Direct Economic Impact Assessment of Winter Honeybee Colony Losses in Three European Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Economic Estimation
- VTL = Value of total losses;
- VLlc = Value of losses as a result of lost colonies;
- VLwc = Value of losses as a result of weak colonies.
- VLlc = Value of losses as a result of lost colonies;
- Lc = Number of lost colonies;
- Pc = Price per colony;
- Hc = Honey yields per colony;
- Ph = Price per one kg honey.
- VLwc = Value of losses as a result of weak colonies;
- Wc = Number of weak colonies;
- Hc = Honey yields per colony;
- Ph = Price per one kg honey.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breeze, T.D.; Bailey, A.P.; Baelcombe, K.G.; Potts, S.G. Pollination services in the UK: How important are honeybees? Agric. Ecosyst. Environ. 2011, 142, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Williams, I.H. The dependence of crop production within the European Union on pollination by honey bees. Agric. Zool. Rev. 1994, 6, 229–257. [Google Scholar]
- Southwick, E.E.; Southwick, L., Jr. Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States. J. Econ. Entomol. 1992, 85, 621–633. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M.A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O.; et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science 2013, 339, 1608–1611. [Google Scholar] [CrossRef]
- Bixby, M.; Hoover, S.E.; McCallum, R.; Ibrahim, A.; Ovinge, L.; Olmstead, S.; Pernal, S.F.; Zayed, A.; Foster, L.J.; Guarna, M.M. Honey bee queen production: Canadian costing case study and profitability analysis. J. Econ. Entomol. 2020, 113, 1618–1627. [Google Scholar] [CrossRef]
- García, N.L. The Current Situation on the International Honey Market. Bee World 2018, 95, 89–94. [Google Scholar] [CrossRef]
- Brodschneider, R.; Moosbeckhofer, R.; Crailsheim, K. Surveys as a tool to record winter losses of honey bee colonies: A two year case study in Austria and South Tyrol. J. Apic. Res. 2010, 49, 23–30. [Google Scholar] [CrossRef]
- Chauzat, M.P.; Cauquil, L.; Roy, L.; Franco, S.; Hendrikx, P.; Ribière-Chabert, M. Demographics of the European apicultural industry. PLoS ONE 2013, 8, e79018. [Google Scholar] [CrossRef] [PubMed]
- Brodschneider, R.; Gray, A.; Adjlane, N.; Ballis, A.; Brusbardis, V.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; Dahle, B.; de Graaf, D.C.; et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J. Apic. Res. 2018, 57, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Kulhanek, K.; Steinhauer, N.; Rennich, K.; Caron, D.M.; Sagili, R.R.; Pettis, J.S.; Ellis, J.D.; Wilson, M.E.; Wilkes, J.T.; Tarpy, D.R.; et al. A national survey of managed honey bee 2015-2016 annual colony losses in the USA. J. Apic. Res. 2017, 56, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.V.; Steinhauer, N.; Rennich, K.; Wilson, M.E.; Tarpy, D.R.; Caron, D.M.; Rose, R.; Delaplane, K.S.; Baylis, K.; Lengerich, E.J.; et al. A national survey of managed honey bee 2013–2014 annual colony losses in the USA. Apidologie 2015, 46, 292–305. [Google Scholar] [CrossRef] [Green Version]
- Pirk, C.W.; Human, H.; Crewe, R.M.; van Engelsdorp, D. A survey of managed honey bee colony losses in the Republic of South Africa—2009 to 2011. J. Apic. Res. 2014, 53, 35–42. [Google Scholar] [CrossRef]
