Assessment of the Content of Dry Matter and Dry Organic Matter in Compost with Neural Modelling Methods
Abstract
:1. Introduction
2. Materials and Methods
- collection and preparation of compost samples,
- acquisition of digital images,
- processing the photographs and using IT systems (special software) enabling the extraction of their characteristics,
- laboratory measurement of the content of dry matter and dry organic matter in the compost samples under analysis,
- processing the acquired data into the form of training sets of neural models,
- neural modelling,
- verification of the models and checking the proposed method.
2.1. Research Material
- sewage sludge and maize stover,
- sewage sludge and rapeseed straw,
- sewage sludge and wheat straw.
2.2. Image Acquisition Methodology
2.3. Computer Image Analysis Methodology
2.4. Laboratory Analyses of Composts
2.5. Neural Image Analyses of Composts
3. Results
3.1. Dry Matter
3.2. Dry Organic Matter
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cai, Q.Y.; Mo, C.H.; Lü, H.; Zeng, Q.Y.; Wu, Q.T.; Li, Y.W. Effect of composting on the removal of semivolatile organic chemicals (SVOCs) from sewage sludge. Bioresour. Technol. 2012, 126, 453–457. [Google Scholar] [CrossRef]
- Rossini-Oliva, S.; Mingorance, M.D.; Peña, A. Effect of two different composts on soil quality and on the growth of various plant species in a polymetallic acidic mine soil. Chemosphere 2017, 168, 183–190. [Google Scholar] [CrossRef]
- Janowska, B.; Szymański, K.; Sidełko, R.; Siebielska, I.; Walendzik, B. Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts. Environ. Res. 2017, 156, 394–403. [Google Scholar] [CrossRef]
- Białobrzewski, I.; Mikš-Krajnik, M.; Dach, J.; Markowski, M.; Czekała, W.; Głuchowska, K. Model of the sewage sludge-straw composting process integrating different heat generation capacities of mesophilic and thermophilic microorganisms. Waste Manag. 2015, 43, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.C.; Serrano, A.; Siles, J.A.; Chica, A.F.; Martín, M.A. Centralized management of sewage sludge and agro-industrial waste through co-composting. J. Environ. Manag. 2017, 196, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Werther, J.; Ogada, T. Sewage sludge combustion. Prog. Energy Combust. Sci. 1999, 25, 55–116. [Google Scholar] [CrossRef]
- Bolzonella, D.; Pavan, P.; Battistoni, P.; Cecchi, F. Mesophilic anaerobic digestion of waste activated sludge: Influence of the solid retention time in the wastewater treatment process. Process Biochem. 2005, 40, 1453–1460. [Google Scholar] [CrossRef]
- Kharrazi, S.M.; Younesi, H.; Abedini-Torghabeh, J. Microbial biodegradation of waste materials for nutrients enrichment and heavy metals removal: An integrated composting-vermicomposting process. Int. Biodeterior. Biodegrad. 2014, 92, 41–48. [Google Scholar] [CrossRef]
- Latare, A.M.; Kumar, O.; Singh, S.K.; Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system. Ecol. Eng. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Waszkielis, K.M.; Wronowski, R.; Chlebus, W.; Białobrzewski, I.; Dach, J.; Pilarski, K.; Janczak, D. The effect of temperature, composition and phase of the composting process on the thermal conductivity of the substrate. Ecol. Eng. 2013, 61, 354–357. [Google Scholar] [CrossRef]
- Dadhich, S.K.; Pandey, A.K.; Prasanna, R.; Nain, L.; Kaushik, B.D. Optimizing crop residue-based composts for enhancing soil fertility and crop yield of rice. Indian J. Agric. Sci. 2012, 82, 85. [Google Scholar]
- López, R.; Giráldez, I.; Palma, A.; Jesús Díaz, M. Assessment of compost maturity by using an electronic nose. Waste Manag. 2016, 48, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, S.; Dede, O.H.; Koseoglu, G. Recycling of MSW compost and sewage sludge as growing substrate for ornamental potted plants. Fresenius Environ. Bull. 2004, 13, 30–33. [Google Scholar]
- Kulikowska, D. Kinetics of organic matter removal and humification progress during sewage sludge composting. Waste Manag. 2016, 49, 196–203. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 1–7. [Google Scholar] [CrossRef]
