Response of Apricot Fruit Quality to Protective Netting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apricot Plants and Experimental Conditions
2.2. Measurements
2.2.1. Plant Yield and Physical Variables of the Fruit
2.2.2. Maturity Index (MI), Acidity, and Total Soluble Solids (TSS)
2.2.3. Sugars and Organic Acids Profile
2.2.4. Antioxidant Activity (ABTS+, DPPH• and FRAP Methods) and Total Polyphenols
2.2.5. Sensory Evaluation with Trained Panel
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. Available online: http://www.fao.org (accessed on 20 November 2020).
- Kiralan, M.; Özkan, G.; Kucukoner, E.; Ozcelik, M.M. Apricot (Prunus armeniaca L.) Oil. In Fruit Oils: Chemistry and Functionality; Springer International Publishing: New York, NY, USA, 2019; pp. 505–519. [Google Scholar]
- Fideghelli, C.; Strada, G.D. The breeding activity on apricot in the world from 1980 through today. Acta Hortic. 2010, 93–98. [Google Scholar] [CrossRef]
- Melgarejo, P.; Calín-Sánchez, Á.; Carbonell-Barrachina, Á.A.; Martínez-Nicolás, J.J.; Legua, P.; Martínez, R.; Hernández, F. Antioxidant activity, volatile composition and sensory profile of four new very-early apricots (Prunus armeniaca L.). J. Sci. Food Agric. 2014, 94, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Polo-Oltra, Á.; Romero, C.; López, I.; Badenes, M.L.; Zuriaga, E. Cost-Effective and Time-Efficient Molecular Assisted Selection for Ppv Resistance in Apricot Based on ParPMC2 Allele-Specific PCR. Agronomy 2020, 10, 1292. [Google Scholar] [CrossRef]
- García-Gómez, B.E.; Ruiz, D.; Salazar, J.A.; Rubio, M.; Martínez-García, P.J.; Martínez-Gómez, P. Analysis of Metabolites and Gene Expression Changes Relative to Apricot (Prunus armeniaca L.) Fruit Quality During Development and Ripening. Front. Plant Sci. 2020, 11, 1269. [Google Scholar] [CrossRef]
- Campoy, J.A.; Audergon, J.M.; Ruiz, D.; Martínez-Gómez, P. Genomic Designing for New Climate-Resilient Apricot Varieties in a Warming Context. In Genomic Designing of Climate-Smart Fruit Crops; Springer International Publishing: New York, NY, USA, 2020; pp. 73–89. [Google Scholar]
- Vuković, M.; Brkljača, M.; Rumora, J.; Fruk, M.; Jatoi, M.A.; Jemrić, T. Vegetative and Reproductive Traits of Young Peaches and Nectarines Grown under Red Photoselective Net. Agric. Conspec. Sci. 2016, 81, 181–185. [Google Scholar]
- Melgarejo, P.; Martínez, J.; Hernández, F. Informe de Estudio Preliminar Sobre Nuevas Técnicas Ecoeficientes Para el Cultivo de Cítricos. Proyecto no 34622; Aplicación Presupuestaria: 200200.442I.649.00; Región de Murcia: Murcia, Spain, 2008. [Google Scholar]
- Trénor, I.; Zaragoza, S.; Cortés de Lacour, P.; Clarí, A. Cultivo de variedades Marisol y Oronules bajo cubierta de malla. Rev. Comunitat Valencia Agrar. 1998, 11, 3–11. [Google Scholar]
- Martínez, J. Nuevo Sistema de Cultivo de Cítricos Bajo Mallas y con Cobertura Plástica del Suelo en la Alquibla, t.m. de Ojós (Murcia); Región de Murcia: Murcia, Spain, 2005. [Google Scholar]
- Fan, X.; Jiao, W.; Wang, X.; Cao, J.; Jiang, W. Polyphenol composition and antioxidant capacity in pulp and peel of apricot fruits of various varieties and maturity stages at harvest. Int. J. Food Sci. Technol. 2018, 53, 327–336. [Google Scholar] [CrossRef]
- Gómez-Martínez, H.; Bermejo, A.; Zuriaga, E.; Badenes, M.L. Polyphenol content in apricot fruits. Sci. Hortic. 2021, 277, 109828. [Google Scholar] [CrossRef]
