Google Scholar] [CrossRef]
- Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W. Differences in Phosphorus and Nitrogen Delivery to The Gulf of Mexico from the Mississippi River Basin. Environ. Sci. Technol. 2008, 42, 822–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Chang, E.; Chung, R.; Tsai, Y. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant. Nutr. 2007, 53, 132–140. [Google Scholar] [CrossRef]
- Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. Fems. Microbiol. Ecol. 2009, 68, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerman, A.R.; Gao, B.; Ahn, M. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Francis, C.A.; Harwood, R.R.; Parr, J.F. The potential for regenerative agriculture in the developing world. Am. J. Altern. Agric. 1986, 1, 65–74. [Google Scholar] [CrossRef]
Journals | N | TLCS | TGCS | IF | TGCS/t | SND |
---|---|---|---|---|---|---|
Communications in Soil Science and Plant Analysis | 1239 | 2407 | 9917 | 0.767 | 741 | 1.25 |
Science of the Total Environment | 1106 | 5219 | 27,645 | 6.551 | 4173 | 3.70 |
Agriculture Ecosystems & Environment | 1071 | 12,048 | 46,115 | 4.241 | 3972 | 4.30 |
Plant and Soil | 1061 | 9200 | 43,105 | 3.299 | 3164 | 3.56 |
Journal of Environmental Quality | 760 | 8761 | 34,148 | 2.142 | 2140 | 2.36 |
Soil Biology & Biochemistry | 740 | 9955 | 43,600 | 5.795 | 3612 | 3.72 |
Journal of Plant Nutrition | 700 | 1308 | 6524 | 1.132 | 522 | 0.26 |
Nutrient Cycling in Agroecosystems | 678 | 7162 | 20,013 | 2.45 | 1390 | 1.58 |
Agronomy Journal | 667 | 4458 | 16,512 | 1.683 | 1192 | 1.04 |
Applied Soil Ecology | 566 | 3857 | 14,952 | 3.187 | 1540 | 1.15 |
NO. | Items | N | TC | TLS | SND | TC/N |
---|---|---|---|---|---|---|
Top 10 Authors | ||||||
1 | Giller, Ken E. (Wageningen University, Netherlands) | 147 | 9647 | 543 | 2.32 | 65.6 |
2 | Shen, Qirong (Nanjing Agricultural University, China) | 133 | 4326 | 846 | 2.15 | 32.5 |
3 | Lal, Rattan (Ohio State University, USA) | 131 | 11,097 | 478 | 2.16 | 84.7 |
4 | Vanlauwe, Bernard (Int Inst Trop Agr, Nigeria) | 108 | 4339 | 545 | 1.36 | 40.2 |
5 | Sharpley, Andrew (University Arkansas, USA) | 87 | 11,565 | 292 | 1.37 | 132.9 |
6 | Xu, Minggang (CAAS, China) | 77 | 2155 | 513 | 0.73 | 28.0 |
7 | Christie, Peter (China Agricultural University, China) | 76 | 2677 | 415 | 0.60 | 35.2 |
8 | Olesen, Jorgen E. (Aarhus University, Denmark) | 68 | 2306 | 279 | 0.25 | 33.9 |
9 | Wardle, David A. (Nanyang Technol University, Singapore) | 64 | 3909 | 262 | 0.32 | 61.1 |
10 | Buerkert, Andreas (University Kassel, Germany) | 63 | 978 | 241 | 0.00 | 15.5 |
11 | Kuzyakov, Yakov (University Gottingen, Germany) | 63 | 1559 | 369 | 0.27 | 24.7 |
12 | Ok, Yong Sik (Korea University, Korea) | 63 | 4178 | 390 | 0.55 | 66.3 |
Top 10 organizations | ||||||
1 | Chinese Academy of Sciences (China) | 2579 | 61,078 | 2069 | 3.00 | 23.7 |
2 | USDA ARS (USA) | 1577 | 55,055 | 1214 | 1.92 | 34.9 |
3 | Agr& Agri Food Canada (Canada) | 880 | 25,193 | 473 | 0.61 | 28.6 |
4 | University Chinese Academy Sciences (China) | 735 | 8160 | 984 | 0.50 | 11.1 |
5 | University Florida (USA) | 693 | 20,361 | 377 | 0.37 | 29.4 |
6 | Chinese Academy of Agricultural Sciences(China) | 687 | 13,336 | 671 | 0.40 | 19.4 |
7 | China Agricultural University (China) | 665 | 13,839 | 608 | 0.37 | 20.8 |
8 | Swedish University Agricultural Sciences (Sweden) | 550 | 22,033 | 275 | 0.28 | 40.1 |
9 | Wageningen University (Netherlands) | 527 | 18,042 | 346 | 0.23 | 34.2 |
10 | Nanjing Agricultural University (China) | 514 | 14,712 | 354 | 0.17 | 28.6 |
Top 10 countries | ||||||
1 | USA | 10,789 | 399,320 | 5876 | 3.00 | 37.0 |
2 | China | 8772 | 165,595 | 4472 | 1.83 | 18.9 |
3 | India | 3264 | 58,926 | 959 | 0.20 | 18.1 |
4 | UK | 3197 | 140,102 | 4384 | 1.12 | 43.8 |
5 | Germany | 3079 | 108,578 | 3457 | 0.83 | 35.3 |
6 | Canada | 2909 | 88,035 | 1858 | 0.43 | 30.3 |
7 | Brazil | 2698 | 42,463 | 1476 | 0.20 | 15.7 |
8 | Australia | 2516 | 94,612 | 2635 | 0.56 | 37.6 |
9 | Spain | 2362 | 69,576 | 1823 | 0.31 | 29.5 |
10 | Italy | 1852 | 45,912 | 1500 | 0.12 | 24.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, X.; Lv, J.; Dyck, M.; He, H. Bibliometric Analysis of Soil Nutrient Research between 1992 and 2020. Agriculture 2021, 11, 223. https://doi.org/10.3390/agriculture11030223
Pan X, Lv J, Dyck M, He H. Bibliometric Analysis of Soil Nutrient Research between 1992 and 2020. Agriculture. 2021; 11(3):223. https://doi.org/10.3390/agriculture11030223
Chicago/Turabian StylePan, Xiaoyan, Jialong Lv, Miles Dyck, and Hailong He. 2021. "Bibliometric Analysis of Soil Nutrient Research between 1992 and 2020" Agriculture 11, no. 3: 223. https://doi.org/10.3390/agriculture11030223
APA StylePan, X., Lv, J., Dyck, M., & He, H. (2021). Bibliometric Analysis of Soil Nutrient Research between 1992 and 2020. Agriculture, 11(3), 223. https://doi.org/10.3390/agriculture11030223