- Wolna-Maruwka, A.; Mocek-Płóciniak, A.; Głuchowska, K.; Schroeter-Zakrzewska, A.; Borowiak, K.; Niewiadomska, A.; Starzyk, J.; Dach, J. Assessment of the influence of composts on microbiological and biochemical parameters of substrates and the morphological traits of scarlet sage. Arch. Environ. Prot. 2015, 41, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Boniecki, P.; Piekarska-Boniecka, H.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Wojcieszak, D.; Zbytek, Z.; Ludwiczak, A.; Przybylak, A.; Lewicki, A. Neural classifier in the estimation process of maturity of selected varieties of apples. In Proceedings of the Seventh International Conference on Digital Image Processing (ICDIP), Los Angeles, CA, USA, 9–10 April 2015. [Google Scholar]
- Czekała, W.; Dach, J.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Wojcieszak, D.; Witaszek, K. The use of image analysis to investigate C: N ratio in the mixture of chicken manure and straw. In Proceedings of the Proceedings of SPIE—The International Society for Optical Engineering, Prague, Czech Republic, 13–16 April 2015; Volume 9631. [Google Scholar]
- Malińska, K.; Zabochnicka-Światek, M.; Dach, J. Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecol. Eng. 2014, 71, 474–478. [Google Scholar] [CrossRef]
- He, X.; Xi, B.; Wei, Z.; Guo, X.; Li, M.; An, D.; Liu, H. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere 2011, 82, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Sevilla-Perea, A.; Mingorance, M.D. Field approach to mining-dump revegetation by application of sewage sludge co-compost and a commercial biofertilizer. J. Environ. Manag. 2015, 158, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.A.R.; Quina, M.J.; Reis, M.S.; Quinta-Ferreira, R. Assessment of co-composting process with high load of an inorganic industrial waste. Waste Manag. 2017, 59, 80–89. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Przybył, J.; Lewicki, A.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Witaszek, K. Use of neural image analysis methods in the process to determine the dry matter content in the compost. In Proceedings of the Seventh International Conference on Digital Image Processing (ICDIP), Los Angeles, CA, USA, 9–10 April 2015. [Google Scholar]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Tiquia, S.M.; Tam, N.F.Y. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresour. Technol. 1998, 65, 43–49. [Google Scholar] [CrossRef]
- De Bertoldi, M.G.; Vallini, A.P. The biology of composting: A review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar] [CrossRef]
- Piotrowska-Cyplik, A.; Olejnik, A.; Cyplik, P.; Dach, J.; Czarnecki, Z. The kinetics of nicotine degradation, enzyme activities and genotoxic potential in the characterization of tobacco waste composting. Bioresour. Technol. 2009, 160, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska-Cyplik, A.; Chrzanowski, Ł.; Cyplik, P.; Dach, J.; Olejnik, A.; Staninska, J.; Czarny, J.; Lewicki, A.; Marecik, R.; Powierska-Czarny, J. Composting of oiled bleaching earth: Fatty acids degradation, phytotoxicity and mutagenicity changes. Int. Biodeterior. Biodegrad. 2013, 78, 49–57. [Google Scholar] [CrossRef]
- Rafiq, A.; Makroo, H.A.; Hazarika, M.K. Artificial Neural Network-Based Image Analysis for Evaluation of Quality Attributes of Agricultural Produce. J. Food Process. Preserv. 2016, 40, 1010–1019. [Google Scholar] [CrossRef]
- Zaborowicz, M.; Boniecki, P.; Koszela, K.; Przybylak, A.; Przybył, J. Application of neural image analysis in evaluating the quality of greenhouse tomatoes. Sci. Hortic. 2017, 218, 222–229. [Google Scholar] [CrossRef]
- Zaborowicz, M.; Wojcieszak, D.; Górna, K.; Kujawa, S.; Kozłowski, R.J.; Przybył, K.; Mioduszewska, N.; Idziaszek, P.; Boniecki, P. Determination of dry matter content in composted material based on digital images of compost taken under mixed visible and UV-A light. In Proceedings of the Eighth International Conference on Digital Image Processing (ICDIP), Chengdu, China, 20–22 May 2016. [Google Scholar]
