The Reaction of Winter Oilseed Rape to Different Foliar Fertilization with Macro- and Micronutrients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- YaraVita Brassitrel Pro containing (g/L): 69 N, 118 MgO, 125 CaO, 60 B, 70 Mn, 4 Mo;
- YaraVita Bortrac containing (g/L): 150 B;
- YaraVita Thiotrac containing (g/L): 200 N, 750 SO3.
- YaraMila RAPS containing (%): 16 N, 8 P2O5, 16 K2O, 1.7 MgO, 12.5 SO3, 0.1 B;
- YaraBela SULFAN containing (%): 24 N, 10.5 CaO, 1.5 MgO, 16.2 SO3.
- Variant A: 200 N, 64 P2O5, 128 K2O, 31,5 CaO, 18.1 MgO, 148.6 SO3, 0.8 B;
- Variant B: 200,41 N, 64 P2O5, 128 K2O, 32,25 CaO, 18.81 MgO, 148.6 SO3, 1.16 B, 0.42 Mn, 0.024 Mo;
- Variant C: 201.41 N, 64 P2O5, 128 K2O, 32,25 CaO, 18.81 MgO, 152.35 SO3, 1.16 B, 0.42 Mn, 0.024 Mo;
- Variant D: 200,41 N, 64 P2O5, 128 K2O, 32,25 CaO, 18.81 MgO, 148.6 SO3, 1.76 B, 0.42 Mn, 0.024 Mo;
- Variant E: 201,41 N, 64 P2O5, 128 K2O, 32,25 CaO, 18.81 MgO, 152.35 SO3, 1.76 B, 0.42 Mn, 0.024 Mo;
- Variant F: 1 N, 3.75 SO3.
2.2. Soil Conditions
2.3. Field Conditions
2.4. Field Measurements
2.5. Laboratory Measurements
2.6. Economic Analyses
2.7. Statistical Analyses
3. Results
3.1. Weather Conditions
3.2. Results of Field and Biometric Measurements
3.3. The Yield of Fat and Protein
3.4. Field Measurements
3.5. Chemical Composition
3.6. Statistical Dependencies
3.7. Economic Effects
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pullens, J.W.M.; Sharif, B.; Trnka, M.; Balek, J.; Semenov, M.A.; Olesen, J.E. Risk factors for European winter oilseed rape production under climate change. Agric. For. Meteorol. 2019, 272–273, 30–39. [Google Scholar] [CrossRef]
- Ahmadi Kalantar, S.A.; Ebadi, A.; Daneshian, J.; Siadat, S.A.; Jahanbakhsh, S. Effect of drought stress and foliar application of growth regulators on photosynthetic pigments and seed yield of rapeseed (Brassica napus L. cv. Hyola 401). Iran. J. Crop Sci. 2016, 18, 196–217. [Google Scholar]
- Wenda-Piesik, A.; Hoppe, S. Evaluation of hybrid and population cultivars on standard and high-input technology in winter oilseed rape. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 678–689. [Google Scholar] [CrossRef]
- Fageria, N.K.; Barbosa Filho, M.B.; Moreira, A.; Guimarães, C.M. Foliar fertilization of crop plants. J. Plant Nutr. 2009, 32, 1044–1066. [Google Scholar] [CrossRef]
- Ossewaarde, M.; Ossewaarde-Lowtoo, R. The EU’s Green Deal: A Third Alternative to Green Growth and Degrowth? Sustainability 2020, 12, 9825. [Google Scholar] [CrossRef]
- Ganya, S.; Svotwa, E.; Katsaruware, R.D. Performance of Two Rape (Brassica napus) Cultivars under Different Fertilizer Management Levels in the Smallholder Sector of Zimbabwe. Int. J. Agron. 2018, 2351204, 1–7. [Google Scholar] [CrossRef]
- Amiri, M.; Shirani Rad, A.H.; Valadabadi, A.; Sayfzadeh, S.; Zakerin, H. Response of rapeseed fatty acid composition to foliar application of humic acid under different plant densities. Plant Soil Environ. 2020, 66, 303–308. [Google Scholar] [CrossRef]