- Requier, F.; Andersson, G.K.S.; Oddi, F.J.; Garcia, N.; Garibaldi, L.A. Perspectives from the Survey of Honey Bee Colony Losses During 2015–2016 in Argentina. Bee World 2018, 95, 9–12. [Google Scholar] [CrossRef]
- Van Engelsdorp, D.; Hayes, J.; Underwood, R.M.; Pettis, J.S. A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. J. Apic. Res. 2010, 49, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Van Engelsdorp, D.; Meixner, M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 2010, 103, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Amdam, G.V.; Hartfelder, K.; Norberg, K.; Hagen, A.; Omholt, S.W. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): A factor in colony loss during overwintering? J. Econ. Entomol. 2004, 97, 741–747. [Google Scholar] [CrossRef]
- Dooremalen, C.; Cornelissen, B.; Poleij-Hok-Ahin, C.; Blacquière, T. Single and interactive effects of Varroa destructor, Nosema spp., and imidacloprid on honey bee colonies (Apis mellifera). Ecosphere 2018, 9, e02378. [Google Scholar] [CrossRef] [Green Version]
- Traynor, K.S.; Mondet, F.; de Miranda, J.R.; Techer, M.; Kowallik, V.; Oddie, M.A.; Chantawannakul, P.; McAfee, A. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 2020, 36, 592–606. [Google Scholar] [CrossRef]
- Morawetz, L.; Köglberger, H.; Griesbacher, A.; Derakhshifar, I.; Crailsheim, K.; Brodschneider, R.; Moosbeckhofer, R. Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PLoS ONE 2019, 14, e0219293. [Google Scholar] [CrossRef]
- Döke, M.A.; Frazier, M.; Grozinger, C.M. Overwintering honey bees: Biology and management. Curr. Opin. Insect Sci. 2015, 10, 185–193. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botías, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Steinmann, N.; Corona, M.; Neumann, P.; Dainat, B. Overwintering is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees. PLoS ONE 2015, e0129956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Zee, R.; Pisa, L.; Andonov, S.; Brodschneider, R.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F.; Crailsheim, K.; Dahle, B.; Gajda, A.; et al. Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008-9 and 2009-10. J. Apic. Res. 2012, 51, 100–114. [Google Scholar] [CrossRef]
- van der Zee, R.; Brodschneider, R.; Brusbardis, V.; Charrière, J.-D.; Chlebo, R.; Coffey, M.F.; Dahle, B.; Drazic, M.M.; Kauko, L.; Kretavicius, J.; et al. Results of international standardised beekeeper surveys of colony losses for winter 2012-2013: Analysis of winter loss rates and mixed effects modelling of risk factors for winter loss. J. Apic. Res. 2014, 53, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Kuchling, S.; Kopacka, I.; Kalcher-Sommersguter, E.; Schwarz, M.; Crailsheim, K.; Brodschneider, R. Investigating the role of landscape composition on honey bee colony winter mortality: A long-term analysis. Sci. Rep. 2018, 8, 12263. [Google Scholar] [CrossRef]
- Jacques, A.; Laurent, M.; Epilobee Consortium Ribière-Chabert, M.; Saussac, M.; Bougeard, S.; Budge, G.E.; Hendrikx, P.; Chauzat, M.P. A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control. PLoS ONE 2017, 12, e0172591. [Google Scholar] [CrossRef] [Green Version]
- Switanek, M.; Crailsheim, K.; Truhetz, H.; Brodschneider, R. Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Sci. Total Environ. 2017, 579, 1581–1587. [Google Scholar] [CrossRef]