- Madrau, M.A.; Piscopo, A.; Sanguinetti, A.M.; Del Caro, A.; Poiana, M.; Romeo, F.V.; Piga, A. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. 2009, 228, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Hernández, F.; Pinochet, J.; Moreno, M.A.; Martínez, J.J.; Legua, P. Performance of Prunus rootstocks for apricot in Mediterranean conditions. Sci. Hortic. 2010, 124, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Mratinić, E.; Popovski, B.; Milošević, T.; Popovska, M. Evaluation of apricot fruit quality and correlations between physical and chemical attributes. Czech J. Food Sci. 2011, 29, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, D.; Egea, J. Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 2008, 163, 143–158. [Google Scholar] [CrossRef]
- Bartolini, S.; Leccese, A.; Remorini, D.; Iacona, C.; Viti, R. Quality and antioxidant traits of organic apricots (Prunus armeniaca L.) at harvest and after storage. J. Sci. Food Agric. 2019, 83, 12–17. [Google Scholar] [CrossRef]
- Egea, J.; Rubio, M.; Campoy, J.A.; Dicenta, F.; Ortega, E.; Nortes, M.D.; Martínez-Gómez, P.; Molina, A.; Molina, A., Jr.; Ruiz, D. ‘Mirlo Blanco’, ‘Mirlo Anaranjado’, and ‘Mirlo Rojo’: Three New Very Early-season Apricots for the Fresh Market. HirtScience 2010, 45. [Google Scholar] [CrossRef] [Green Version]
- Lo Bianco, R.; Farina, V.; Indelicato, S.G.; Filizzola, F.; Agozzino, P. Fruit physical, chemical and aromatic attributes of early, intermediate and late apricot cultivars. J. Sci. Food Agric. 2010, 90, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, O.; Bayazit, S.; Sumbul, A. Fruit quality and phytochemical attributes of some apricot (Prunus armeniaca L.) cultivars as affected by genotypes and seasons. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Badenes, M.L.; Martínez-Calvo, J.; Llácer, G. Analysis of apricot germplasm from the European ecogeographical group. Euphytica 1998, 102, 93–99. [Google Scholar] [CrossRef]
- Egea, J.; Campoy, J.A.; Dicenta, F.; Burgos, L.; Patiño, J.L.; Ruiz, D. ‘Estrella’ and ‘Sublime’ Apricot Cultivars. HortScience 2009, 44. [Google Scholar] [CrossRef] [Green Version]
- Durmaz, G.; Çam, M.; Kutlu, T.; Hişil, Y. Some Physical and Chemical Changes during Fruit Development of Five Common Apricot (Prunus armeniaca L.) Cultivars. Food Sci. Technol. Res. 2010, 16, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Del Campo, G.; Berregi, I.; Caracena, R.; Santos, J.I. Quantitative analysis of malic and citric acids in fruit juices using proton nuclear magnetic resonance spectroscopy. Anal. Chim. Acta 2006, 556, 462–468. [Google Scholar] [CrossRef]
- Lingle, S.E.; Dunlap, J.R. Sucrose Metabolism in Netted Muskmelon Fruit during Development. Plant Physiol. 1987, 84, 386–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledbetter, C.; Peterson, S.; Jenner, J. Modification of sugar profiles in California adapted apricots (Prunus armeniaca L.) through breeding with Central Asian germplasm. Euphytica 2006, 148, 251–259. [Google Scholar] [CrossRef]
- Moretti, C.L.; Mattos, L.M.; Calbo, A.G.; Sargent, S.A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 2010, 43, 1824–1832. [Google Scholar] [CrossRef]
- Drogoudi, P.D.; Vemmos, S.; Pantelidis, G.; Petri, E.; Tzoutzoukou, C.; Karayiannis, I. Physical characters and antioxidant, sugar, and mineral nutrient contents in fruit from 29 apricot (Prunus armeniaca L.) cultivars and hybrids. J. Agric. Food Chem. 2008, 56, 10754–10760. [Google Scholar] [CrossRef] [PubMed]
- Dragovic-Uzelac, V.; Levaj, B.; Mrkic, V.; Bursac, D.; Boras, M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem. 2007, 102, 966–975. [Google Scholar] [CrossRef]