- Rios, J.J.; Garcia-Ibañez, P.; Carvajal, M. The use of biovesicles to improve the efficiency of Zn foliar fertilization. Colloid. Surf. B Biointerfaces 2019, 173, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Shahsavari, N.; Jais, H.M.; Shirani Rad, A.H. Responses of Canola Morphological and Agronomic Characteristics to Zeolite and Zinc Fertilization under Drought Stress. Commun. Soil Sci. Plant Anal. 2014, 45, 1813–1822. [Google Scholar] [CrossRef]
- Beres, J.; Becka, D.; Tomasek, J.; Vasak, J. Effect of autumn nitrogen fertilization on winter oilseed rape growth and yield parameters. Plant Soil Environ. 2019, 65, 435–441. [Google Scholar] [CrossRef]
- Poisson, E.; Trouverie, J.; Brunel-Muguet, S.; Akmouche, Y.; Pontet, C.; Pinochet, X.; Avice, J.C. Seed yield components and seed quality of oilseed rape are impacted by sulfur fertilization and its interactions with nitrogen fertilization. Front. Plant. Sci. 2019, 10, 458. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.; Zheng, Y.; Lovatt, C.J. Properly timed foliar fertilization can and should result in a yield benefit and net increase in grower income. Acta Hortic. 2010, 868, 273–286. [Google Scholar] [CrossRef]
- Siede, R.; Dyrba, W.; Augustin, T.; Wiegand, A.; Ellinghaus, R. Boron fertilizers in rape—A risk for honey bees? J. Appl. Entomol. 2013, 137, 661–667. [Google Scholar] [CrossRef]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Europ. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiatkowski, C.A. Response of winter rape (Brassica napus L. ssp. oleifera Metzg., Sinsk) to foliar fertilization and different seeding rates. Acta Agrobot. 2012, 65, 161–170. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.; Szatkowski, A. The Effect of Autumn Foliar Fertilization on the Yield and Quality of Winter Oilseed Rape Seeds. Agronomy 2019, 9, 849. [Google Scholar] [CrossRef] [Green Version]
- Jarecki, W.; Buczek, J.; Bobrecka-Jamro, D. The response of winter oilseed rape to diverse foliar fertilization. Plant Soil Environ. 2019, 65, 125–130. [Google Scholar] [CrossRef]
- White, C.; Roques, S.; Berry, P. Effects of foliar-applied nitrogen fertilizer on oilseed rape (Brassica napus). J. Agric. Sci. 2015, 153, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Sikorska, A.; Gugała, M.; Zarzecka, K. The impact of foliar feeding on the yield components of three winter rape morphotypes (Brassica napus L.). Open Agric. 2020, 5, 107–116. [Google Scholar] [CrossRef]
- Froese, S.; Wiens, J.T.; Warkentin, T.; Schoenau, J.J. Response of canola, wheat, and pea to foliar phosphorus fertilization at a phosphorus-deficient site in eastern Saskatchewan. Can. J. Plant Sci. 2020, 100, 642–652. [Google Scholar] [CrossRef]
- Kováčik, P.; Šimanský, V.; Wierzbowska, J.; Renčo, M. Impact of foliar application of biostimulator Mg-Titanit on formation of winter oilseed rape phytomass and its titanium content. J. Elem. 2016, 21, 1235–1251. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Hulanicki, P.S.; Krzebietke, S.; Żarczyński, P.; Hulanicki, P.; Sokólski, M. Yield and quality of winter oilseed rape in response to different systems of foliar fertilization. J. Elem. 2016, 21, 1017–1027. [Google Scholar] [CrossRef]
