Impact of Wind Direction on Erodibility of a Hortic Anthrosol in Southeastern Spain
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novara, A.; Gristina, L.; Saladino, S.S.; Santoro, A.; Cerdà, A. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil Tillage Res. 2011, 117, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Sharifikia, M. Environmental challenges and drought hazard assessment of Hamoun Desert Lake in Sistan region, Iran, based on the time series of satellite imagery. Nat. Hazards 2013, 65, 201–217. [Google Scholar] [CrossRef]
- Kravchenko, Y.S.; Chen, Q.; Liu, X.; Herbert, S.J.; Zhang, X. Conservation practices and management in Ukrainian mollisols. J. Agric. Sci. Technol. 2016, 16, 1455–1466. [Google Scholar]
- Yildiz, S.; Enç, V.; Kara, M.; Tabak, Y.; Acet, E. Assessment of the potential risks of airbone microbial contamination in solid recovered fuel plants: A case study in Istanbul. Environ. Eng. Manag. J. 2017, 16, 1415–1421. [Google Scholar]
- Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- Touré, A.A.; Rajot, J.L.; Garba, Z.; Marticorena, B.; Petit, C.; Sebag, D. Impact of very low crop residues cover on wind erosion in the Sahel. Catena 2011, 85, 205–214. [Google Scholar] [CrossRef]
- Asensio, C.; Lozano, F.J.; Ortega, E.; Kikvidze, Z. Study on the effectiveness of an agricultural Technique based on aeoliandeposition, in a semiarid environment. Environ. Eng. Manag. J. 2015, 14, 1143–1150. [Google Scholar] [CrossRef]
- De Oro, L.A.; Buschiazzo, D.E. Threshold wind velocity as an index of soil susceptibility to wind erosion under variable climatic conditions. Land Degrad. Dev. 2009, 20, 14–21. [Google Scholar] [CrossRef]
- Borrelli, P.; Panagos, P.; Ballabio, C.; Lugato, E.; Weynantgs, M.; Montanarella, L. Towards a Pan-European assessment of land susceptibility to wind erosion. Land Degrad. Dev. 2016, 27, 1093–1105. [Google Scholar] [CrossRef]
- Weber, J.; Kocowicz, A.; Debicka, M.; Jamroz, E. Changes in soil morphology of Podzols affected by alkaline fly ash blown out from the dumping site of an electric power plant. J. Soils Sediments 2017, 17, 1852–1861. [Google Scholar] [CrossRef] [Green Version]
- Colazo, J.C.; Buschiazzo, D.E. Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma 2010, 159, 228–236. [Google Scholar] [CrossRef]
- Colazo, J.C.; Buschiazzo, D.E. The impact of agriculture on soil texture due to wind erosion. Land Degrad. Dev. 2015, 26, 62–70. [Google Scholar] [CrossRef]
- Zobeck, T.M.; Baddock, M.; Van Pelt, R.S.; Tatarko, J.; Acosta-Martínez, V. Soil property effects on wind erosion of organic soils. Aeolian Res. 2013, 10, 43–51. [Google Scholar] [CrossRef]
- Molchanov, E.N.; Savin, I.Y.; Yakovlev, A.S.; Bulgakov, D.S.; Makarov, O.A. National approaches to evaluation of the degree of soil degradation. Eurasian Soil Sci. 2015, 48, 1268–1277. [Google Scholar] [CrossRef]
