Evaluation of Nutritive Values through Comparison of Forage Yield and Silage Quality of Mono-Cropped and Intercropped Maize-Soybean Harvested at Two Maturity Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Treatments and Design
2.3. Plant Sampling and Fodder Production
2.4. Silage Preparation
2.5. Determination of Nutritional Values of Green Fodder and Silage
2.6. Statistical Analysis
3. Results
3.1. Fresh Biomass Yield
3.2. Dry Matter Yield
3.3. Crude Protein Yield
3.4. Scatterplot Matrix Analysis of Maize and Maize-Soybean Intercrop Fodders
3.5. Proximate Composition of Fodder
3.6. Fermentation Quality, Proximate, and Mineral Compositions of Silages
3.7. Correlation Analysis of Nutritional and Fermentational Compositions of Forage and Silage of Maize and Intercropped Maize-Soybean
4. Discussion
4.1. Comparison of Green Fodder, Dry Matter, and Crude Protein Yield of Intercropped Forage
4.2. Proximate and Nutrient Composition of Intercropped Forage and Silage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khatun, M.J.; Islam, M.R.; Khan, M.K.I.; Ebrahimi, M. Effects of nitrogen on growth, fodder yield and silage of maize and jumbo fodder with cowpea as inter cropping. Forage Res. 2016, 42, 82–89. [Google Scholar]
- Bilal, A.K.; Adnan, M.; Rehman, F.U.; Hasnain, A.; Usman, M.; Javed, M.S.; Aziz, A.; Ahmad, R. Role of silage in agriculture: A Review. Green Rep. 2021, 2, 9–12. [Google Scholar]
- Ivan, H.; Svečnjak, Z.; Maćešić, D.; Jareš, D.; Uher, D. Influence of intercropping maize with cowpea and fertilization with clinoptilolite on forage yield and quality. J. Environ. Sci. Eng. 2018, 7, 337–343. [Google Scholar]
- Uher, D.; Svečnjak, Z.; Svečnjak, Z.; Dujmović-Purgar, D.; Jareš, D.; Horvatić, I. Influence of intercropping maize with climbing bean on forage yield and quality. Agro. Intel. J. 2019, 4, 60–67. [Google Scholar]
- Artabandhu, S. Silage for Climate Resilient Small Ruminant Production. 2018. Available online: https://www.intechopen.com/books/ruminants-the-husbandry-economic-and-health-aspects/silage-for-climate-resilient-small-ruminant-production (accessed on 25 April 2018).
- Amole, T.A.; Oduguwa, B.O.; Jolaosho, A.O.; Arigbede, M.O.; Olanite, J.A.; Dele, P.A.; Ojo, V.O.A. Nutrient composition and forage yield, nutritive quality of silage produced from maize-lablab mixture. Mal. J. Anim. Sci. 2013, 16, 45–61. [Google Scholar] [CrossRef]
- Costa, P.M.; Villela, S.D.J.; Leonel, F.D.P.; Araújo, K.G.; Ruas, J.R.M.; Coelho, F.S.; Andrade, V.R. Intercropping of corn, brachiaria grass and leguminous plants: Productivity, quality and composition of silages. Rev. Bras. Zootec. Braz. 2012, 41, 2144–2149. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Li, C.J.; Zhang, C.C.; Yu, Y.; van der Werf, W.; Zhang, F.S. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Res. 2020, 246, 107661. [Google Scholar] [CrossRef]
- Zhang, G.G.; Yang, Z.B.; Dong, S.T. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Res. 2011, 124, 66–73. [Google Scholar] [CrossRef]
- Zhu, Y.; Bai, C.S.; Guo, X.S.; Xue, Y.L.; Ataku, K. Nutritive value of corn silage in mixture with vine peas. Anim. Prod. Sci. 2011, 51, 1117–1122. [Google Scholar] [CrossRef]
- Javanmard, A.; Machiani, M.A.; Lithourgidis, A.; Morshedloo, M.R.; Ostadi, A. Intercropping of maize with legumes: A cleaner strategy for improving the quantity and quality of forage. Clean. Eng. Technol. 2020, 1, 100003. [Google Scholar] [CrossRef]
- John, B.H.; Willian, W.S.; Scott, M.B. Nutritional and Feeding of the Cow-Calf Herd: Essential Nutrients, Feed Classification and Nutrient Content of Feeds. In Virginia Cooperative Extension; Verginia State Universiy: Petersburg, VA, USA, 2016. [Google Scholar]
- Mulugeta, K. Conference: Review on Factors Affecting Rumen Microbial Protein Sysnthesis. Ethiopia. 2020. Available online: https://www.researchgate.net/publication/345319365_Review_on_factors_affecting_rumen_microbial-protein_synthesis (accessed on 15 November 2020).