- Brodschneider, R.; Brus, J.; Danihlík, J. Comparison of apiculture and winter mortality of honey bee colonies (Apis mellifera) in Austria and Czech Republic. Agric. Ecosyst. Environ. 2019, 274, 24–32. [Google Scholar] [CrossRef]
- Moritz, R.F.A.; Erler, S. Lost colonies found in a data mine: Global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agric. Ecosyst. Environ. 2016, 216, 44–50. [Google Scholar] [CrossRef]
- Jones Ritten, C.; Peck, D.; Ehmke, M.; Patalee, M.B. Firm efficiency and returns-to-scale in the honey bee pollination services industry. J. Econ. Entomol. 2018, 111, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Calderone, N.W. Insect pollinated crops, insect pollinators and US agriculture: Trend analysis of aggregate data for the period 1992-2009. PLoS ONE 2012, 7, e37235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippert, C.; Feuerbacher, A.; Narjes, M. Revisiting the economic valuation of agricultural losses due to large-scale changes in pollinator populations. Ecol. Econ. 2021, 180, 106860. [Google Scholar] [CrossRef]
- Gray, A.; Brodschneider, R.; Adjlane, N.; Ballis, A.; Brusbardis, V.; Charrière, J.D.; Chlebo, R.; FCoffey, M.; Cornelissen, B.; Amaro da Costa, C.; et al. Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. J. Apic. Res. 2019, 58, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Gray, A.; Adjlane, N.; Arab, A.; Ballis, A.; Brusbardis, V.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; Cornelissen, B.; Amaro da Costa, C.; et al. Honey bee colony winter loss rates for 35 countries participating in the COLOSS survey for winter 2018–2019, and the effects of a new queen on the risk of colony winter loss. J. Apic. Res. 2020, 59, 744–751. [Google Scholar] [CrossRef]
- Van der Zee, R.; Gray, A.; Holzmann, C.; Pisa, L.; Brodschneider, R.; Chlebo, R.; Coffey, M.F.; Kence, A.; Kristiansen, P.; Mutinelli, F.; et al. Standard survey methods for estimating colony losses and explanatory risk factors in Apis mellifera. J. Apic. Res. 2013, 52, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Brodschneider, R.; Gray, A.; Van der Zee, R.; Adjlane, N.; Brusbardis, V.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; Crailsheim, K.; Dahle, B.; et al. Preliminary analysis of loss rates of honey bee colonies during winter 2015/16 from the COLOSS survey. J. Apic. Res. 2016, 55, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Grüner Bericht. In Bericht über die Situation der Österreichischen Land- und Forstwirtschaft Im Jahr 2016, 58th ed.; Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Vienna, Austria, 2017.
- Krejčík, P. Situační a Výhledová Zpráva Včely, Ministery of Agriculture, Czech Republic, November 2017. Available online: http://eagri.cz/public/web/file/578792/SVZ_Vcely_2017_A4_final.pdf (accessed on 26 April 2021).
- Ministry of Agriculture, Forestry and Water Economy, Yearly Agriculture Report, 2016, Skopje. Available online: http://www.mzsv.gov.mk/CMS/Upload/docs/jdi/%D0%93%D0%BE%D0%B4%D0%B8%D1%88%D0%B5%D0%BD%20%D0%B7%D0%B5%D0%BC%D1%98%D0%BE%D0%B4%D0%B5%D0%BB%D1%81%D0%BA%D0%B8%20%D0%B8%D0%B7%D0%B2%D0%B5%D1%88%D1%82%D0%B0%D1%98%20%202016.pdf (accessed on 26 April 2021).
- Murphy, M.; Cowan, C.; Henchion, M.; O’Reilly, S. Irish consumer preferences for honey: A conjointapproach. Br. Food J. 2000, 102, 585–598. [Google Scholar] [CrossRef]
- Brščić, K.; Šugar, T.; Poljuha, D. An empirical examination of consumer preferences for honey in Croatia. Appl. Econ. 2017, 49, 5877–5889. [Google Scholar] [CrossRef]