- Goossens, D.; Offer, Z.; London, G. Wind tunnel and field calibration of five aeolian sand traps. Geomorphology 2000, 35, 233–252. [Google Scholar] [CrossRef]
- Fryrear, D.W. A field dust sampler. J. Soil Water Conserv. 1986, 41, 117–120. [Google Scholar]
- Wilson, S.J.; Cook, R.U. Wind erosion. In Soil Erosion; Kirkby, M.J., Morgan, R.P.C., Eds.; Wiley: Chichester, UK, 1980; pp. 217–251. [Google Scholar]
- Zobeck, T.M.; Sterk, G.; Funk, R.; Rajot, J.L.; Stout, J.E.; Van Pelt, R.S. Measurement and data analysis methods for field-scale wind erosion studies and model validation. Earth Surf. Process. Landf. 2003, 28, 1163–1188. [Google Scholar] [CrossRef]
- Mendez, M.J.; Funk, R.; Buschiazzo, D.E. Field wind erosion measurements with Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers. Geomorphology 2011, 129, 43–48. [Google Scholar] [CrossRef]
- Basaran, M.; Erpul, G.; Uzun, O.; Gabriels, D. Comparative efficiency testing for a newly designed cyclone type sediment trap for wind erosion measurements. Geomorphology 2011, 130, 343–351. [Google Scholar] [CrossRef]
- Marin, C. Estructura y Evolucion Tectonica Reciente del Campo de Dalias y de Nijar en el Contexto del Limite Meridional de las Cordilleras Beticas Orientales. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2005. [Google Scholar]
- Asensio, C.; López, J.; Lozano, F.J. Colector Multidireccional de Partículas Transportadas por el Viento [Multidirectional Collector of Particles Carried by the Wind]. Spanish Office of the Patents and Brand. Ref. ES 2 470 090 B1, 17 April 2015. [Google Scholar]
- Gallardo, P.; Salazar, J.; Lozano, F.J.; Navarro, M.C.; Asensio, C. Economic impact of nutrient losses from wind erosion of cereal soils in Southeast Spain. Int. J. Environ. Res. 2016, 10, 333–340. [Google Scholar]
- Segovia, C.; Gómez, J.D.; Gallardo, P.; Lozano, F.J.; Asensio, C. Soil nutrients losses by wind erosion in a citrus crop at Southeast Spain. Eurasian Soil Sci. 2017, 50, 756–763. [Google Scholar] [CrossRef]
- Marzen, M.; Iserloh, T.; Fister, W.; Seeger, M.; Rodrigo Comino, J.; Ries, J.B. On-site water and wind erosion experiments reveal relative impact on total soil erosion. Geosciences 2019, 9, 478. [Google Scholar] [CrossRef] [Green Version]
- Katra, I.; Gross, A.; Swet, N.; Tanner, S.; Krasnov, H.; Angert, A. Substantial dust loss of bioavailable phosphorus from agricultural soils. Sci. Rep. 2016, 6, 24736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asensio, C.; Weber, J.; Lozano, F.J.; Mielnik, L. Laser-scanner use into a wind tunnel to quantify soil erosion. Int. Agrophys. 2019, 33, 227–232. [Google Scholar] [CrossRef]
Sample | Very Coarse Sand (2000–1000 µm) | Coarse Sand (1000–500 µm) | Medium Sand (500–250 µm) | Fine Sand (250–100 µm) | Very Fine Sand (100–50 µm) | Coarse Silt (50–20 µm) | Fine Silt (20–2 µm) | Clay (<2 µm) | O.M. | CO3= |