- Altinok, S.; Genc, A.; Erdogdu, I. The determination of silage quality of the silages made by corn and soybean grown in different cropping systems. In Proceedings of the 6th Turkish National Field Crops Congress, Antalya, Turkey, 5–9 September 2005; pp. 1011–1016. [Google Scholar]
- Contreras-Govea, F.E.; Muck, R.E.; Armstrong, K.L.; Albrecht, K.A. Nutritive value of corn silage in mixture with climbing beans. Anim. Feed. Sci. Technol. 2009, 150, 1–8. [Google Scholar] [CrossRef]
- Salawu, M.B.; Adesogan, A.T.; Weston, C.N.; Williams, S.P. Dry matter yield and nutritive value of pea/wheat bi-crops differing in maturity at harvest, pea to wheat ration and pea variety. Anim. Feed. Sci. Technol. 2001, 94, 77–87. [Google Scholar] [CrossRef]
- Gaile, Z. The role of maize harvest timing for high-quality silage production. Latv. Lauksaimn. Univ.-Raksti 2010, 25, 116–128. [Google Scholar]
- Marius, B.; Suyash, V. Quality Silage Making: Specific Reference to Maize Silage. 2019. Available online: https://www.trouwnutrition.in/news/quality-silage-making-specific-reference-to-maize-silage/1604851 (accessed on 10 July 2019).
- Kashif, A.; Wang, W.Y.; Ahmad, K.; Ren, G.X.; Sajjad, Z.; Tanveer, A.S.; Feng, Y.Z.; Yang, G.H. Straw mulching with fertilizer nitrogen: An approach for improving crop yield, soil nutrients and enzyme activities. Soil Use Manag. 2019, 35, 526–535. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis; Scientific Publishers: Jodhpur, India, 2017; p. 368. Available online: https://www.abebooks.com/book-search/title/soil-and-plant-analysis/author/piper-c-s (accessed on 22 January 2019).
- Htet, M.N.S.; Soomro, R.N.; Bo, H.J. Effects of different planting pattern of maize (Zea mays L.) and soybean (Glycine max (L.) Merrill) intercropping in resource consumption on fodder yield, and silage quality. Am. J. Plant. Sci. 2017, 8, 666–679. [Google Scholar] [CrossRef] [Green Version]
- AOAC (Official Methods of Analysis), 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000.