- Champetier, A.; Sumner, D.A.; Wilen, J.E. The bioeconomics of honey bees and pollination. Environ. Resour. Econ. 2015, 60, 143–164. [Google Scholar] [CrossRef]
- Lee, H.; Sumner, D.A.; Champetier, A. Pollination markets and the coupled futures of almonds and honey bees: Simulating Impacts of shifts in demands and costs. Am. J. Agric. Econ. 2019, 101, 230–249. [Google Scholar] [CrossRef] [Green Version]
- Rucker, R.R.; Thurman, W.N.; Burgett, M. Honey bee pollination markets and the internalisation of reciprocal benefits. Am. J. Agric. Econ. 2012, 94, 956–977. [Google Scholar] [CrossRef]
- Rucker, R.R.; Thurman, W.N.; Burgett, M. Colony Collapse: The Economic Consequences of Bee Disease; Montana State University, Department of Agricultural Economics and Economics: Bozeman, MT, USA, 2011. [Google Scholar]
- Noël, A.; Le Conte, Y.; Mondet, F. Varroa destructor: How does it harm Apis mellifera honey bees and what can be done about it? Emerg. Top. Life Sci. 2020, 4, 45–57. [Google Scholar]
- van der Steen, J.; Vejsnæs, F. Varroa Control: A Brief Overview of Available Methods. Bee World 2021, 98, 50–56. [Google Scholar] [CrossRef]
- Mancuso, T.; Croce, L.; Vercelli, M. Total Brood Removal and Other Biotechniques for the Sustainable Control of Varroa Mites in Honey Bee Colonies: Economic Impact in Beekeeping Farm Case Studies in Northwestern Italy. Sustainability 2020, 12, 2302. [Google Scholar] [CrossRef] [Green Version]
- Vercelli, M.; Croce, L.; Mancuso, T. An Economic Approach to Assess the Annual Stock in Beekeeping Farms: The Honey Bee Colony Inventory Tool. Sustainability 2020, 12, 9258. [Google Scholar] [CrossRef]
- Escuredo, O.; Rodríguez-Flores, M.S.; Rojo-Martínez, S.; Seijo, M.C. Contribution to the Chromatic Characterization of Unifloral Honeys from Galicia (NW Spain). Foods 2019, 8, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rucker, R.R.; Thurman, W.N.; Burgett, M. Colony Collapse and the Consequences of Bee Disease: Market Adaptation to Environmental Change. J. Assoc. Environ. Resour. Econ. 2019, 6, 927–960. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Water Economy, Yearly Agriculture Report, 2017, Skopje. Available online: http://www.mzsv.gov.mk/cms/Upload/docs/GZI-2017.pdf (accessed on 26 April 2021).
- Český Svaz Včelařů, OBĚŽNÍK 3/2016, Praha. Available online: https://www.vcelarstvi.cz/dokumenty-cms/obeznik-3-2016.pdf (accessed on 26 April 2021).
- Potts, S.G.; Roberts, S.P.; Dean, R.; Marris, G.; Brown, M.A.; Jones, R.; Neumann, P.; Settele, J. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 2010, 49, 15–22. [Google Scholar] [CrossRef]
- Steinhauer, N.; van Engelsdorp, D.; Saegerman, C. Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. Sci. Total Environ. 2020, 753, 141629. [Google Scholar] [CrossRef]
- Kulhanek, K.; Steinhauer, N.; Wilkes, J.; Wilson, M.; Spivak, M.; Sagili, R.R.; Tarpy, D.R.; McDermott, E.; Garavito, A.; Rennich, K.; et al. Survey-derived best management practices for backyard beekeepers improve colony health and reduce mortality. PLoS ONE 2021, 16, e0245490. [Google Scholar] [CrossRef]
