Direct and Joint Effects of Genotype, Defoliation and Crop Density on the Yield of Three Inbred Maize Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Experiment
2.2. Precipitation and Temperature Data
2.3. Statistical Analysis of Data
3. Results
3.1. Effect of Genotype, Year, Location and Density on Grain Yield and Yield Components under Different Detasseling Treatments
3.2. Seed Yield in Trial Variants
3.3. Descriptive Statistics and Mean Differences of Studied Factors and Defoliation Treatments
3.4. Joint Effects of Studied Factors on the Yield Loss in Different Defoliation Treatments
3.5. Effects of Defoliation on Morphological and Physiological Traits of Ears and Kernels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, L.; Carvalho, I.; Ferreira, L.; Szareski, V.; Pimentel, J.; Troyjack, C.; Barbosa, M.; Da Silva, J.; Conte, G.; Villela, F. The effects of different mechanical detasseling methods on hybrid maize seed production. Genet. Mol. Res. 2019, 18, 18207. [Google Scholar] [CrossRef]
- De Pelegrin, J.; Szareski, J.; Demari, H. Yield components of hybrid based on the plant population and artificial defoliation. Aust. J. Basic Appl. Sci. 2016, 10, 136–142. [Google Scholar]
- Baretta, D.; Nardino, M.; Carvalho, I.; de Pelegrin, A.; Ferrari, M.; Szareski, V.; Barros, W.; de Souza, V.; de Oliveira, A.; da Maia, L. Estimates of genetic parameters and genotypic values prediction in maize landrace populations by REML/BLUP procedure. Gen. Mol. Res. 2017, 16, 16029715. [Google Scholar] [CrossRef] [PubMed]
- Nardino, M.; Baretta, D.; Carvalho, I.R.; Olivoto, T.; Follmann, D.N.; Pelegrin, A.; Szareski, V.J.; Lautenchleger, F.; Rosa, T.; Barbosa, M.H. Environment Stratification in the Evaluation of Corn Hybrids in Southern Brazil. J. Agric. Sci. 2018, 10, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Ghețe, A.B.; Haș, V.; Vidican, R.; Copândean, A.; Ranta, O.; Moldovan, C.M.; Crișan, I.; Duda, M.M. Influence of detasseling methods on seed yield of some parent inbred lines of turda maize hybrids. Agronomy 2020, 10, 729. [Google Scholar] [CrossRef]
- Heidari, H. Effect of defoliation and ½ ear removal treatments on maize seed yield and seed germination. Biharean Biol. 2015, 11, 102–105. [Google Scholar]
- de Toledo Alvim, K.R.; de Brito, C.H.; Brandão, A.M.; Gomes, L.S.; Lopes, M.T.G. Quantificação da área foliar e efeito da desfolha em componentes de produção de milho. Cienc. Rural 2010, 40, 1017–1022. [Google Scholar] [CrossRef]
- Sarca, T.R. Chapter, X. Maize; Romanian Academy: Bucharest, Romania, 2004; pp. 345–450. [Google Scholar]
- Raza, M.A.; Feng, L.Y.; van der Werf, W.; Iqbal, N.; Khan, I.; Hassan, M.J.; Ansar, M.; Chen, Y.K.; Xi, Z.J.; Shi, J.Y. Optimum leaf defoliation: A new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Res. 2019, 244, 107647. [Google Scholar] [CrossRef]
- Modarres, A.; Hamilton, R.; Dwyer, L.; Stewart, D.; Dijak, M.; Smith, D. Leafy reduced-stature maize for short-season environments: Yield and yield components of inbred lines. Euphytica 1997, 97, 129–138. [Google Scholar] [CrossRef]