- Matsoukis, A.D.; Chronopoulou-Sereli, G. Environmental conditions and drenched-applied paclobutrazol effects on lantana specific leaf area and N, P, K and Mg content. Chil. J. Agric. Res. 2014, 74, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Park, L.A.J.; Phipps, R.H. The potential of forage-maize intercrops in ruminant nutrition. Anim. Feed. Sci. Technol. 2000, 85, 157–164. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Murphy, R.P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J. Sci. Food Agric. 2010, 9, 714–717. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- He, L.; Zhou, W.; Wang, Y.; Wang, C.; Chen, X.; Zhang, Q. Effect of applying lactic acid bacteria and cellulose on the fermentation quality, nutritive value, tannins profile and in vitro digestibility of Neolamarckia cadamba leaves silage. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1429–1436. [Google Scholar] [CrossRef]
- Geren, H.; Avcioglu, R.; Soya, H.; Kir, B. Intercropping of corn with cowpea and bean biomass yield and silage quality. Afr. J. Biotechnol. 2008, 22, 4100–4104. [Google Scholar]
- Htet, M.N.S.; Ping, Y.Q.; Xu, Y.D.; Rab, N.S.; Hai, J.B. Effect of intercropping maize (Zea mays L.) with soybean (Glycine max L.) on green forage yield, and quality evaluation. J. Agric. Vet. Sci. 2016, 12, 59–63. [Google Scholar]
- Gou, F.; Van Ittersum, M.K.; Simon, E.; Leffelaar, P.A.; van der Putten, P.E.L. Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. Eur. J. Agron. 2017, 84, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Rahman, T.; Yang, F.; Song, C.; Yong, T.W. PAR Interception and Utilization in Different Maize and Soybean Intercropping Patterns. PLoS ONE 2017, 12, e0169218. [Google Scholar] [CrossRef]
- Mahapatra, S.C. Study of grass-legume intercropping system in terms of competition indices and monetary advantage index under acid lateritic soil of India. Am. J. Exp. Agric. 2011, 1, 1–6. [Google Scholar] [CrossRef]
- Eskandari, H. Intercropping of wheat (Triticum aestivum) and bean (Vicia faba): Effects of complementarity and competition of intercrop components in resources consumption on dry matter production and weed growth. Afr. J. Biotechnol. 2011, 10, 17755–17762. [Google Scholar]
- Nkosi, O.O. Response of soybean to intercropping with maize in a sub-humid tropical environment. J. Trop. Oilseeds 2016, 1, 27–33. [Google Scholar]
- Hunady, I.; Hochman, M. Potential of Legume-Cereal Intercropping for Increasing Yields and Yield Stability for Self-Sufficiency with Animal Fodder in Organic farming. Czech. J. Genet. Plant. Breed. 2014, 50, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, K.; Yousefi, A.R.; Oveisi, M. Effect of cowpea (Vigna unguiculata) intercropping on weed biomass and maize (Zea mays) yield. N. Z. J.Crop Hortic. Sci. 2013, 41, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Kizilsimsek, M.; GünAydın, T.; Aslan, A.; Keklik, K.; Açıkgöz, H. Improving Silage Feed Quality of Maize Intercropped with Some Legumes. Turk. J. Agric. Natural. Sci. 2020, 7, 165–169. [Google Scholar]
- Chang, S.R.; Lu, C.H.; Lur, H.S.; Hsu, F.H. Forage Yield, Chemical Contents, and Silage Quality of Manure Soybean. Agron. J. 2012, 104, 130–136. [Google Scholar] [CrossRef]
- Jahanzad, E.; Sadeghpour, A.; Hashemi, M.; Afshar, R.K.; Hosseini, M.B. Silage fermentation profile, chemical composition and economic evaluation of millet and soybean grown in monocultures and as intercrops. Grass Forage Sci. 2016, 71, 584–594. [Google Scholar] [CrossRef]
- Muck, R.E.; Moser, L.E.; Pitt, R.E. Postharvest factors affecting ensiling. In Silage Science and Technology; Agronomy Monograph; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; ASA; CSSA; SSSA: Madison, WI, USA, 2003; Volume 42, pp. 251–304. [Google Scholar]
- Pakarinen, A.; Maijala, P.; Jaakkola, S. Evaluation of preservation methods for improving biogas production and enzymatic conservation yields of annual crops. Biotechnol. Biofuels 2011, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Steve, M. Feeding Silages Containing Butyric Acid. 2016. Available online: https://www.progressivedairy.com/topics/feed-nutrition/feeding-silages-containing-butyric-acid (accessed on 8 August 2016).