---|---|---|---|---|---|---|---|---|---|---|
(g·kg−1) | (%) | |||||||||
LPe | 15.1 | 13.8 | 21.9 | 23.7 | 6.2 | 5.3 | 3.8 | 10.2 | 43.4 | 18 |
ATh | 5.6 | 11.4 | 23.2 | 29.2 | 20.3 | 0.7 | 2.4 | 7.2 | 29.0 | 24 |
CLh | 6.6 | 6.2 | 9.3 | 18.8 | 22.1 | 7.1 | 12.3 | 17.6 | 16.8 | 41 |
NE-35 | 0.1 | 0.7 | 5.8 | 11.9 | 30.3 | 18.3 | 11 | 21.9 | 42.4 | 16 |
NE-70 | 0 | 0.2 | 1.2 | 6.3 | 36.1 | 20.5 | 13.5 | 22.2 | 43.4 | 15 |
NE-105 | 0 | 0 | 0 | 0.5 | 37.2 | 21.3 | 15.4 | 25.6 | 39.1 | 13 |
NE-140 | 0 | 0 | 0 | 0 | 18.3 | 23.8 | 26.6 | 31.3 | 34.7 | 11 |
S-35 | 0 | 0.1 | 1.8 | 3.1 | 17.9 | 21.8 | 27 | 28.3 | 19.3 | 41 |
S-70 | 0 | 0 | 0.4 | 2.7 | 19.9 | 23.6 | 27.5 | 25.9 | 16.9 | 39 |
S-105 | 0 | 0 | 0 | 0 | 14.3 | 27.6 | 30.2 | 27.9 | 15.5 | 39 |
S-140 | 0 | 0 | 0 | 0 | 7.6 | 29.8 | 32.4 | 30.2 | 14.7 | 37 |
Sample | Qr Balance |
---|---|
From NE | −0.0103 |
From S | 0.0079 |
TOTAL | −0.0154 |
Sample | Qt (kg) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Average | |
From NE | 5.2630 | 5.6465 | 5.2825 | 6.1257 | 6.4422 | 5.7794 | 7.0211 | 6.5873 | 7.2174 | 6.1517 |
From S | 3.0560 | 3.3691 | 3.1766 | 3.5059 | 3.8438 | 3.4755 | 4.0768 | 3.7701 | 4.1908 | 3.6072 |
TOTAL | 16.9775 | 18.8218 | 17.8462 | 19.2632 | 21.4739 | 19.5251 | 22.6488 | 20.7148 | 23.2820 | 20.0615 |
Sample | Smectite/ Vermiculite (%) | Illite (%) | Kaolinite (%) | Calcite (%) | Dolomite (%) | Quartz (%) | Feldspar (%) | Others (%) |
---|---|---|---|---|---|---|---|---|
ATh | 13 | 18 | 12 | 16 | 3 | 27 | 6 | 5 |
NE-35 | 11 | 13 | 15 | 5 | 2 | 47 | 5 | 2 |
NE-70 | 12 | 12 | 18 | 3 | 1 | 45 | 7 | 2 |
NE-105 | 16 | 14 | 17 | 2 | 1 | 39 | 10 | 1 |
NE-140 | 16 | 18 | 19 | 1 | 0 | 34 | 12 | 0 |
S-35 | 21 | 14 | 7 | 26 | 5 | 17 | 6 | 4 |
S-70 | 24 | 19 | 7 | 23 | 3 | 15 | 5 | 4 |
S-105 | 27 | 27 | 9 | 14 | 2 | 16 | 4 | 1 |
S-140 | 30 | 28 | 10 | 11 | 1 | 15 | 4 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero, R.; Valenzuela, J.L.; Monterroso, A.I.; Asensio, C. Impact of Wind Direction on Erodibility of a Hortic Anthrosol in Southeastern Spain. Agriculture 2021, 11, 589. https://doi.org/10.3390/agriculture11070589
Guerrero R, Valenzuela JL, Monterroso AI, Asensio C. Impact of Wind Direction on Erodibility of a Hortic Anthrosol in Southeastern Spain. Agriculture. 2021; 11(7):589. https://doi.org/10.3390/agriculture11070589
Chicago/Turabian StyleGuerrero, Rocío, Juan L. Valenzuela, Alejandro I. Monterroso, and Carlos Asensio. 2021. "Impact of Wind Direction on Erodibility of a Hortic Anthrosol in Southeastern Spain" Agriculture 11, no. 7: 589. https://doi.org/10.3390/agriculture11070589
APA StyleGuerrero, R., Valenzuela, J. L., Monterroso, A. I., & Asensio, C. (2021). Impact of Wind Direction on Erodibility of a Hortic Anthrosol in Southeastern Spain. Agriculture, 11(7), 589. https://doi.org/10.3390/agriculture11070589