- Büchler, R.; Costa, C.; Hatjina, F.; Andonov, S.; Meixner, M.D.; Conte, Y.L.; Uzunov, A.; Berg, S.; Bienkowska, M.; Bouga, M. The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe. J. Apic. Res. 2014, 53, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Ilyasov, R.A.; Lee, M.L.; Yunusbaev, U.; Nikolenko, A.; Kwon, H.W. Estimation of C-derived introgression into A. m. mellifera colonies in the Russian Urals using microsatellite genotyping. Genes Genom. 2020, 42, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Meixner, M.D.; Uzunov, A. Genotype-environment-interactions and the occurrence of honey bee diseases affect the survival of honey bee colonies-summary from a pan-European experiment. Berl. Münch. Tierärztl. 2019, 132, 16–25. [Google Scholar]
- Uzunov, A.; Brascamp, E.W.; Büchler, R. The basic concept of honey bee breeding programs. Bee World 2017, 94, 84–87. [Google Scholar] [CrossRef]
- Moro, A.; Blacquière, T.; Panziera, D.; Dietemann, V.; Neumann, P. Host-Parasite Co-Evolution in Real-Time: Changes in Honey Bee Resistance Mechanisms and Mite Reproductive Strategies. Insects 2021, 12, 120. [Google Scholar] [CrossRef]
- Oddie, M.A.Y.; Dahle, B. Insights from Norway: Using Natural Adaptation to Breed Varroa-Resistant Honey Bees. Bee World 2021, 98, 38–43. [Google Scholar] [CrossRef]
- Hawkins, G.P.; Martin, S.J. Elevated recapping behaviour and reduced Varroa destructor reproduction in natural Varroa resistant Apis mellifera honey bees from the UK. Apidologie 2021. [Google Scholar] [CrossRef]
- Kovačić, M.; Puškadija, Z.; Dražić, M.M.; Uzunov, A.; Meixner, M.D.; Büchler, R. Effects of selection and local adaptation on resilience and economic suitability in Apis mellifera carnica. Apidologie 2020, 51, 1062–1073. [Google Scholar] [CrossRef]
- Büchler, R.; Uzunov, A.; Kovačić, M.; Prešern, J.; Pietropaoli, M.; Hatjina, F.; Pavlov, B.; Charistos, L.; Formato, G.; Galarza, E.; et al. Summer brood interruption as integrated management strategy for effective Varroa control in Europe. J. Apic. Res. 2020, 59, 764–773. [Google Scholar] [CrossRef]
- Eurbest. Restructuring of the Honey Bee Chain and Varroa Resistance Breeding & Selection Programme. A Pilot Study Comparing Varroa Resistant Bees under Commercial Beekeeping Conditions. Available online: https://www.eurbest.eu/resources/Leaflet/EurBeST-leaflet-en.pdf (accessed on 23 April 2021).
Number of Colonies Per Beekeeping Operation | AT | CZ | MK | Total |
---|---|---|---|---|
Up to 10 colonies | 821 | 529 | 33 | 1383 |
(52%) | (47%) | (11%) | (46.3%) | |
11 to 20 | 381 | 284 | 32 | 697 |
(24%) | (25%) | (10%) | (23.2%) | |
21 to 50 | 265 | 224 | 107 | 596 |
(17%) | (20%) | (35%) | (20.0%) | |
51 to 100 | 67 | 53 | 91 | 211 |
(4%) | (5%) | (30%) | (7.0%) | |
101 to 150 | 19 | 17 | 29 | 65 |
(1%) | (2%) | (10%) | (2.1%) | |
More than 150 colonies | 17 | 11 | 13 | 41 |
(1%) | (1%) | (4%) | (1.4%) | |
Total | 1570 | 1118 | 305 | 2993 |
(100%) | (100%) | (100%) | (100%) |
Number of Colonies Per Beekeeping Operation | Up to 10 | 11 to 20 | 21 to 50 | 51 to 100 | 101 to 150 | >150 | Average | |
---|---|---|---|---|---|---|---|---|
AT | Average no. of lost colonies per beekeeping operation | 1.23 | 3.17 | 6.64 | 13.46 | 18.84 | 77.47 | 4.18 |
Average no. of weak colonies per beekeeping operation | 0.79 | 2.46 | 4.47 | 8.91 | 10.05 | 45.35 | 2.76 | |
Average price of one colony in EUR | 150.00 | |||||||
Average honey yields in kg per colony | 14.00 | |||||||
Honey price EUR per kg | 12.00 | |||||||
Number of colonies in country (2016) | 354,080 | |||||||
Loss rate 2016/2017 (%) | 21.1 | |||||||
CZ | Average no. of lost colonies per beekeeping operation | 0.54 | 1.45 | 3.93 | 8.43 | 15.00 | 23.82 | 2.28 |