- Mustafa, O.; Unal, K.; Orguzhan, Y. Determination potential feed value and silage quality of guar bean (Cyamopsis tetragonoloba) silages. Open Life Sci. 2019, 14, 342–348. [Google Scholar]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2017, 101, 3952–3979. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.L.; Zhang, T.F.; Chen, X.Z.; Li, G.D.; Zhang, J.G. Effects of maturity stages on the nutritive composition and silage quality of whole crop wheat. Asian-Aust. J. Anim. Sci. 2012, 25, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.M.; Davies, D.R. Review paper: The aerobic stability of silage: Key findings and recent developments. Grass. Forage. Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Serbester, U.; Akkaya, M.R.; Yucel, C.; Gorgulu, M. Comparison of yield, nutritive value, and in vitro digestibility of monocrop and intercropped corn-soybean silages cut at two maturity stages. Ital. J. Anim. Sci. 2015, 14, 3636. [Google Scholar] [CrossRef]
- Saricicek, B.Z.; Yildirim, B.; Kocabas, Z.; Demir, E.O. Effect of storage time on nutrient composition and quality parameters of corn silage. Turk. J. Agric. Food Sci.Technol. 2016, 4, 934–939. [Google Scholar]
- Phiri, M.S.; Ngongoni, N.T.; Maasdorp, B.V.; Titterton, M.; Mupangwa, J.F.; Sebata, A. Ensiling characteristics and feeding value of silage made from browse tree legume-maize mixtures. Trop. Subtrop. Agroecosyst. 2007, 7, 149–156. [Google Scholar]
- Chaudhary, D.P.; Kumar, A.; Kumar, R.; Tiwana, U.S. Evaluation of normal and specialty corn for fodder yield and quality traits. J. Range Manag. Agrofor. 2016, 37, 79–83. [Google Scholar]
- Ali, M.; Weisbjerg, M.R.; Cone, J.W.; Duinkerken, G.V.; Blok, M.C.; Bruinenberg, M.; Hendriks, W.H. Postruminal degradation of crude protein, neutral detergent fiber and starch of maize and grass silages in dairy cows. Anim. Feed. Sci. Technol. 2012, 177, 172–179. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Chen, Y. Effects of storage period on the composition of whole crop wheat and corn silages. Anim. Feed. Sci. Technol. 2013, 185, 196–200. [Google Scholar] [CrossRef]
- Johnson, R.R.; McClure, K.E. Corn plant maturity: IV. Effects on digestibility of corn silage in sheep. J. Anim. Sci. 2011, 27, 535–539. [Google Scholar] [CrossRef]
- Horst, E.H.; López, S.; Neumann, M.; Giráldez, F.J.; Junior, V.H.B. Effects of hybrid and grain maturity stage on the ruminal degradation and the nutritive value of maize forage for silage. Agriculture 2020, 10, 251. [Google Scholar] [CrossRef]