- Magalhães, P.C.; Durães, F.O.M.; Oliveira, A.C.d.; Gama, E.E.G. Efeitos de diferentes técnicas de despendoamento na produção de milho. Sci. Agric. 1999, 56, 77–82. [Google Scholar] [CrossRef]
- Komatuda, A.S.; Dos Santos, C.M.; De Santana, D.G.; De Souza, M.A.; De Brito, C.H. Influência de métodos de despendoamento na produtividade e na qualidade das sementes de milho. Rev. Bras. Milho Sorgo 2006, 5, 359–368. [Google Scholar] [CrossRef]
- Moreira, J.N.; Silva, P.S.L.; Silva, K.; Dombroski, J.L.; Castro, R.S. Effect of detasseling on baby corn, green ear and grain yield of two maize hybrids. Hortic. Bras. 2010, 28, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, I.; Nardino, M.; Pelegrin, A.; Ferrari, M.; Demari, G.; Szareski, V.; Souza, V. Path analysis and Annicchiarico method applied in relation to protein in corn grains. Aust. J. Basic Appl. Sci. 2016, 10, 300–306. [Google Scholar]
- Safari, A.R.; Roshan, N.M.; Barimavandi, A.R.; Amiri, I. Effect of defoliation and late-season stress on yield, yield components and dry matter partitioning of grain corn in Kermanshah region, Iran. Adv. Environ. Biol. 2013, 7, 47–55. [Google Scholar]
- Vasilas, B.; Seif, R. Pre-Anthesis Defoliation Effects on Six Corn Inbreds 1. Agron. J. 1985, 77, 831–835. [Google Scholar] [CrossRef]
- Frascaroli, E.; Casarini, E.; Conti, S. Response of maize inbred lines to a defoliation treatment inducing tolerance to cold at germination. Euphytica 2005, 145, 295–303. [Google Scholar] [CrossRef]
- Cumagun, C.J.R.; Manalo, J.O.; Salcedo-Bacalangco, N.A.; Ilag, L.L. Cellulose decomposing ability of Trichoderma in relation to their saprophytic survival. Arch. Phytopathol. Plant Protect. 2009, 42, 698–704. [Google Scholar] [CrossRef]
- Sheridan, J.C. SPSS: Analysis without Anguish: Version 12.0 for Windows; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Fox, T.; DeBruin, J.; Haug Collet, K.; Trimnell, M.; Clapp, J.; Leonard, A.; Li, B.; Scolaro, E.; Collinson, S.; Glassman, K. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol. J. 2017, 15, 942–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Martínez, H.; Flores-Magdaleno, H.; Ascencio-Hernández, R.; Khalil-Gardezi, A.; Tijerina-Chávez, L.; Mancilla-Villa, O.R.; Vázquez-Peña, M.A. Corn Grain Yield Estimation from Vegetation Indices, Canopy Cover, Plant Density, and a Neural Network Using Multispectral and RGB Images Acquired with Unmanned Aerial Vehicles. Agriculture 2020, 10, 277. [Google Scholar] [CrossRef]
- Golba, J.; Studnicki, M.; Gozdowski, D.; Mądry, W.; Rozbicki, J. Influence of genotype, crop management, and environment on winter wheat grain yield determination based on components of yield. Crop Sci. 2018, 58, 660–669. [Google Scholar] [CrossRef]
- Mądry, W.; Rozbicki, J.; Gozdowski, G.; Golba, J.; Piechociñski, M.; Studnicki, M.; Wery, J.; Shili-Touzi, I.; Perrin, A. Typology of grain yield formation patterns by yield components in winter wheat cultivars grown across Polish environments. In Proceedings of the AGRO 2010, the XI ESA Congress, Montpeilier, France, 29 August–3 September 2010; European Society for Agronomy (ESA): Conthey, Switzerland, 2010; pp. 601–602. [Google Scholar]