- Gugała, M.; Sikorska, A.; Zarzecka, K. The Effect of Fertilization with Sulphur, Boron, and Amino Acids on the Content of Glucosinolate in Winter Rape Seeds. Agronomy 2020, 10, 519. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. International soil classification system for naming soils and creating legends for soil maps. In Word Reference Base for Soil Resources 2014, Update 2015; Word Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 192. [Google Scholar]
- Meier, U. Growth Stages of Mono-and Dicotyledonous Plants. BBCH Monograph; Federal Biological Research Centre for Agriulture an Forestry: Berlin/Braunschweig, Germany, 2001; p. 158. [Google Scholar]
- Zhivko, T.; Radka, I. Influence of sowing period and treatment with various foliar fertilizers on the productivity of rapeseed. Sci. Pap. A Agron. 2019, 62, 456–464. [Google Scholar]
- Ali, N.; Anjum, M.M.; Afridi, M.Z. Effect of Ammonium Sulphate Foliar Spray on Grain Yield and Yield Quality of Canola. Austin Food Sci. 2016, 1, 1026. [Google Scholar]
- Heuermann, D.; Hahn, H.; von Wirén, N. Seed Yield and Nitrogen Efficiency in Oilseed Rape After Ammonium Nitrate or Urea Fertilization. Front. Plant Sci. 2021, 11, 608785. [Google Scholar] [CrossRef]
- Sikorska, A.; Gugała, M.; Zarzecka, K. Winter oilseed rape yield depending on foliar fertilization. Acta Sci. Pol. Agric. 2020, 19, 11–20. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokólski, M.; Dubis, B.; Krzebietke, S.; Żarczyński, P.; Hulanicki, P.; Hulanicki, P.S. Yield and quality of winter oilseed rape (Brassica napus L.) seeds in response to foliar application of boron. Agr. Food Sci. 2016, 25, 164–176. [Google Scholar] [CrossRef]
- Ni, L.; Punja, Z.K. Effects of a foliar fertilizer containing boron on the development of Sclerotinia stem rot (Sclerotinia sclerotiorum) on canola (Brassica napus L.) leaves. J. Phytopathol. 2020, 168, 47–55. [Google Scholar] [CrossRef]
- Száková, J.; Praus, L.; Tremlová, J.; Kulhánek, M.; Tlustoš, P. Efficiency of foliar selenium application on oilseed rape (Brassica napus L.) as influenced by rainfall and soil characteristics. Arch. Agron. Soil Sci. 2017, 63, 1240–1254. [Google Scholar] [CrossRef]
- Malhi, S.S.; Raza, M.; Schoenau, J.J.; Mermut, A.R.; Kutcher, R.; Johnston, A.M.; Gill, K.S. Feasibility of boron fertilization for yield, seed quality and B uptake of canola in northeastern Saskatchewan. Can. J. Soil Sci. 2003, 83, 99–108. [Google Scholar] [CrossRef]
- Koohkan, H.; Manouchehr, M. Effect of nitrogen—Boron interaction on plant growth and tissue nutrient concentration of canola (Brassica napus L.). J. Plant Nutr. 2016, 39, 922–931. [Google Scholar] [CrossRef]
- Brennan, R.F.; Bolland, M.D.A. Foliar spray experiments identify no boron deficiency but molybdenum and manganese deficiency for canola grain production on acidified sandy gravel soils in southwestern Australia. J. Plant Nutr. 2011, 34, 1186–1197. [Google Scholar] [CrossRef]
- Ma, B.L.; Biswas, D.K.; Herath, A.W.; Whalen, J.K.; Ruan, S.Q.; Caldwell, C.; Earl, H.; Vanasse, A.; Scott, P.; Smith, D.L. Growth, yield, and yield components of canola as affected by nitrogen, sulfur, and boron application. J. Plant Nutr. Soil Sci. 2015, 178, 658–670. [Google Scholar] [CrossRef]
- Malhi, S.S.; Gill, K.S. Effectiveness of sulphate-S fertilization at different growth stages for yield, seed quality and S uptake of canola. Can. J. Plant Sci. 2002, 82, 665–674. [Google Scholar] [CrossRef]