- Sakai, Y.; Oda, T.; Ikeda, M.; Barolli, L. A vegetable category recognition system using deep neural network. In Proceedings of the 2016 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2016, Fukuoka, Japan, 6–8 July 2016. [Google Scholar]
- Aghajani, N.; Kashaninejad, M.; Dehghani, A.A.; Daraei Garmakhany, A. Comparison between artificial neural networks and mathematical models for moisture ratio estimation in two varieties of green malt. Qual. Assur. Saf. Crop. Foods 2012, 11, 528–535. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Klepaczko, A.; Zapotoczny, P. Identifying barley varieties by computer vision. Comput. Electron. Agric. 2015, 110, 1–8. [Google Scholar] [CrossRef]
- Singh, K.R.; Chaudhury, S. Efficient technique for rice grain classification using back-propagation neural network and wavelet decomposition. IET Comput. Vis. 2016, 10, 780–787. [Google Scholar] [CrossRef]
- Przybylak, A.; Boniecki, P.; Koszela, K.; Ludwiczak, A.; Zaborowicz, M.; Lisiak, D.; Stanisz, M.; Śósarz, P. Estimation of intramuscular level of marbling among Whiteheaded Mutton Sheep lambs. J. Food Eng. 2016, 168, 199–204. [Google Scholar] [CrossRef]
- Szyndler-Nędza, M.; Eckert, R.; Blicharski, T.; Tyra, M.; Prokowski, A. Prediction of Carcass Meat Percentage in Young Pigs Using Linear Regression Models and Artificial Neural Networks. Ann. Anim. Sci. 2015, 16, 551. [Google Scholar] [CrossRef] [Green Version]
- Kujawa, S.; Tomczak, R.J.; Kluza, T.; Weres, J.; Boniecki, P. A stand for the image acquisition of composted material based on the sewage sludge. In Proceedings of the Fourth International Conference on Digital Image Processing (ICDIP), Kuala Lumpur, Malaysia, 7–8 April 2012. [Google Scholar]
- Kujawa, S.; Mazurkiewicz, J.; Mueller, W.; Gierz, Ł.; Przybył, K.; Wojcieszak, D.; Zaborowicz, M.; Koszela, K.; Boniecki, P. Identification of co-substrate composted with sewage sludge using convolutional neural networks. In Proceedings of the Eleventh International Conference on Digital Image Processing (ICDIP), Guangzhou, China, 10–13 May 2019. [Google Scholar]
- Kujawa, S.; Nowakowski, K.; Tomczak, R.J.; Dach, J.; Boniecki, P.; Weres, J.; Mueller, W.; Raba, B.; Piechota, T.; Rodríguez Carmona, P.C. Neural image analysis for maturity classification of sewage sludge composted with maize straw. Comput. Electron. Agric. 2014, 109, 302–310. [Google Scholar] [CrossRef]
- Kujawa, S.; Mazurkiewicz, J.; Czekała, W. Using convolutional neural networks to classify the maturity of compost based on sewage sludge and rapeseed straw. J. Clean. Prod. 2020, 258, 120814. [Google Scholar] [CrossRef]
- Przybył, K.; Górna, K.; Wojcieszak, D.; Czekała, W.L.; Agnieszka, P.A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Janczak, D.; Lewicki, A. The recognition of potato varieties using of neural image analysis method. In Proceedings of the The Recognition of Potato Varieties Using of Neural Image Analysis Method, Los Angeles, CA, USA, 9–10 April 2015; Falco, C.M., Jiang, X., Eds.; SPIE: Los Angeles, CA, USA, 2015. [Google Scholar]
- Martelo-Vidal, M.J.; Vázquez, M. Application of artificial neural networks coupled to UV–VIS–NIR spectroscopy for the rapid quantification of wine compounds in aqueous mixtures. CyTA J. Food 2015, 13, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Sudha, S.; Vidhyalakshmi, M.; Pavithra, K.; Sangeetha, K.; Swaathi, V. An Automatic Classification Method For Environment Friendly Waste Segregation Using Deep Learning. In Proceedings of the 2016 IEEE International Conference on Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 15–16 July 2016; pp. 65–70. [Google Scholar]
- Yildiz, S.; Degirmenci, M. Estimation of Oxygen Exchange during Treatment Sludge Composting through Multiple Regression and Artificial Neural Networks (Estimation of Oxygen Exchange during Composting). Int. J. Environ. Res. 2015, 9, 1173–1182. [Google Scholar]
Neural Model | Learning Quality | Validation Quality | Test Quality | Learning Error | Validation Error | Test Error |
---|---|---|---|---|---|---|