- Slafer, G.A.; Savin, R.; Sadras, V.O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crop. Res. 2014, 157, 71–83. [Google Scholar] [CrossRef]
- Irfanullah, H.A.; Hussain, A.A.I.; Khan, M.W.; Ahmadzai, M.D. Yield and yield attributes of maize (Zea mays L.) as affected by detasseling and potassium fertilization. Pure Appl. Biol. (PAB) 2017, 6, 958–964. [Google Scholar]
- Gao, Z.; Sun, L.; Ren, J.-H.; Liang, X.-G.; Shen, S.; Lin, S.; Zhao, X.; Chen, X.-M.; Wu, G.; Zhou, S.-L. Detasseling increases kernel number in maize under shade stress. Agric. For. Meteorol. 2020, 280, 107811. [Google Scholar] [CrossRef]
- Uribelarrea, M.; Cárcova, J.; Borrás, L.; Otegui, M.E. Enhanced kernel set promoted by synchronous pollination determines a tradeoff between kernel number and kernel weight in temperate maize hybrids. Field Crop. Res. 2008, 105, 172–181. [Google Scholar] [CrossRef]
- Zhou, B.; Yue, Y.; Sun, X.; Ding, Z.; Ma, W.; Zhao, M. Maize kernel weight responses to sowing date-associated variation in weather conditions. Crop J. 2017, 5, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Mi, N.; Cai, F.; Zhang, Y.; Ji, R.; Zhang, S.; Wang, Y. Differential responses of maize yield to drought at vegetative and reproductive stages. Plant Soil Environ. 2018, 64, 260–267. [Google Scholar]
- Mafouasson, H.N.A.; Gracen, V.; Yeboah, M.A.; Ntsomboh-Ntsefong, G.; Tandzi, L.N.; Mutengwa, C.S. Genotype-by-environment interaction and yield stability of maize single cross hybrids developed from tropical inbred lines. Agronomy 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Khaki, S.; Wang, L.; Archontoulis, S.V. A cnn-rnn framework for crop yield prediction. Front. Plant Sci. 2020, 10, 1750. [Google Scholar] [CrossRef] [PubMed]
- Reeves, G.W.; Cox, W.J. Inconsistent responses of corn to seeding rates in field-scale studies. Agron. J. 2013, 105, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.W. Genotype× environment interaction for plant density response in maize (Zea mays L.). Crop Sci. 2016, 56, 1493–1505. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Liu, C.; Wang, K.; Xie, R.; Ming, B.; Wang, Y.; Zhang, G.; Liu, G.; Zhao, R.; Fan, P. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crop. Res. 2017, 212, 126–134. [Google Scholar] [CrossRef]
- Hmielowski, T. Maize yield potential. CSA News 2018, 63, 8–9. [Google Scholar] [CrossRef] [Green Version]
- Falihzade, F.; Mojadam, M.; Lack, S. The effect of source-sink restriction and plant density changes on the role of assimilate remobilization in corn grain yield. Int. J. Agric. Res. 2013, 5, 2459–2465. [Google Scholar]
- Li, R.; Liu, P.; Dong, S.; Zhang, J.; Zhao, B. Increased maize plant population induced leaf senescence, suppressed root growth, nitrogen uptake, and grain yield. Agron. J. 2019, 111, 1581–1591. [Google Scholar] [CrossRef]
- Cao, Y.J.; Wang, L.C.; Gu, W.R.; Wang, Y.J.; Zhang, J.H. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. J. Integr. Agric. 2021, 20, 494–510. [Google Scholar] [CrossRef]
