Functional Analysis of the Lupinus luteus Cyclophilin Gene Promoter Region in Lotus japonicus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fusion of LlCyP Promoter Deletion Fragments to GUS Reporter Gene
2.2. Construction of LlCyP Promoter Mutants by Site-Directed Mutagenesis
2.3. L. japonicus Transformation and Inoculation of Composite Plants
2.4. Histochemical GUS Analysis
3. Results
3.1. In-Silico Analysis of the LlCyP Promoter Sequence
3.2. Deletion Analysis of LlCyP 5′ Regulatory Region in Composite Plants
3.3. LlCyP Promoter Activity in L. japonicus Nodules
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Handschumacher, R.E.; Harding, M.W.; Rice, J.; Drugge, R.J.; Speicher, D.W. Cyclophilin: A Specific Cytosolic Binding Protein for Cyclosporin A. Science 1984, 226, 544–547. [Google Scholar] [CrossRef]
- Kinoshita, T.; Shimazaki, K. Characterization of Cytosolic Cyclophilin from Guard Cells of Vicia Faba L. Plant Cell Physiol. 1999, 40, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mi, H.; Kops, O.; Zimmermann, E.; Jäschke, A.; Tropschug, M. A Nuclear RNA-Binding Cyclophilin in Human T Cells. FEBS Lett. 1996, 398, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Arévalo-Rodríguez, M.; Heitman, J. Cyclophilin A Is Localized to the Nucleus and Controls Meiosis in Saccharomyces Cerevisiae. Eukaryot. Cell 2005, 4, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rassow, J.; Mohrs, K.; Koidl, S.; Barthelmess, I.B.; Pfanner, N.; Tropschug, M. Cyclophilin 20 Is Involved in Mitochondrial Protein Folding in Cooperation with Molecular Chaperones Hsp70 and Hsp60. Mol. Cell. Biol. 1995, 15, 2654–2662. [Google Scholar] [CrossRef] [Green Version]
- Fulgosi, H.; Vener, A.V.; Altschmied, L.; Herrmann, R.G.; Andersson, B. A Novel Multi-Functional Chloroplast Protein: Identification of a 40 KDa Immunophilin-like Protein Located in the Thylakoid Lumen. EMBO J. 1998, 17, 1577–1587. [Google Scholar] [CrossRef] [Green Version]
- Price, E.R.; Zydowsky, L.D.; Jin, M.J.; Baker, C.H.; McKeon, F.D.; Walsh, C.T. Human Cyclophilin B: A Second Cyclophilin Gene Encodes a Peptidyl-Prolyl Isomerase with a Signal Sequence. Proc. Natl. Acad. Sci. USA 1991, 88, 1903–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Heitman, J. The Cyclophilins. Genome Biol. 2005, 6, 226. [Google Scholar] [CrossRef] [Green Version]
- Nagy, P.D.; Wang, R.Y.; Pogany, J.; Hafren, A.; Makinen, K. Emerging Picture of Host Chaperone and Cyclophilin Roles in RNA Virus Replication. Virology 2011, 411, 374–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zhao, Z.; Xu, C.; Sun, L.; Chen, J.; Zhang, L.; Liu, W. Cyclophilin A Restricts Influenza A Virus Replication through Degradation of the M1 Protein. PLoS ONE 2012, 7, e31063. [Google Scholar] [CrossRef]
- Bosco, D.A.; Eisenmesser, E.Z.; Pochapsky, S.; Sundquist, W.I.; Kern, D. Catalysis of Cis/Trans Isomerization in Native HIV-1 Capsid by Human Cyclophilin A. Proc. Natl. Acad. Sci. USA 2002, 99, 5247–5252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brass, A.L.; Dykxhoorn, D.M.; Benita, Y.; Yan, N.; Engelman, A.; Xavier, R.J.; Lieberman, J.; Elledge, S.J. Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen. Science 2008, 319, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Solbak, S.M.Ø.; Reksten, T.R.; Röder, R.; Wray, V.; Horvli, O.; Raae, A.J.; Henklein, P.; Henklein, P.; Fossen, T. HIV-1 P6—Another Viral Interaction Partner to the Host Cellular Protein Cyclophilin A. Biochim. Et Biophys. Acta (BBA) Proteins Proteom. 2012, 1824, 667–678. [Google Scholar] [CrossRef]
- Andreeva, L.; Heads, R.; Green, C.J. Cyclophilins and Their Possible Role in the Stress Response. Int. J. Exp. Pathol. 1999, 80, 305–315. [Google Scholar] [CrossRef]