- Lucas, F.T.; Coutinho, E.L.M.; Paes, J.M.V.; Barbosa, J.C. Yield and quality of canola grains due to nitrogen and sulfur fertilization. Semin. Ciênc. Agrár. 2013, 34, 3205–3218. [Google Scholar] [CrossRef]
- Ma, B.L.; Zheng, Z.; Whalen, J.K.; Caldwell, C.; Vanasse, A.; Pageau, D.; Scott, P.; Earl, H.; Smith, D.L. Uptake and nutrient balance of nitrogen, sulphur, and boron for optimal canola production in eastern Canada. J. Plant Nutr. Soil Sci. 2019, 182, 252–264. [Google Scholar] [CrossRef]
- Sikorska, A.; Gugała, M.; Zarzecka, K. The impact of different types of foliar feeding on the architecture elements of a winter rape (Brassica napus L.) field. Appl. Ecol. Environ. Res. 2020, 18, 263–273. [Google Scholar] [CrossRef]
- Pużyńska, K.; Kulig, B.; Halecki, W.; Lepiarczyk, A.; Pużyński, S. Response of oilseed rape leaves to sulfur and boron foliar application. Acta Physiol. Plant. 2018, 40, 169. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, H.H.; Mutlag, L.A.; Mouhamad, R.S. Study the effect of khazra iron nano chelate fertilizer foliar application on two rapeseed varieties. Rev. Bionatura. 2019, 4, 841–845. [Google Scholar] [CrossRef]
- Varga, L.; Ložek, O.; Ducsay, L.; Kováčik, P.; Lošák, T.; Hlušek, J. Effect of topdressing with nitrogen and boron on the yield and quality of rapeseed. Acta Univ. Agric. Silvic. Mendel. Brun. 2010, 58, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Shi, L.; Xu, F.-S.; Lu, J.-W.; Wang, Y.-H. Effects of B, Mo, Zn, and Their Interactions on Seed Yield of Rapeseed (Brassica napus L.). Pedosphere 2009, 19, 53–59. [Google Scholar] [CrossRef]
- Gugała, M.; Sikorska, A.; Zarzecka, K. The Effect of Foliar Nutrition with Sulphur and Boron, Amino Acids on Morphological Characteristics of Rosette and Wintering Winter Rape (Brassica napus L.). J. Ecol. Eng. 2019, 20, 190–197. [Google Scholar] [CrossRef]
- Stepien, A.; Wojtkowiak, K.; Pietrzak-Fiecko, R. Nutrient content, fat yield and fatty acid profile of winter rapeseed (Brassica napus L.) grown under different agricultural production systems. Chil. J. Agric. Res. 2017, 77, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Barczak, B.; Skinder, Z.; Piotrowski, R. Content and yield of oil in spring rape seeds in conditions of nitrogen and sulphur fertilization. J. Cent. Eur. Agric. 2019, 20, 222–237. [Google Scholar] [CrossRef]
- Sienkiewicz-Cholewa, U.; Kieloch, R. Effect of sulphur and micronutrients fertilization on yield and fat content in winter rape seeds (Brassica napus L.). Plant Soil Environ. 2015, 61, 164–170. [Google Scholar] [CrossRef]
- Kováčik, P.; Havrlentová, M.; Šimanský, V. Growth and yield stimulation of winter oilseed rape (Brassica napus L.) by Mg-Titanit fertilizer. Agriculture (Pol’nohospodárstvo) 2014, 60, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Zhivko, T. Modification of physiological indicators when treating oil-bearing rapeseed with several foliar fertilizers, sown at different time periods. Sci. Pap. A Agron. 2020, 63, 231–235. [Google Scholar]