Treatment (1) | Fresh Biomass Yield | Dry Matter Yield | Crude Protein Yield |
---|---|---|---|
(t ha−1) | (t ha−1) | (t ha−1) | |
SM | 46.2a | 14.3a | 1.8c |
1M1S | 31.2d | 12.0c | 2.1b |
1M2S | 32.3d | 12.1c | 2.2b |
1M3S | 34.2c | 12.1c | 2.5a |
2M1S | 38.6b | 13.1b | 2.1b |
SEM | 1.69 | 0.53 | 0.12 |
LOS | ** | * | * |
Harvest time | |||
R3 stage | 46.0a | 14.2a | 2.3a |
R6 stage | 36.8b | 13.0b | 1.9b |
SEM | 1.67 | 0.55 | 0.11 |
LOS | ** | * | * |
Year | |||
2015 | 39.1b | 13.2b | 2.0b |
2016 | 43.2a | 14.3a | 2.4a |
SEM | 1.66 | 0.53 | 0.14 |
LOS | ** | * | * |
Fodder (2) | Quality Parameters (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
DM | CP | EE | Ash | CF | NFE | NDF | ADF | WSC | |
SM | 32.1e | 8.7d | 2.0a | 6.8a | 28.8a | 58.2a | 43.1a | 24.3a | 10.3a |
1M1S | 36.1d | 11.1c | 2.1a | 6.7a | 28.6a | 48.7b | 40.2c | 24.1a | 8.9c |
1M2S | 38.2c | 11.1c | 2.0a | 6.8a | 28.6a | 48.7b | 40.3c | 24.1a | 9.0c |
1M3S | 40.0b | 12.4a | 2.2a | 6.7a | 28.6a | 48.8b | 40.9b | 24.2a | 9.3b |
2M1S | 42.1a | 12.1b | 2.1a | 6.7a | 28.6a | 48.6b | 40.4c | 24.1a | 9.1c |
SEM | 0.42 | 0.21 | 0.12 | 0.02 | 0.62 | 0.41 | 0.42 | 0.33 | 0.41 |
LOS | ** | ** | ns | ns | ns | ** | * | ns | * |
Harvest time | |||||||||
R3 stage | 36.2b | 12.1a | 2.1a | 6.7a | 28.6a | 58.6a | 43.2a | 24.2a | 10.2a |
R6 stage | 40.3a | 8.6b | 2.0a | 6.8a | 28.7a | 48.3b | 40.1b | 24.1a | 9.1b |
SEM | 0.44 | 0.23 | 0.13 | 0.02 | 0.61 | 0.39 | 0.41 | 0.31 | 0.41 |
LOS | ** | ** | ns | ns | ns | ** | * | ns | * |
Year | |||||||||
2015 | 37.1b | 11.1b | 2.1a | 6.8a | 28.7a | 48.7b | 41.2b | 24.0a | 9.4b |
2016 | 41.2a | 12.3a | 2.1a | 6.8a | 28.7a | 56.3a | 42.4a | 24.0a | 10.3a |
SEM | 0.43 | 0.22 | 0.12 | 0.03 | 0.62 | 0.42 | 0.43 | 0.32 | 0.42 |
LOS | ** | ** | ns | ns | ns | ** | * | ns | * |
Silage (2) | pH | Organic Acids (mmol/L) | NH3-N | ||
---|---|---|---|---|---|
LA | AA | BA | |||
SM | 3.8c | 9.0c | 9.2c | 2.1c | 8.0d |
1M1S | 4.1b | 11.1b | 10.2b | 2.1c | 10.1b |
1M2S | 4.2b | 11.2b | 10.5b | 2.9b | 10.1b |
1M3S | 4.4a | 12.1a | 13.1a | 3.1a | 10.6a |
2M1S | 4.1b | 11.1b | 10.3b | 2.1c | 9.1c |
S.E.M | 0.02 | 0.41 | 0.23 | 0.14 | 0.24 |
L.O.S | ** | * | * | * | * |
Harvest time | |||||
R3 stage | 4.3a | 11.1a | 10.1a | 3.0a | 10.1a |
R6 stage | 3.7b | 9.0b | 9.1b | 2.2b | 8.1b |
SEM | 0.02 | 0.41 | 0.22 | 0.14 | 0.22 |
LOS | ** | * | * | * | * |
Year | |||||
2015 | 4.1b | 10.1b | 10.1b | 2.9b | 8.6b |
2016 | 4.4a | 11.2a | 11.2a | 3.1a | 10.0a |