- Lin, D.-T.; Lechleiter, J.D. Mitochondrial Targeted Cyclophilin D Protects Cells from Cell Death by Peptidyl Prolyl Isomerization. J. Biol. Chem. 2002, 277, 31134–31141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pushkarsky, T.; Yurchenko, V.; Vanpouille, C.; Brichacek, B.; Vaisman, I.; Hatakeyama, S.; Nakayama, K.I.; Sherry, B.; Bukrinsky, M.I. Cell Surface Expression of CD147/EMMPRIN Is Regulated by Cyclophilin 60. J. Biol. Chem. 2005, 280, 27866–27871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuc, K.; Lesniewicz, K.; Nuc, P.; Slomski, R. Yellow Lupine Cyclophilin Interacts with Nucleic Acids. Protein Pept. Lett. 2008, 15, 719–723. [Google Scholar] [CrossRef]
- Trivedi, D.K.; Ansari, M.W.; Tuteja, N. Multiple Abiotic Stress Responsive Rice Cyclophilin: (OsCYP-25) Mediates a Wide Range of Cellular Responses. Commun. Integr. Biol. 2013, 6, e25260. [Google Scholar] [CrossRef]
- Bannikova, O.; Zywicki, M.; Marquez, Y.; Skrahina, T.; Kalyna, M.; Barta, A. Identification of RNA Targets for the Nuclear Multidomain Cyclophilin AtCyp59 and Their Effect on PPIase Activity. Nucleic Acids Res. 2013, 41, 1783–1796. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Jørgensen, J.-E.; Stougaard, J.; Marcker, K.A. Hairy Roots—A Short Cut to Transgenic Root Nodules. Plant Cell Rep. 1989, 8, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Stiller, J.; Martirani, L.; Tuppale, S.; Chian, R.-J.; Chiurazzi, M.; Gresshoff, P.M. High Frequency Transformation and Regeneration of Transgenic Plants in the Model Legume Lotus Japonicus. J. Exp. Bot 1997, 48, 1357–1365. [Google Scholar] [CrossRef] [Green Version]
- Romano, P.G.N.; Horton, P.; Gray, J.E. The Arabidopsis Cyclophilin Gene Family. Plant Physiol. 2004, 134, 1268–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuc, K.; Nuc, P.; Słomski, R. Yellow Lupine Cyclophilin Transcripts Are Highly Accumulated in the Nodule Meristem Zone. MPMI 2001, 14, 1384–1394. [Google Scholar] [CrossRef]
- Ahn, J.C.; Kim, D.-W.; You, Y.N.; Seok, M.S.; Park, J.M.; Hwang, H.; Kim, B.-G.; Luan, S.; Park, H.-S.; Cho, H.S. Classification of Rice (Oryza Satival. Japonica Nipponbare) Immunophilins (FKBPs, CYPs) and Expression Patterns under Water Stress. BMC Plant Biol. 2010, 10, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trupkin, S.A.; Mora-García, S.; Casal, J.J. The Cyclophilin ROC1 Links Phytochrome and Cryptochrome to Brassinosteroid Sensitivity. Plant J. 2012, 71, 712–723. [Google Scholar] [CrossRef]
- Strozycki, P.M.; Szczurek, A.; Lotocka, B.; Figlerowicz, M.; Legocki, A.B. Ferritins and Nodulation in Lupinus Luteus: Iron Management in Indeterminate Type Nodules. J. Exp. Bot. 2007, 58, 3145–3153. [Google Scholar] [CrossRef] [Green Version]
- Łotocka, B. Vascular System within Developing Root Nodules of Lupinus Luteus L. Part 1. Juvenile Stage. Acta Biol. Crac. Ser. Bot. 2008, 50, 89–103. [Google Scholar]
- Jiang, Q.; Gresshoff, P.M. Classical and Molecular Genetics of the Model Legume Lotus Japonicus. MPMI 1997, 10, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mun, T.; Bachmann, A.; Gupta, V.; Stougaard, J.; Andersen, S.U. Lotus Base: An Integrated Information Portal for the Model Legume Lotus Japonicus. Sci. Rep. 2016, 6, 39447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boisson-Dernier, A.; Chabaud, M.; Garcia, F.; Bécard, G.; Rosenberg, C.; Barker, D.G. Agrobacterium Rhizogenes-Transformed Roots of Medicago Truncatula for the Study of Nitrogen-Fixing and Endomycorrhizal Symbiotic Associations. MPMI 2001, 14, 695–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higo, K.; Ugawa, Y.; Iwamoto, M.; Korenaga, T. Plant Cis-Acting Regulatory DNA Elements (PLACE) Database: 1999. Nucleic Acids Res. 1999, 27, 297–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulmasov, T.; Liu, Z.-B.; Hagen, G.; Guilfoyle, T.J. Composite Structure of Auxin Response Elements. Plant Cell 1995, 7, 1611–1623. [Google Scholar]
- Ulmasov, T.; Murfett, J.; Hagen, G.; Guilfoyle, T.J. Aux/IAA Proteins Repress Expression of Reporter Genes Containing Natural and Highly Active Synthetic Auxin Response Elements. Plant Cell 1997, 9, 1963–1971. [Google Scholar]