RBF 19:19-2-1:1 | 0.8395 | 0.8661 | 0.8867 | 0.0973 | 0.1002 | 0.0922 |
Neural Model | Learning Quality | Validation Quality | Test Quality | Learning Error | Validation Error | Test Error |
---|---|---|---|---|---|---|
RBF 19:19-2-1:1 | 0.8395 | 0.8661 | 0.886699 | 0.097291 | 0.100205 | 0.092189 |
RBF 19:19-4-1:1 | 0.9753 | 0.9884 | 0.958975 | 0.118388 | 0.109319 | 0.140582 |
MLP 19:19-15-1:1 | 0.6146 | 0.7202 | 0.572571 | 0.165085 | 0.193240 | 0.152465 |
MLP 21:21-13-1:1 | 0.4643 | 0.4390 | 0.566230 | 0.124814 | 0.118422 | 0.154048 |
Line 29:29-1:1 | 0.3820 | 19.5949 | 0.876552 | 0.102583 | 5.407811 | 0.212105 |
Neural Model | Learning Quality | Validation Quality | Test Quality | Learning Error | Validation Error | Test Error |
---|---|---|---|---|---|---|
RBF 30:30-8-1:1 | 0.9171 | 0.9999 | 0.9999 | 0.0976 | 0.0948 | 0.0764 |
Neural Model | Learning Quality | Validation Quality | Test Quality | Learning Error | Validation Error | Test Error |
---|---|---|---|---|---|---|
RBF 30:30-8-1:1 | 0.9171 | 0.9999 | 0.9999 | 0.0976 | 0.0948 | 0.0764 |
RBF 30:30-8-1:1 | 0.8412 | 1.0000 | 1.0000 | 0.0988 | 0.1359 | 0.0974 |
RBF 22:22-4-1:1 | 0.8406 | 0.9494 | 1.0199 | 0.0922 | 0.0886 | 0.0991 |
GRNN 30:30-42-2-1:1 | 0.7293 | 1.0347 | 0.7906 | 0.087 | 0.1377 | 0.1022 |
GRNN 30:30-42-2-1:1 | 0.4646 | 1.0608 | 1.0519 | 0.0509 | 0.0979 | 0.1032 |
Neural Model | Learning Quality | Validation Quality | Test Quality | Learning Error | Validation Error | Test Error |
---|---|---|---|---|---|---|
MLP 14:14-14-11-1:1 | 0.9563 | 0.9761 | 0.9522 | 0.1639 | 0.1922 | 0.1722 |
Neural Model | Learning Quality | Validation Quality | Test Quality | Learning Error | Validation Error | Test Error |
---|---|---|---|---|---|---|
MLP 16:16-10-1:1 | 0.8557 | 0.995 | 0.9136 | 0.1463 | 0.1968 | 0.1673 |
MLP 10:10-5-1:1 | 0.9008 | 0.9946 | 0.9237 | 0.1545 | 0.1961 | 0.1683 |
MLP 14:14-14-11-1:1 | 0.9563 | 0.9761 | 0.9522 | 0.1639 | 0.1922 | 0.1722 |
MLP 14:14-9-1:1 | 0.9643 | 0.9815 | 0.9514 | 0.1649 | 0.1936 | 0.1730 |
MLP 14:14-9-1:1 | 0.8869 | 0.9792 | 0.9932 | 0.1538 | 0.1930 | 0.1793 |
Neural Model | Learning Quality | Validation Quality | Test Quality | Learning Error | Validation Error | Test Error |
---|---|---|---|---|---|---|
MLP 7:7-9-7-1:1 | 0.9649 | 0.9457 | 0.9723 | 0.1792 | 0.1592 | 0.1795 |
Neural Model | Learning Quality | Validation Quality | Test Quality | Learning Error | Validation Error | Test Error |
---|---|---|---|---|---|---|
MLP 7:7-9-7-1:1 | 0.9649 | 0.9457 | 0.9723 | 0.1792 | 0.1592 | 0.1795 |
MLP 1:1-1-1-1:1 | 0.9999 | 0.9999 | 0.9999 | 0.1857 | 0.1662 | 0.1862 |
MLP 20:20-30-12-1:1 | 0.9051 | 0.8792 | 1.0174 | 0.1681 | 0.1424 | 0.1875 |
MLP 1:1-3-1:1 | 0.9762 | 0.9475 | 1.0295 | 0.1817 | 0.1572 | 0.1952 |
MLP 25:25-21-1:1 | 0.7368 | 1.1305 | 1.0131 | 0.1369 | 0.1818 | 0.1959 |
Dry Matter | Dry Organic Matter | |
---|---|---|
Visible light | RBF 19:19-2-1:1 | MLP 14:14-14-11-1:1 |
Mixed light | RBF 30:30-8-1:1 | MLP 7:7-9-7-1:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojcieszak, D.; Zaborowicz, M.; Przybył, J.; Boniecki, P.; Jędruś, A. Assessment of the Content of Dry Matter and Dry Organic Matter in Compost with Neural Modelling Methods. Agriculture 2021, 11, 307. https://doi.org/10.3390/agriculture11040307
Wojcieszak D, Zaborowicz M, Przybył J, Boniecki P, Jędruś A. Assessment of the Content of Dry Matter and Dry Organic Matter in Compost with Neural Modelling Methods. Agriculture. 2021; 11(4):307. https://doi.org/10.3390/agriculture11040307
Chicago/Turabian StyleWojcieszak, Dawid, Maciej Zaborowicz, Jacek Przybył, Piotr Boniecki, and Aleksander Jędruś. 2021. "Assessment of the Content of Dry Matter and Dry Organic Matter in Compost with Neural Modelling Methods" Agriculture 11, no. 4: 307. https://doi.org/10.3390/agriculture11040307
APA StyleWojcieszak, D., Zaborowicz, M., Przybył, J., Boniecki, P., & Jędruś, A. (2021). Assessment of the Content of Dry Matter and Dry Organic Matter in Compost with Neural Modelling Methods. Agriculture, 11(4), 307. https://doi.org/10.3390/agriculture11040307