Average no. of weak colonies per beekeeping operation | 0.42 | 1.02 | 2.07 | 3.66 | 5.94 | 13.00 | 1.27 | |
Average price of one colony in EUR | 90.88 | |||||||
Average honey yields in kg per colony | 15.12 | |||||||
Honey price EUR per kg | 7.84 | |||||||
Number of colonies in country (2016) | 693,069 | |||||||
Loss rate 2016/2017 (%) | 11.2 | |||||||
MK | Average no. of lost colonies per beekeeping operation | 2.55 | 4.53 | 10.07 | 13.75 | 24.48 | 19.54 | 11.54 |
Average no. of weak colonies per beekeeping operation | 1.55 | 3.00 | 6.28 | 6.88 | 17.24 | 11.15 | 6.85 | |
Average price of one colony in EUR | 77.17 | 77.63 | 72.31 | 78.43 | 74.90 | 83.56 | 76.16 | |
Average honey yields in kg per colony | 9.49 | 8.39 | 8.27 | 8.43 | 7.06 | 10.95 | 8.29 | |
Honey price EUR per kg | 5.29 | 5.61 | 5.52 | 5.44 | 5.26 | 4.90 | 5.38 | |
Number of colonies in country (2016) | 101,669 | |||||||
Loss rate 2016/2017 (%) | 20.3 |
Number of Colonies Per Beekeeping Operation | AT (EUR) | CZ (EUR) | MK (EUR) |
---|---|---|---|
Up to 10 colonies | 430,848 | 86,661 | 13,261 |
11 to 20 | 542,046 | 121,030 | 22,606 |
21 to 50 | 758,760 | 239,376 | 157,711 |
51 to 100 | 387,132 | 116,648 | 184,223 |
101 to 150 | 145,932 | 65,397 | 98,089 |
More than 150 colonies | 548,334 | 71,845 | 42,616 |
Total losses from lost colonies | 2,085,444 | 533,133 | 422,696 |
Total losses from weak colonies | 727,608 | 167,823 | 95,811 |
Total losses | 2,813,052 | 700,955 | 518,507 |
Number of Colonies Per Beekeeping Operations | AT | CZ | MK |
---|---|---|---|
Up to 10 colonies | 525 | 164 | 402 |
11 to 20 | 1423 | 426 | 706 |
21 to 50 | 2863 | 1069 | 1474 |
51 to 100 | 5778 | 2201 | 2024 |
101 to 150 | 7681 | 3847 | 3382 |
More than 150 colonies | 32,255 | 6531 | 3278 |
Average losses per beekeeping operation based on the loss rates for 2016/2017 | 1792 | 627 | 1700 |
Type of Economic Losses | AT | CZ | MK |
---|---|---|---|
Losses per one lost colony | 318 | 209 | 120 |
Losses per one weak colony | 168 | 119 | 46 |
Losses per colony before winter starts | 90 | 31 | 30 |
Estimated national total economic loss | 32,031,305 | 21,400,401 | 3,038,741 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popovska Stojanov, D.; Dimitrov, L.; Danihlík, J.; Uzunov, A.; Golubovski, M.; Andonov, S.; Brodschneider, R. Direct Economic Impact Assessment of Winter Honeybee Colony Losses in Three European Countries. Agriculture 2021, 11, 398. https://doi.org/10.3390/agriculture11050398
Popovska Stojanov D, Dimitrov L, Danihlík J, Uzunov A, Golubovski M, Andonov S, Brodschneider R. Direct Economic Impact Assessment of Winter Honeybee Colony Losses in Three European Countries. Agriculture. 2021; 11(5):398. https://doi.org/10.3390/agriculture11050398
Chicago/Turabian StylePopovska Stojanov, Despina, Lazo Dimitrov, Jiří Danihlík, Aleksandar Uzunov, Miroljub Golubovski, Sreten Andonov, and Robert Brodschneider. 2021. "Direct Economic Impact Assessment of Winter Honeybee Colony Losses in Three European Countries" Agriculture 11, no. 5: 398. https://doi.org/10.3390/agriculture11050398
APA StylePopovska Stojanov, D., Dimitrov, L., Danihlík, J., Uzunov, A., Golubovski, M., Andonov, S., & Brodschneider, R. (2021). Direct Economic Impact Assessment of Winter Honeybee Colony Losses in Three European Countries. Agriculture, 11(5), 398. https://doi.org/10.3390/agriculture11050398