- Da Silva, S.; Pereira, L.; Sbrissia, A.; Hernandez-Garay, A. Carbon and nitrogen reserves in marandu palisade grass subjected to intensities of continuous stocking management. J. Agric. Sci. 2015, 153, 1449. [Google Scholar] [CrossRef]
- Bonser, S.P.; Aarssen, L.W. Interpreting reproductive allometry: Individual strategies of allocation explain size-dependent reproduction in plant populations. Perspect. Plant Ecol. Evol. Syst. 2009, 11, 31–40. [Google Scholar] [CrossRef]
- Ona, A.D.; Muntean, L.; Haș, V.V.; Varga, A. Combining ability for yield of single-cross hybrids derived from maize composites (Zea mays L.). Not. Bot. Horti Agrobot. Cluj Napoca 2019, 47, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Tokatlidis, I.S. Adapting Maize Crop to Diverse Agro-Ecosystems. In Sustainable Agriculture Reviews; Springer: Berlin/Heidelberg, Germany, 2013; pp. 97–117. [Google Scholar]
- Novacek, M.; Mason, S.; Galusha, T.; Yaseen, M. Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agron. J. 2013, 105, 268–276. [Google Scholar] [CrossRef]
- Testa, G.; Reyneri, A.; Blandino, M. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. Eur. J. Agron. 2016, 72, 28–37. [Google Scholar] [CrossRef]
- Assefa, Y.; Vara Prasad, P.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Ciampitti, I.A. Yield responses to planting density for US modern corn hybrids: A synthesis-analysis. Crop Sci. 2016, 56, 2802–2817. [Google Scholar] [CrossRef]
- Milander, J.J.; Jukic, Z.; Mason, S.C.; Glausha, T.; Kmail, Z. Plant population influence on maize yield components in Croatia and Nebraska. Crop Sci. 2016, 56, 2742–2750. [Google Scholar] [CrossRef]
- Sadras, V.O.; Slafer, G.A. Environmental modulation of yield components in cereals: Heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop. Res. 2012, 127, 215–224. [Google Scholar] [CrossRef]
- Eichenberger, S.; Miguez, F.; Edwards, J.; Knapp, A. Changes in kernel filling with selection for grain yield in a maize population. Crop Sci. 2015, 55, 521–526. [Google Scholar] [CrossRef]
Soil Layer (cm) | pH | CaCO3 (%) | OM (%) | total N (%) | P2O5 mg/100 g | K2O mg/100 g | ||
---|---|---|---|---|---|---|---|---|
KCL | H2O | |||||||
L1Y1 | 0–30 | 7.10 | 8.10 | 1.20 | 2.70 | 0.19 | 39.20 | 20.80 |
L1Y2 | 0–30 | 7.30 | 8.40 | 3.30 | 2.60 | 0.19 | 25.90 | 25.70 |
L2Y1 | 0–30 | 7.61 | 8.16 | 5.58 | 2.53 | 0.13 | 18.66 | 24.85 |
L2Y2 | 0–30 | 7.64 | 8.22 | 7.42 | 2.77 | 0.13 | 28.17 | 24.85 |
Treatment | Removal of (Tassel + Top Leaf) |
---|---|
T1 | T |
T2 | T + 1 TL |
T3 | T + 2 TL |
T4 | T + 3 TL |
T5 | T + 4 TL |
Source | a GY | b KRN | c KNR | d EL | e KW |
---|---|---|---|---|---|
G | 59.563 *** | 195.323 *** | 140.873 *** | 10.932 *** | 182.668 *** |
E | 2495.874 *** | 525.427 *** | 1311.885 *** | 1103.954 *** | 168.828 *** |
D | 5.146 * | 12.193 ** | 37.046 *** | 75.143 *** | 24.831 *** |
T | 36.308 *** | 0.285ns | 52.773 *** | 17.891 *** | 676.697 ** |
G × E | 121.272 *** | 90.942 *** | 54.693 *** | 56.748 *** | 52.095 *** |
G × D | 5.574 ** | 4.085 * | 3.506 * | 4.919 ** | 5.215 ** |