SEM | 0.03 | 0.42 | 0.24 | 0.16 | 0.26 |
LOS | ** | * | * | * | * |
Treatments (1) | Parameters (%) (2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CP | EE | Ash | CF | NFE | NDF | ADF | P | Ca | Mg | K | Na | |
SM | 8.8d | 2.0a | 6.5b | 28.8a | 58.4a | 43.2a | 22.3b | 0.31a | 0.28c | 0.21a | 2.31a | 0.15c |
1M1S | 11.2c | 2.1a | 6.6b | 28.7a | 48.6c | 40.4c | 20.1c | 0.31a | 0.30b | 0.21a | 2.30a | 0.16b |
1M2S | 11.2c | 2.2a | 6.6b | 28.6a | 48.6c | 40.6b | 22.2b | 0.32a | 0.31b | 0.22a | 2.31a | 0.16b |
1M3S | 12.3a | 2.2a | 6.8a | 28.7a | 48.8b | 40.7b | 24.1a | 0.32a | 0.35a | 0.22a | 2.32a | 0.18a |
2M1S | 11.9b | 2.1a | 6.6b | 28.6a | 48.6c | 40.3c | 22.3b | 0.31a | 0.31b | 0.21a | 2.31a | 0.16b |
SEM | 0.22 | 0.14 | 0.09 | 0.61 | 0.42 | 0.43 | 0.34 | 0.07 | 0.08 | 0.02 | 0.06 | 0.02 |
LOS | ** | ns | * | ns | ** | ** | * | ns | * | ns | ns | * |
(% DM) | ||||||||||||
Forage | 8.9b | 2.0a | 6.6b | 28.7a | 58.6a | 43.2a | 22.2b | 0.31a | 0.30b | 0.21a | 2.30a | 0.16a |
Silage | 12.3a | 2.1a | 6.8a | 28.8a | 48.7b | 40.1b | 24.1a | 0.31a | 0.35a | 0.20a | 2.31a | 0.18b |
SEM | 0.21 | 0.12 | 0.11 | 0.62 | 0.41 | 0.42 | 0.32 | 0.05 | 0.06 | 0.02 | 0.06 | 0.02 |
LOS | ** | ns | * | ns | ** | ** | * | ns | * | ns | ns | * |
Year | ||||||||||||
2015 | 8.8b | 2.1a | 6.6b | 28.7a | 48.7b | 40.1b | 22.3b | 0.31a | 0.33b | 0.21a | 2.31a | 0.15a |
2016 | 12.4a | 2.1a | 6.8a | 28.7a | 57.6a | 42.1a | 24.2a | 0.31a | 0.36a | 0.22a | 2.30a | 0.18b |
SEM | 0.24 | 0.13 | 0.12 | 0.66 | 0.44 | 0.44 | 0.33 | 0.07 | 0.08 | 0.03 | 0.06 | 0.02 |
LOS | ** | ns | * | ns | ** | ** | * | ns | * | ns | ns | * |
DM | CP | EE | Ash | CF | NFE | NDF | ADF | WSC | P | Ca | Mg | K | Na | pH | LA | AA | BA | NH3−N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DM | 1 | ||||||||||||||||||
CP | 0.91 * | 1 | |||||||||||||||||
EE | 0.65 | 0.80 | 1 | ||||||||||||||||
Ash | 0.61 | 0.79 | 0.76 | 1 | |||||||||||||||
CF | −0.82 | −0.71 | −0.64 | −0.22 | 1 | ||||||||||||||
NFE | −0.81 | −0.93 * | −0.79 | −0.60 | 0.81 | 1 | |||||||||||||
NDF | −0.82 | −0.92 * | −0.72 | −0.53 | 0.82 | 0.99 ** | 1 | ||||||||||||
ADF | 0.35 | 0.25 | 0.38 | 0.60 | 0.00 | 0.05 | 0.12 | 1 | |||||||||||
WSC | −0.69 | −0.82 | −0.70 | −0.41 | 0.80 | 0.97 * | 0.98 * | 0.29 | 1 | ||||||||||
P | 0.33 | 0.45 | 0.87 | 0.67 | −0.33 | −0.40 | −0.29 | 0.61 | −0.27 | 1 | |||||||||
Ca | 0.71 | 0.84 | 0.82 | 0.98 ** | −0.35 | −0.64 | −0.58 | 0.65 | −0.45 | 0.72 | 1 | ||||||||