- Abe, H.; Yamaguchi-Shinozaki, K.; Urao, T.; Iwasaki, T.; Hosokawa, D.; Shinozaki, K. Role of Arabidopsis MYC and MYB Homologs in Drought- and Abscisic Acid-Regulated Gene Expression. Plant Cell 1997, 9, 1859–1868. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Wang, L.; Wang, H.; Yu, G.; Bai, Y.; Liu, M. Specific Expression of a Novel Nodulin GmN479 Gene in the Infected Cells of Soybean (Glycine Max) Nodules. Agric. Sci. China 2011, 10, 1512–1524. [Google Scholar] [CrossRef]
- Stougaard, J.; Sandal, N.N.; Grøn, A.; Kühle, A.; Marcker, K.A. 5′ Analysis of the Soybean Leghaemoglobin Lbc3 Gene: Regulatory Elements Required for Promoter Activity and Organ Specificity. EMBO J. 1987, 6, 3565–3569. [Google Scholar] [CrossRef] [PubMed]
- Stougaard, J.; Jørgensen, J.-E.; Christensen, T.; Kühle, A.; Marcker, K.A. Interdependence and Nodule Specificity of Cis-Acting Regulatory Elements in the Soybean Leghemoglobin Lbc3 and N23 Gene Promoters. Mol. Gen. Genet. 1990, 220, 353–360. [Google Scholar] [CrossRef]
- Frugier, F.; Kosuta, S.; Murray, J.D.; Crespi, M.; Szczyglowski, K. Cytokinin: Secret Agent of Symbiosis. Trends Plant Sci. 2008, 13, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Ramlov, K.B.; Laursen, N.B.; Stougaard, J.; Marcker, K.A. Site-Directed Mutagenesis of the Organ-Specific Element in the Soybean Leghemoglobin Ibc3 Gene Promoter. Plant J. 1993, 4, 577–580. [Google Scholar] [CrossRef]
- Grønlund, M.; Roussis, A.; Flemetakis, E.; Quaedvlieg, N.E.M.; Schlaman, H.R.M.; Umehara, Y.; Katinakis, P.; Stougaard, J.; Spaink, H.P. Analysis of Promoter Activity of the Early Nodulin Enod40 in Lotus Japonicus. MPMI 2005, 18, 414–427. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, B.J.; Indrasumunar, A.; Hayashi, S.; Lin, M.-H.; Lin, Y.-H.; Reid, D.E.; Gresshoff, P.M. Molecular Analysis of Legume Nodule Development and Autoregulation. J. Integr. Plant Biol. 2010, 52, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Suzaki, T.; Yano, K.; Ito, M.; Umehara, Y.; Suganuma, N.; Kawaguchi, M. Positive and Negative Regulation of Cortical Cell Division during Root Nodule Development in Lotus Japonicus Is Accompanied by Auxin Response. Development 2013, 139, 3997–4006. [Google Scholar] [CrossRef] [Green Version]
- Sańko-Sawczenko, I.; Dmitruk, D.; Łotocka, B.; Różańska, E.; Czarnocka, W. Expression Analysis of PIN Genes in Root Tips and Nodules of Lotus Japonicus. Int. J. Mol. Sci. 2019, 20, 235. [Google Scholar] [CrossRef] [Green Version]
- Verma, D.P.S.; Hu, C.-A.; Zhang, M. Root Nodule Development: Origin, Function and Regulation of Nodulin Genes. Physiol. Plant. 1992, 85, 253–265. [Google Scholar] [CrossRef]
- Brewin, N.J. Plant Cell Wall Remodelling in the Rhizobium–Legume Symbiosis. Crit. Rev. Plant Sci. 2004, 23, 293–316. [Google Scholar] [CrossRef]
- Arsenijevic-Maksimovic, I.; Broughton, W.J.; Krause, A. Rhizobia Modulate Root-Hair-Specific Expression of Extensin Genes. MPMI 1997, 10, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Ying, W.; Weijun, M.; Chengye, L.; Mingyong, Z. Advances on Studies on Plant Promoters. Acta Bot. Boreali Occident. Sin. 2003, 23, 2040–2048. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuc, K.; Olejnik, P.; Samardakiewicz, M.; Nuc, P. Functional Analysis of the Lupinus luteus Cyclophilin Gene Promoter Region in Lotus japonicus. Agriculture 2021, 11, 435. https://doi.org/10.3390/agriculture11050435
Nuc K, Olejnik P, Samardakiewicz M, Nuc P. Functional Analysis of the Lupinus luteus Cyclophilin Gene Promoter Region in Lotus japonicus. Agriculture. 2021; 11(5):435. https://doi.org/10.3390/agriculture11050435
Chicago/Turabian StyleNuc, Katarzyna, Przemysław Olejnik, Mirella Samardakiewicz, and Przemysław Nuc. 2021. "Functional Analysis of the Lupinus luteus Cyclophilin Gene Promoter Region in Lotus japonicus" Agriculture 11, no. 5: 435. https://doi.org/10.3390/agriculture11050435
APA StyleNuc, K., Olejnik, P., Samardakiewicz, M., & Nuc, P. (2021). Functional Analysis of the Lupinus luteus Cyclophilin Gene Promoter Region in Lotus japonicus. Agriculture, 11(5), 435. https://doi.org/10.3390/agriculture11050435