G × T | 1.596 ns | 3.152 ** | 1.844 ns | 0.636 ns | 3.307 ** |
E × D | 4.552 ** | 6.192 *** | 1.189 ns | 7.234 *** | 2.203 ns |
E × T | 8.528 *** | 0.883 ns | 6.078 *** | 5.160 *** | 1.592 ns |
D × T | 0.789 ns | 4.268 ** | 1.731 ns | 1.918 ns | 1.495 ns |
G × E × D | 1.671 ns | 2.344 * | 0.632 ns | 4.874 *** | 1.588 ns |
G × E × T | 2.681 *** | 0.832 ns | 2.599 *** | 2.869 *** | 1.271 ns |
G × D × T | 2.363 * | 3.269 ** | 2.228 * | 0.882 ns | 0.490 ns |
E × D × T | 3.154 ** | 2.108 * | 1.877 * | 1.262 ns | 2.061 * |
G × E × D × T | 1.653 * | 1.940 * | 1.291 ns | 1.919 ** | 1.583 * |
Error | 69,510,756.000 | 240 | 289,628.150 | ||
Total | 12,261,433,404.000 | 360 | |||
Corrected Total | 2,617,841,433.156 | 359 |
G | E | D | T | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | |||
G1 | E1 | D1 | 6487 | 5848 | 5587 | 5717 | 5145 |
D2 | 6468 | 6836 | 6158 | 6863 | 5840 | ||
E2 | D1 | 7149 | 7776 | 7035 | 6829 | 5777 | |
D2 | 8579 | 8455 | 8196 | 7216 | 6132 | ||
E3 | D1 | 3614 | 3876 | 3735 | 4069 | 3092 | |
D2 | 3559 | 4292 | 3758 | 3732 | 2967 | ||
E4 | D1 | 4444 | 3196 | 3686 | 3525 | 3473 | |
D2 | 4460 | 3445 | 3522 | 3239 | 3673 | ||
G2 | E1 | D1 | 7463 | 7312 | 7619 | 7483 | 6096 |
D2 | 7089 | 6519 | 6855 | 7656 | 6158 | ||
E2 | D1 | 9670 | 8537 | 9064 | 8789 | 7997 | |
D2 | 9566 | 9839 | 10,000 | 8311 | 7297 | ||
E3 | D1 | 4022 | 3808 | 4305 | 2899 | 3233 | |
D2 | 3531 | 3676 | 3238 | 4027 | 2866 | ||
E4 | D1 | 2795 | 3452 | 2546 | 2284 | 2582 | |
D2 | 2050 | 2259 | 2810 | 3826 | 2444 | ||
G3 | E1 | D1 | 6464 | 6125 | 6660 | 6537 | 5561 |
D2 | 6612 | 6161 | 6383 | 5203 | 6220 | ||
E2 | D1 | 10,338 | 9320 | 9464 | 9005 | 8329 | |
D2 | 11,389 | 9704 | 10,812 | 9215 | 7668 | ||
E3 | D1 | 1154 | 896 | 1236 | 1145 | 1074 | |
D2 | 1067 | 1055 | 1729 | 1147 | 958 | ||
E4 | D1 | 1547 | 3038 | 2316 | 2329 | 2125 | |
D2 | 1852 | 2338 | 2800 | 2808 | 1870 |
Factor | Variant | N | Yield (kg/ha) | ||||
---|---|---|---|---|---|---|---|
Mean | S2 | Minimum | Maximum | Range | |||
G | G1 | 120 | 5186.3 | 2,941,798.427 | 2446 | 8676 | 6230 |
G2 | 120 | 5549.4 | 7,036,759.979 | 1672 | 10,806 | 9134 | |
G3 | 120 | 4791.3 | 11,730,172.849 | 189 | 11,794 | 11,605 | |
E | E1 | 90 | 6437.6 | 697,323.256 | 4832 | 8656 | 3824 |
E2 | 90 | 8582.0 | 1,946,069.211 | 5049 | 11,794 | 6745 | |
E3 | 90 | 2792.0 | 1,683,089.706 | 189 | 5720 | 5531 | |
E4 | 90 | 2891.2 | 720,879.826 | 1272 | 4791 | 3519 | |
D | D1 | 180 | 5111.3 | 6,802,029.6465 | 189 | 11,648 | 11,459 |
D2 | 180 | 5240.0 | 7,814,456.155 | 645 | 11,794 | 11,149 | |
T | T1 | 72 | 5473.7 | 9,284,806.394 | 772 | 11,794 | 11,022 |
T2 | 72 | 5323.6 | 7,478,895.490 | 189 | 10,806 | 10,617 | |
T3 | 72 | 5396.4 | 7,911,992.660 | 1041 | 11,090 | 10,049 | |
T4 | 72 | 5160.7 | 6,579,607.793 | 645 | 9883 | 9238 | |
T5 | 72 | 4524.1 | 5,023,261.711 | 811 | 8947 | 8136 |
Gn | Gm | Gn–Gm | Sig. | Standard Error |
---|---|---|---|---|
G1 | G2 | −363 ** | 0.000 | 69.488 |
G3 | 394 ** | 0.000 | ||
G2 | G3 | 758 ** | 0.000 |
En | Em | En–Em | Sig. | Standard Error |
---|---|---|---|---|
E1 | E2 | −2144 ** | 0.000 | 80.226 |