- Dunn, B.L.; Goad, C. Effect of foliar nitrogen and optical sensor sampling method and location for determining ornamental cabbage fertility status. HortScience 2015, 50, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, L.; Gao, W.; Zhang, Y.; Liu, Y.; Wang, S.; Lu, J. Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Comput. Electron. Agric. 2018, 151, 185–195. [Google Scholar] [CrossRef]
- Groth, D.A.; Sokólski, M.; Jankowski, K.J. A Multi-Criteria Evaluation of the Effectiveness of Nitrogen and Sulfur Fertilization in Different Cultivars of Winter Rapeseed—Productivity, Economic and Energy Balance. Energies 2020, 13, 4654. [Google Scholar] [CrossRef]
Date (Scale BBCH) | Variant of Foliar Fertilization per 1 ha | |||||
---|---|---|---|---|---|---|
A Control | B | C | D | E | F | |
BBCH 14 | YaraVita Brassitrel Pro—1 L | YaraVita Brassitrel Pro—1 L | YaraVita Brassitrel Pro—1 L + YaraVita Bortrac—1 L | YaraVita Brassitrel Pro—1 L + YaraVita Bortrac—1 L | ||
BBCH 18 | YaraVita Brassitrel Pro—1 L | YaraVita Brassitrel Pro—1 L | YaraVita Brassitrel Pro—1 L + YaraVita Bortrac—1 L | YaraVita Brassitrel Pro—1 L + YaraVita Bortrac—1 L | ||
BBCH 30 | YaraVita Brassitrel Pro—4 L | YaraVita Brassitrel Pro—4 L | YaraVita Brassitrel Pro—4 L + YaraVita Bortrac—1 L | YaraVita Brassitrel Pro—4 L + YaraVita Bortrac—1 L | ||
BBCH 59 | YaraVita Bortrac—1 L | YaraVita Bortrac—1 L | ||||
BBCH 68 | YaraVita Thiotrac—5 L | YaraVita Thiotrac—5 L | YaraVita Thiotrac—5 L |
Date (Scale BBCH) | Solid Fertilizer Dose |
---|---|
before sowing | YaraMila RAPS—200 kg |
BBCH 20 | YaraMila RAPS—600 kg |
BBCH 51 | YaraBela SULFAN—300 kg |
Measurement | 2017 | 2018 | 2019 | |
---|---|---|---|---|
pH in KCl | 6.9 | 7.2 | 6.1 | |
Nmin kg·ha−1 | 51.3 | 53.4 | 62.6 | |
Humus % | 1.8 | 1.7 | 2.1 | |
Content of available nutrients | ||||
P2O5 | mg·100 g−1 of Soil | 11.4 | 14.9 | 10.2 |
K2O | 16.5 | 20.0 | 14.5 | |
Mg | 7.2 | 8.8 | 8.1 | |
S-SO4 | 1.6 | 1.8 | 1.9 | |
B | mg 1000 g−1 of Soil | 1.4 | 1.8 | 1.2 |
Zn | 15.7 | 16.4 | 14.6 | |
Cu | 3.5 | 3.8 | 4.2 | |
Fe | 2856 | 1963 | 2267 | |
Mn | 195.3 | 235.6 | 256.3 |
Variant 1 | Plant Density before Harvest (pcs.·m−2) | Number of Silicles per Plant | Number of Seeds per Silicle | Thousand Seed Weight (g) | Seed Yield (t·ha−1) |
---|---|---|---|---|---|
Foliar fertilization (F) | |||||
A | 34.6 | 93.5 c | 21.9 | 6.37 | 4.26 |
B | 32.8 | 105.6 b | 22.9 | 6.33 | 4.58 |
C | 36.7 | 102.6 b | 22.9 | 6.15 | 4.73 |
D | 34.3 | 110.4 a | 23.2 | 5.90 | 4.81 |
E | 32.0 | 112.3 a | 22.6 | 6.43 | 4.94 |
F | 34.5 | 100.9 bc | 22.2 | 6.22 | 4.35 |
Year (Y) | |||||
2018 | 43.1 a | 72.5 c | 22.3 b | 6.44 | 4.39 |
2019 | 30.3 b | 99.1 b | 21.8 b | 7.31 | 4.68 |
2020 | 29.1 b | 141.0 a | 23.8 a | 4.95 | 4.76 |
Mean | |||||
2018–2020 | 34.2 | 104.2 | 22.6 | 6.23 | 4.61 |
ANOVA | |||||
F | n.s. | * | n.s. | ** | *** |
Y | *** | *** | *** | *** | *** |
FxY | n.s. | n.s. | n.s. | * | *** |
Variant 1 | Fat Content (%) | Fat Yield (t·ha−1) | Protein Content (%) | Protein Yield (t·ha−1) |
---|---|---|---|---|
Foliar fertilization (F) | ||||
A | 47.4 | 2.02 | 20.1 | 0.86 |
B | 48.0 | 2.20 | 19.1 | 0.87 |
C | 47.8 | 2.26 | 19.6 | 0.93 |
D | 48.4 | 2.34 | 18.8 | 0.90 |
E | 47.6 | 2.35 | 19.3 | 0.95 |