Mg | 0.33 | 0.45 | 0.87 | 0.67 | −0.33 | −0.40 | −0.29 | 0.61 | −0.27 | 1.00 ** | 0.72 | 1 | |||||||
K | 0.36 | 0.29 | 0.42 | 0.65 | 0.00 | 0.02 | 0.09 | 1.00 ** | 0.25 | 0.65 | 0.69 | 0.65 | 1 | ||||||
Na | 0.61 | 0.79 | 0.76 | 1.00 ** | −0.22 | −0.60 | −0.53 | 0.60 | −0.41 | 0.67 | 0.98 ** | 0.67 | 0.65 | 1 | |||||
pH | 0.73 | 0.90 * | 0.94 * | 0.93 * | −0.52 | −0.81 | −0.75 | 0.44 | −0.67 | 0.76 | 0.95 * | 0.76 | 0.49 | 0.93 * | 1 | ||||
LA | 0.81 | 0.97 ** | 0.89 * | 0.86 | −0.63 | −0.92 * | −0.88 * | 0.26 | −0.81 | 0.60 | 0.88 * | 0.60 | 0.31 | 0.86 | 0.97 * | 1 | |||
AA | 0.58 | 0.75 | 0.77 | 1.00 ** | −0.19 | −0.54 | −0.47 | 0.66 | −0.35 | 0.72 | 0.98 ** | 0.72 | 0.71 | 1.00 ** | 0.92 * | 0.83 | 1 | ||
BA | 0.35 | 0.49 | 0.86 | 0.75 | −0.26 | −0.39 | −0.29 | 0.67 | −0.24 | 0.99 ** | 0.79 | 0.99 ** | 0.71 | 0.75 | 0.80 | 0.63 | 0.80 | 1 | |
NH3−N | 0.53 | 0.81 | 0.90 * | 0.80 | −0.47 | −0.84 | −0.78 | 0.11 | −0.78 | 0.68 | 0.78 | 0.68 | 0.17 | 0.80 | 0.92 * | 0.93 * | 0.77 | 0.69 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soe Htet, M.N.; Hai, J.-B.; Bo, P.T.; Gong, X.-W.; Liu, C.-J.; Dang, K.; Tian, L.-X.; Soomro, R.N.; Aung, K.L.; Feng, B.-L. Evaluation of Nutritive Values through Comparison of Forage Yield and Silage Quality of Mono-Cropped and Intercropped Maize-Soybean Harvested at Two Maturity Stages. Agriculture 2021, 11, 452. https://doi.org/10.3390/agriculture11050452
Soe Htet MN, Hai J-B, Bo PT, Gong X-W, Liu C-J, Dang K, Tian L-X, Soomro RN, Aung KL, Feng B-L. Evaluation of Nutritive Values through Comparison of Forage Yield and Silage Quality of Mono-Cropped and Intercropped Maize-Soybean Harvested at Two Maturity Stages. Agriculture. 2021; 11(5):452. https://doi.org/10.3390/agriculture11050452
Chicago/Turabian StyleSoe Htet, Maw Ni, Jiang-Bo Hai, Poe Thinzar Bo, Xiang-Wei Gong, Chun-Juan Liu, Ke Dang, Li-Xin Tian, Rab Nawaz Soomro, Khaing Lin Aung, and Bai-Li Feng. 2021. "Evaluation of Nutritive Values through Comparison of Forage Yield and Silage Quality of Mono-Cropped and Intercropped Maize-Soybean Harvested at Two Maturity Stages" Agriculture 11, no. 5: 452. https://doi.org/10.3390/agriculture11050452
APA StyleSoe Htet, M. N., Hai, J.-B., Bo, P. T., Gong, X.-W., Liu, C.-J., Dang, K., Tian, L.-X., Soomro, R. N., Aung, K. L., & Feng, B.-L. (2021). Evaluation of Nutritive Values through Comparison of Forage Yield and Silage Quality of Mono-Cropped and Intercropped Maize-Soybean Harvested at Two Maturity Stages. Agriculture, 11(5), 452. https://doi.org/10.3390/agriculture11050452