E3 | 3645 ** | 0.000 | ||
E4 | 3546 ** | 0.000 | ||
E2 | E3 | 5789 ** | 0.000 | |
E4 | 5690 ** | 0.000 | ||
E3 | E4 | −99 | 0.218 |
Tn | Tm | Tn–Tm | Sig. | Standard Error |
---|---|---|---|---|
T1 | T2 | 150 | 0.095 | 89.695 |
T3 | 77 | 0.389 | ||
T4 | 313 ** | 0.001 | ||
T5 | 950 ** | 0.000 | ||
T2 | T3 | −72 | 0.418 | |
T4 | 162 | 0.071 | ||
T5 | 799 ** | 0.000 | ||
T3 | T4 | 235 ** | 0.009 | |
T5 | 872 ** | 0.000 | ||
T4 | T5 | 636 ** | 0.000 |
G | Tm | T1-Tm | |||
---|---|---|---|---|---|
E1 | E2 | E3 | E4 | ||
G1 | T2 | 135 | −252 | −497 ** | 1132 ** |
T3 | 605 ** | 248 | −160 | 848 ** | |
T4 | 187 | 841 ** | −314 | 1070 ** | |
T5 | 985 ** | 1909 ** | 557 ** | 879 ** | |
G2 | T2 | 361 | 430 | 35 | −433 |
T3 | 40 | 86 | 5 | −256 | |
T4 | −294 | 1068 ** | 314 | −633 * | |
T5 | 1149 ** | 1971 ** | 727 | −90 | |
G3 | T2 | 394 | 1352 ** | 135 | −988 ** |
T3 | 16 | 726 | −372 | −859 * | |
T4 | 668 | 1754 ** | −36 | −869 * | |
T5 | 647 | 2865 ** | 95 | −298 |
E | Tm | T1-Tm | |||||
---|---|---|---|---|---|---|---|
G1 | G2 | G3 | |||||
D1 | D2 | D1 | D2 | D1 | D2 | ||
E1 | T2 | 639 * | −368 | 151 | 570 | 338 | 450 |
T3 | 900 ** | 310 | −155 | 235 | −196 | 228 | |
T4 | 770 ** | −395 | −20 | −567 | −73 | 1409 | |
T5 | 1342 ** | 627 * | 1367 ** | 931 | 902 | 391 | |
E2 | T2 | −627 | 123 | 1133 ** | −273 | 1018 | 1685 ** |
T3 | 114 | 383 | 606 | −434 | 875 | 577 | |
T4 | 320 | 1363 ** | 880 * | 1256 | 1333 * | 2174 ** | |
T5 | 1372 ** | 2446 ** | 1673 ** | 2269 ** | 2010 ** | 3721 ** | |
E3 | T2 | −262 | −733 ** | 214 | −145 | 258 | 12 |
T3 | −121 | −199 | −282 | 293 | −82 | −662 | |
T4 | −455 | −173 | 1123 | −496 | 9 | −79 | |
T5 | 522 | 592 ** | 789 | 665 | 80 | 109 | |
E4 | T2 | 1248 ** | 1016 * | −657 * | −209 | −1491 ** | −485 |
T3 | 757 * | 938 * | 249 | −760 | −769 * | −948 | |
T4 | 918 ** | 1221 ** | 511 | −1776 ** | −782 * | −956 | |
T5 | 971 ** | 787 | 213 | −394 | −578 | −17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranković, D.; Todorović, G.; Tabaković, M.; Prodanović, S.; Boćanski, J.; Delić, N. Direct and Joint Effects of Genotype, Defoliation and Crop Density on the Yield of Three Inbred Maize Lines. Agriculture 2021, 11, 509. https://doi.org/10.3390/agriculture11060509
Ranković D, Todorović G, Tabaković M, Prodanović S, Boćanski J, Delić N. Direct and Joint Effects of Genotype, Defoliation and Crop Density on the Yield of Three Inbred Maize Lines. Agriculture. 2021; 11(6):509. https://doi.org/10.3390/agriculture11060509
Chicago/Turabian StyleRanković, Dejan, Goran Todorović, Marijenka Tabaković, Slaven Prodanović, Jan Boćanski, and Nenad Delić. 2021. "Direct and Joint Effects of Genotype, Defoliation and Crop Density on the Yield of Three Inbred Maize Lines" Agriculture 11, no. 6: 509. https://doi.org/10.3390/agriculture11060509
APA StyleRanković, D., Todorović, G., Tabaković, M., Prodanović, S., Boćanski, J., & Delić, N. (2021). Direct and Joint Effects of Genotype, Defoliation and Crop Density on the Yield of Three Inbred Maize Lines. Agriculture, 11(6), 509. https://doi.org/10.3390/agriculture11060509