F | 47.9 ab | 2.08 c | 19.6 | 0.85 |
Year (Y) | ||||
2018 | 46.1 | 2.02 | 20.8 | 0.91 |
2019 | 49.9 | 2.34 | 18.6 | 0.87 |
2020 | 47.5 | 2.26 | 18.8 | 0.89 |
Mean | ||||
2018–2020 | 47.8 | 2.21 | 19.4 | 0.89 |
ANOVA | ||||
F | * | *** | ** | *** |
Y | *** | *** | *** | * |
FxY | *** | *** | *** | *** |
Variant 1 | SPAD | LAI | Gs (mmol m−2 s−1) |
---|---|---|---|
Foliar fertilization (F) | |||
A | 56.7 c | 3.25 | 328.4 |
B | 57.0 bc | 3.45 | 334.5 |
C | 57.5 b | 3.50 | 277.4 |
D | 58.3 ab | 3.62 | 368.8 |
E | 59.0 a | 3.69 | 334.2 |
F | 57.1 bc | 3.21 | 265.3 |
Year (Y) | |||
2018 | 58.2 b | 4.50 | 319.4 |
2019 | 50.3 c | 2.37 | 317.7 |
2020 | 64.3 a | 3.50 | 317.2 |
Mean | |||
2018–2020 | 57.6 | 3.45 | 318.1 |
ANOVA | |||
F | ** | *** | *** |
Y | *** | *** | n.s. |
FxY | n.s. | ** | *** |
Variant 1 | Mg | Ca | Mn | B |
---|---|---|---|---|
(g·kg−1) | (g·kg−1) | (mg·kg−1) | (mg·kg−1) | |
Foliar fertilization (F) | ||||
A | 4.43 | 3.58 | 39.4 | 8.4 bc |
B | 4.46 | 3.63 | 41.2 | 8.8 ab |
C | 4.45 | 3.61 | 41.9 | 8.7 ab |
D | 4.47 | 3.61 | 40.6 | 9.2 a |
E | 4.45 | 3.59 | 40.4 | 9.1 a |
F | 4.42 | 3.57 | 39.5 | 8.2 c |
Year | ||||
2018 | 4.58 a | 3.82 a | 40.8 | 8.9 |
2019 | 4.54 a | 3.51 b | 39.6 | 8.6 |
2020 | 4.22 b | 3.47 b | 41.1 | 8.7 |
Mean | ||||
2018–2020 | 4.45 | 3.60 | 40.5 | 8.7 |
ANOVA | ||||
F | n.s. | n.s. | n.s. | *** |
Y | ** | ** | n.s. | n.s. |
FxY | n.s. | n.s. | n.s. | n.s. |
Specification | Seed Yield (t·ha−1) | Fat Yield (t·ha−1) | Protein Yield (t·ha−1) |
---|---|---|---|
Seed yield (t·ha−1) | 1.00 | 0.93 * | 0.71 * |
Fat yield (t·ha−1) | 0.93 * | 1.00 | 0.48 * |
Protein yield (t·ha−1) | 0.71 * | 0.48 * | 1.00 |
Plant density (t·ha−1) | −0.27 * | −0.41 * | 0.17 |
Number of pods | 0.43 * | 0.42 * | 0.05 |
Number of seeds | 0.26 * | 0.16 | 0.15 |
TSW (g) | −0.12 | 0.04 | −0.04 |
Fat content (%) | 0.29 * | 0.61 * | −0.30 * |
Protein content (%) | −0.41 * | −0.63 * | 0.34 * |
SPAD | 0.40 * | −0.19 | 0.14 |
LAI | 0.30 * | 0.548 | −0.17 |
Gs | 0.28 * | 0.25 * | 0.22 |
Variant 1 | Yield Increase (t·ha−1) | Yield Increase (EUR·ha−1) | Cost of Foliar Fertilization (EUR·ha−1) | Profitability (EUR·ha−1) |
---|---|---|---|---|
A | - | - | - | - |
B | 0.32 | 121.43 | 58.80 | 62.63 |
C | 0.47 | 178.35 | 79.76 | 98.59 |
D | 0.55 | 208.70 | 80.24 | 128.46 |
E | 0.68 | 258.03 | 101.2 | 156.83 |
F | 0.09 | 34.15 | 20.96 | 13.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarecki, W. The Reaction of Winter Oilseed Rape to Different Foliar Fertilization with Macro- and Micronutrients. Agriculture 2021, 11, 515. https://doi.org/10.3390/agriculture11060515
Jarecki W. The Reaction of Winter Oilseed Rape to Different Foliar Fertilization with Macro- and Micronutrients. Agriculture. 2021; 11(6):515. https://doi.org/10.3390/agriculture11060515
Chicago/Turabian StyleJarecki, Wacław. 2021. "The Reaction of Winter Oilseed Rape to Different Foliar Fertilization with Macro- and Micronutrients" Agriculture 11, no. 6: 515. https://doi.org/10.3390/agriculture11060515
APA StyleJarecki, W. (2021). The Reaction of Winter Oilseed Rape to Different Foliar Fertilization with Macro- and Micronutrients. Agriculture, 11(6), 515. https://doi.org/10.3390/agriculture11060515