Variable | ‘Mikado’ under a Protective Net | ‘Mikado’ without a Net | ANOVA |
---|---|---|---|
Total yield (kg tree−1) | 31.64 ± 1.75 | 29.80 ± 3.06 | ns |
Fruit weight (g) | 61.24 ± 7.63 | 60.93 ± 8.02 | ns |
Ø equatorial (mm) | 45.32 ± 1.98 | 46.22 ± 2,23 | ns |
Fruit height (mm) | 47.48 ± 2.33 | 47.70± 2.66 | ns |
Firmness (kg cm−2) | 2.07 ± 1.30 | 1.72 ± 1.09 | ns |
Pulp thickness (mm) | 13.11 ± 1.27 | 13.17 ± 1.48 | ns |
Stone weight (g) | 3.03 ± 0.46 | 3.20 ± 0.44 | ns |
Pulp yield (%) | 95.00 ± 0.74 | 94.73 ± 0.44 | ns |
pH | 3.46 ± 0.07 | 3.57 ± 0.09 | ns |
TSS (°Brix) | 8.67 ± 0.83 | 8.37 ± 0.34 | ns |
TA (g malic acid L−1) | 14.64 ± 3.07 | 12.82 ± 1.84 | ns |
Maturity index (TSS/TA) | 6.21 ± 0.27 | 6.59 ± 0.51 | ns |
Parameter | ‘Mikado’ under Protective Net | ‘Mikado’ without Net | ANOVA |
---|---|---|---|
L* | 63.37 ± 1.56 | 63.15 ± 1.82 | ns |
a* | 21.60 ± 2.03 | 22.31 ± 1.96 | ns |
b* | 39.92 ± 1.90 | 39.77 ± 2.27 | ns |
C* | 45.75 ± 1.58 | 46.08 ± 1.36 | ns |
h* | 61.30 ± 3.17 | 60.16 ±3.68 | ns |
Parameter | ‘Mikado’ under Protective Net | ‘Mikado’ without Net | ANOVA |
---|---|---|---|
Glucose (g kg−1) | 27.2 ± 0.38 | 25.8 ± 0.25 | * |
Fructose (g kg−1) | 25.2 ± 0.19 | 24.2 ± 0.05 | ns |
Sucrose (g kg−1) | 44.9 ± 0.14 | 43.7 ± 0.20 | ns |
Citric acid (g kg−1) | 9.3 ± 0.11 | 8.7 ±0.08 | ns |
Malic acid (g kg−1) | 5.8 ± 0.00 | 5.0 ±0.00 | ns |
ABTS (mmol Trolox kg−1 fw) | 2.2 ± 0.08 | 1.3 ± 0.01 | * |
DPPH (mmol Trolox kg−1 fw) | 6.2 ± 0.12 | 4.8 ± 0.11 | ns |
FRAP (mmol Trolox kg−1 fw) | 6.2 ± 0.13 | 4.9 ± 0.11 | ns |
TP (mg of gallic acid 100 g−1 fw) | 16.2 ± 0.65 | 15.5 ± 0.83 | ns |
Variable | ‘Mikado’ under Protective Net | ‘Mikado’ without Net | Significance |
---|---|---|---|
Appearance | |||
External color | 8.9 | 6.5 | *** |
Lightness | 4.1 | 5.9 | ** |
Color homogeneity | 8.5 | 4.3 | *** |
Internal color | 8.0 | 5.9 | *** |
Taste, Flavor | |||
Sweetness | 3.6 | 3.2 | ns |
Acidity | 6.6 | 6.5 | ns |
Astringency | 1.8 | 2.1 | ns |
Toothech | 1.6 | 1.6 | ns |
Apricot (flavor) | 3.4 | 2.8 | ns |
Green (flavor) | 2.8 | 2.4 | ns |
Ripe fruit (flavor) | 2.2 | 2.0 | ns |
Vegetable (flavor) | 1.1 | 1.6 | ns |
Fruit (flavor) | 2.7 | 2.4 | ns |
Floral (flavor) | 2.1 | 1.9 | ns |
Texture | |||
Skin hardness | 4.0 | 5.1 | ns |
Hardness | 3.4 | 3.5 | ns |
Juiciness | 6.1 | 5.4 | ns |
Pulp consistency | 3.7 | 4.7 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melgarejo, P.; Legua, P.; Martínez-Font, R.; Martínez-Nicolás, J.J.; Sánchez Soriano, J.; Carbonell-Barrachina, Á.A.; Hernández, F. Response of Apricot Fruit Quality to Protective Netting. Agriculture 2021, 11, 260. https://doi.org/10.3390/agriculture11030260
Melgarejo P, Legua P, Martínez-Font R, Martínez-Nicolás JJ, Sánchez Soriano J, Carbonell-Barrachina ÁA, Hernández F. Response of Apricot Fruit Quality to Protective Netting. Agriculture. 2021; 11(3):260. https://doi.org/10.3390/agriculture11030260
Chicago/Turabian StyleMelgarejo, Pablo, Pilar Legua, Rafael Martínez-Font, Juan José Martínez-Nicolás, Joaquín Sánchez Soriano, Ángel A. Carbonell-Barrachina, and Francisca Hernández. 2021. "Response of Apricot Fruit Quality to Protective Netting" Agriculture 11, no. 3: 260. https://doi.org/10.3390/agriculture11030260
APA StyleMelgarejo, P., Legua, P., Martínez-Font, R., Martínez-Nicolás, J. J., Sánchez Soriano, J., Carbonell-Barrachina, Á. A., & Hernández, F. (2021). Response of Apricot Fruit Quality to Protective Netting. Agriculture, 11(3), 260. https://doi.org/10.3390/agriculture11030260